1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Traversing the DOM tree; the bloom filter.
use crate::context::{ElementCascadeInputs, SharedStyleContext, StyleContext};
use crate::data::{ElementData, ElementStyles, RestyleKind};
use crate::dom::{NodeInfo, OpaqueNode, TElement, TNode};
use crate::invalidation::element::restyle_hints::RestyleHint;
use crate::matching::{ChildRestyleRequirement, MatchMethods};
use crate::selector_parser::PseudoElement;
use crate::sharing::StyleSharingTarget;
use crate::style_resolver::{PseudoElementResolution, StyleResolverForElement};
use crate::stylist::RuleInclusion;
use crate::traversal_flags::TraversalFlags;
use selectors::matching::SelectorCaches;
use smallvec::SmallVec;
use std::collections::HashMap;
/// A cache from element reference to known-valid computed style.
pub type UndisplayedStyleCache =
HashMap<selectors::OpaqueElement, servo_arc::Arc<crate::properties::ComputedValues>>;
/// A per-traversal-level chunk of data. This is sent down by the traversal, and
/// currently only holds the dom depth for the bloom filter.
///
/// NB: Keep this as small as possible, please!
#[derive(Clone, Copy, Debug)]
pub struct PerLevelTraversalData {
/// The current dom depth.
///
/// This is kept with cooperation from the traversal code and the bloom
/// filter.
pub current_dom_depth: usize,
}
/// We use this structure, rather than just returning a boolean from pre_traverse,
/// to enfore that callers process root invalidations before starting the traversal.
pub struct PreTraverseToken<E: TElement>(Option<E>);
impl<E: TElement> PreTraverseToken<E> {
/// Whether we should traverse children.
pub fn should_traverse(&self) -> bool {
self.0.is_some()
}
/// Returns the traversal root for the current traversal.
pub(crate) fn traversal_root(self) -> Option<E> {
self.0
}
}
/// A global variable holding the state of
/// `is_servo_nonincremental_layout()`.
/// See [#22854](https://github.com/servo/servo/issues/22854).
#[cfg(feature = "servo")]
pub static IS_SERVO_NONINCREMENTAL_LAYOUT: std::sync::atomic::AtomicBool =
std::sync::atomic::AtomicBool::new(false);
#[cfg(feature = "servo")]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
use std::sync::atomic::Ordering;
IS_SERVO_NONINCREMENTAL_LAYOUT.load(Ordering::Relaxed)
}
#[cfg(not(feature = "servo"))]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
false
}
/// A DOM Traversal trait, that is used to generically implement styling for
/// Gecko and Servo.
pub trait DomTraversal<E: TElement>: Sync {
/// Process `node` on the way down, before its children have been processed.
///
/// The callback is invoked for each child node that should be processed by
/// the traversal.
fn process_preorder<F>(
&self,
data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
node: E::ConcreteNode,
note_child: F,
) where
F: FnMut(E::ConcreteNode);
/// Process `node` on the way up, after its children have been processed.
///
/// This is only executed if `needs_postorder_traversal` returns true.
fn process_postorder(&self, contect: &mut StyleContext<E>, node: E::ConcreteNode);
/// Boolean that specifies whether a bottom up traversal should be
/// performed.
///
/// If it's false, then process_postorder has no effect at all.
fn needs_postorder_traversal() -> bool {
true
}
/// Handles the postorder step of the traversal, if it exists, by bubbling
/// up the parent chain.
///
/// If we are the last child that finished processing, recursively process
/// our parent. Else, stop. Also, stop at the root.
///
/// Thus, if we start with all the leaves of a tree, we end up traversing
/// the whole tree bottom-up because each parent will be processed exactly
/// once (by the last child that finishes processing).
///
/// The only communication between siblings is that they both
/// fetch-and-subtract the parent's children count. This makes it safe to
/// call durign the parallel traversal.
fn handle_postorder_traversal(
&self,
context: &mut StyleContext<E>,
root: OpaqueNode,
mut node: E::ConcreteNode,
children_to_process: isize,
) {
// If the postorder step is a no-op, don't bother.
if !Self::needs_postorder_traversal() {
return;
}
if children_to_process == 0 {
// We are a leaf. Walk up the chain.
loop {
self.process_postorder(context, node);
if node.opaque() == root {
break;
}
let parent = node.traversal_parent().unwrap();
let remaining = parent.did_process_child();
if remaining != 0 {
// The parent has other unprocessed descendants. We only
// perform postorder processing after the last descendant
// has been processed.
break;
}
node = parent.as_node();
}
} else {
// Otherwise record the number of children to process when the time
// comes.
node.as_element()
.unwrap()
.store_children_to_process(children_to_process);
}
}
/// Style invalidations happen when traversing from a parent to its children.
/// However, this mechanism can't handle style invalidations on the root. As
/// such, we have a pre-traversal step to handle that part and determine whether
/// a full traversal is needed.
fn pre_traverse(root: E, shared_context: &SharedStyleContext) -> PreTraverseToken<E> {
use crate::invalidation::element::state_and_attributes::propagate_dirty_bit_up_to;
let traversal_flags = shared_context.traversal_flags;
let mut data = root.mutate_data();
let mut data = data.as_mut().map(|d| &mut **d);
if let Some(ref mut data) = data {
if !traversal_flags.for_animation_only() {
// Invalidate our style, and that of our siblings and
// descendants as needed.
let invalidation_result = data.invalidate_style_if_needed(
root,
shared_context,
None,
&mut SelectorCaches::default(),
);
if invalidation_result.has_invalidated_siblings() {
let actual_root = root.as_node().parent_element_or_host().expect(
"How in the world can you invalidate \
siblings without a parent?",
);
propagate_dirty_bit_up_to(actual_root, root);
return PreTraverseToken(Some(actual_root));
}
}
}
let should_traverse =
Self::element_needs_traversal(root, traversal_flags, data.as_mut().map(|d| &**d));
// If we're not going to traverse at all, we may need to clear some state
// off the root (which would normally be done at the end of recalc_style_at).
if !should_traverse && data.is_some() {
clear_state_after_traversing(root, data.unwrap(), traversal_flags);
}
PreTraverseToken(if should_traverse { Some(root) } else { None })
}
/// Returns true if traversal should visit a text node. The style system
/// never processes text nodes, but Servo overrides this to visit them for
/// flow construction when necessary.
fn text_node_needs_traversal(node: E::ConcreteNode, _parent_data: &ElementData) -> bool {
debug_assert!(node.is_text_node());
false
}
/// Returns true if traversal is needed for the given element and subtree.
fn element_needs_traversal(
el: E,
traversal_flags: TraversalFlags,
data: Option<&ElementData>,
) -> bool {
debug!(
"element_needs_traversal({:?}, {:?}, {:?})",
el, traversal_flags, data
);
// In case of animation-only traversal we need to traverse the element if the element has
// animation only dirty descendants bit, animation-only restyle hint.
if traversal_flags.for_animation_only() {
return data.map_or(false, |d| d.has_styles()) &&
(el.has_animation_only_dirty_descendants() ||
data.as_ref()
.unwrap()
.hint
.has_animation_hint_or_recascade());
}
// Non-incremental layout visits every node.
if is_servo_nonincremental_layout() {
return true;
}
// Unwrap the data.
let data = match data {
Some(d) if d.has_styles() => d,
_ => return true,
};
// If the dirty descendants bit is set, we need to traverse no matter
// what. Skip examining the