1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
use std::{
collections::{hash_map::Entry, HashMap},
hash::Hash,
sync::{Arc, Weak},
};
use once_cell::sync::OnceCell;
use crate::lock::{rank, Mutex};
use crate::{PreHashedKey, PreHashedMap};
type SlotInner<V> = Weak<V>;
type ResourcePoolSlot<V> = Arc<OnceCell<SlotInner<V>>>;
pub struct ResourcePool<K, V> {
// We use a pre-hashed map as we never actually need to read the keys.
//
// This additionally allows us to not need to hash more than once on get_or_init.
inner: Mutex<PreHashedMap<K, ResourcePoolSlot<V>>>,
}
impl<K: Clone + Eq + Hash, V> ResourcePool<K, V> {
pub fn new() -> Self {
Self {
inner: Mutex::new(rank::RESOURCE_POOL_INNER, HashMap::default()),
}
}
/// Get a resource from the pool with the given entry map, or create a new
/// one if it doesn't exist using the given constructor.
///
/// Behaves such that only one resource will be created for each unique
/// entry map at any one time.
pub fn get_or_init<F, E>(&self, key: K, constructor: F) -> Result<Arc<V>, E>
where
F: FnOnce(K) -> Result<Arc<V>, E>,
{
// Hash the key outside of the lock.
let hashed_key = PreHashedKey::from_key(&key);
// We can't prove at compile time that these will only ever be consumed once,
// so we need to do the check at runtime.
let mut key = Some(key);
let mut constructor = Some(constructor);
'race: loop {
let mut map_guard = self.inner.lock();
let entry = match map_guard.entry(hashed_key) {
// An entry exists for this resource.
//
// We know that either:
// - The resource is still alive, and Weak::upgrade will succeed.
// - The resource is in the process of being dropped, and Weak::upgrade will fail.
//
// The entry will never be empty while the BGL is still alive.
Entry::Occupied(entry) => Arc::clone(entry.get()),
// No entry exists for this resource.
//
// We know that the resource is not alive, so we can create a new entry.
Entry::Vacant(entry) => Arc::clone(entry.insert(Arc::new(OnceCell::new()))),
};
drop(map_guard);
// Some other thread may beat us to initializing the entry, but OnceCell guarantees that only one thread
// will actually initialize the entry.
//
// We pass the strong reference outside of the closure to keep it alive while we're the only one keeping a reference to it.
let mut strong = None;
let weak = entry.get_or_try_init(|| {
let strong_inner = constructor.take().unwrap()(key.take().unwrap())?;
let weak = Arc::downgrade(&strong_inner);
strong = Some(strong_inner);
Ok(weak)
})?;
// If strong is Some, that means we just initialized the entry, so we can just return it.
if let Some(strong) = strong {
return Ok(strong);
}
// The entry was already initialized by someone else, so we need to try to upgrade it.
if let Some(strong) = weak.upgrade() {
// We succeed, the resource is still alive, just return that.
return Ok(strong);
}
// The resource is in the process of being dropped, because upgrade failed. The entry still exists in the map, but it points to nothing.
//
// We're in a race with the drop implementation of the resource, so lets just go around again. When we go around again:
// - If the entry exists, we might need to go around a few more times.
// - If the entry doesn't exist, we'll create a new one.
continue 'race;
}
}
/// Remove the given entry map from the pool.
///
/// Must *only* be called in the Drop impl of [`BindGroupLayout`].
///
/// [`BindGroupLayout`]: crate::binding_model::BindGroupLayout
pub fn remove(&self, key: &K) {
let hashed_key = PreHashedKey::from_key(key);
let mut map_guard = self.inner.lock();
// Weak::upgrade will be failing long before this code is called. All threads trying to access the resource will be spinning,
// waiting for the entry to be removed. It is safe to remove the entry from the map.
map_guard.remove(&hashed_key);
}
}
#[cfg(test)]
mod tests {
use std::sync::{
atomic::{AtomicU32, Ordering},
Barrier,
};
use super::*;
#[test]
fn deduplication() {
let pool = ResourcePool::<u32, u32>::new();
let mut counter = 0_u32;
let arc1 = pool
.get_or_init::<_, ()>(0, |key| {
counter += 1;
Ok(Arc::new(key))
})
.unwrap();
assert_eq!(*arc1, 0);
assert_eq!(counter, 1);
let arc2 = pool
.get_or_init::<_, ()>(0, |key| {
counter += 1;
Ok(Arc::new(key))
})
.unwrap();
assert!(Arc::ptr_eq(&arc1, &arc2));
assert_eq!(*arc2, 0);
assert_eq!(counter, 1);
drop(arc1);
drop(arc2);
pool.remove(&0);
let arc3 = pool
.get_or_init::<_, ()>(0, |key| {
counter += 1;
Ok(Arc::new(key))
})
.unwrap();
assert_eq!(*arc3, 0);
assert_eq!(counter, 2);
}
// Test name has "2_threads" in the name so nextest reserves two threads for it.
#[test]
fn concurrent_creation_2_threads() {
struct Resources {
pool: ResourcePool<u32, u32>,
counter: AtomicU32,
barrier: Barrier,
}
let resources = Arc::new(Resources {
pool: ResourcePool::<u32, u32>::new(),
counter: AtomicU32::new(0),
barrier: Barrier::new(2),
});
// Like all races, this is not inherently guaranteed to work, but in practice it should work fine.
//
// To validate the expected order of events, we've put print statements in the code, indicating when each thread is at a certain point.
// The output will look something like this if the test is working as expected:
//
// ```
// 0: prewait
// 1: prewait
// 1: postwait
// 0: postwait
// 1: init
// 1: postget
// 0: postget
// ```
fn thread_inner(idx: u8, resources: &Resources) -> Arc<u32> {
eprintln!("{idx}: prewait");
// Once this returns, both threads should hit get_or_init at about the same time,
// allowing us to actually test concurrent creation.
//
// Like all races, this is not inherently guaranteed to work, but in practice it should work fine.
resources.barrier.wait();
eprintln!("{idx}: postwait");
let ret = resources
.pool
.get_or_init::<_, ()>(0, |key| {
eprintln!("{idx}: init");
// Simulate long running constructor, ensuring that both threads will be in get_or_init.
std::thread::sleep(std::time::Duration::from_millis(250));
resources.counter.fetch_add(1, Ordering::SeqCst);
Ok(Arc::new(key))
})
.unwrap();
eprintln!("{idx}: postget");
ret
}
let thread1 = std::thread::spawn({
let resource_clone = Arc::clone(&resources);
move || thread_inner(1, &resource_clone)
});
let arc0 = thread_inner(0, &resources);
assert_eq!(resources.counter.load(Ordering::Acquire), 1);
let arc1 = thread1.join().unwrap();
assert!(Arc::ptr_eq(&arc0, &arc1));
}
// Test name has "2_threads" in the name so nextest reserves two threads for it.
#[test]
fn create_while_drop_2_threads() {
struct Resources {
pool: ResourcePool<u32, u32>,
barrier: Barrier,
}
let resources = Arc::new(Resources {
pool: ResourcePool::<u32, u32>::new(),
barrier: Barrier::new(2),
});
// Like all races, this is not inherently guaranteed to work, but in practice it should work fine.
//
// To validate the expected order of events, we've put print statements in the code, indicating when each thread is at a certain point.
// The output will look something like this if the test is working as expected:
//
// ```
// 0: prewait
// 1: prewait
// 1: postwait
// 0: postwait
// 1: postsleep
// 1: removal
// 0: postget
// ```
//
// The last two _may_ be flipped.
let existing_entry = resources
.pool
.get_or_init::<_, ()>(0, |key| Ok(Arc::new(key)))
.unwrap();
// Drop the entry, but do _not_ remove it from the pool.
// This simulates the situation where the resource arc has been dropped, but the Drop implementation
// has not yet run, which calls remove.
drop(existing_entry);
fn thread0_inner(resources: &Resources) {
eprintln!("0: prewait");
resources.barrier.wait();
eprintln!("0: postwait");
// We try to create a new entry, but the entry already exists.
//
// As Arc::upgrade is failing, we will just keep spinning until remove is called.
resources
.pool
.get_or_init::<_, ()>(0, |key| Ok(Arc::new(key)))
.unwrap();
eprintln!("0: postget");
}
fn thread1_inner(resources: &Resources) {
eprintln!("1: prewait");
resources.barrier.wait();
eprintln!("1: postwait");
// We wait a little bit, making sure that thread0_inner has started spinning.
std::thread::sleep(std::time::Duration::from_millis(250));
eprintln!("1: postsleep");
// We remove the entry from the pool, allowing thread0_inner to re-create.
resources.pool.remove(&0);
eprintln!("1: removal");
}
let thread1 = std::thread::spawn({
let resource_clone = Arc::clone(&resources);
move || thread1_inner(&resource_clone)
});
thread0_inner(&resources);
thread1.join().unwrap();
}
}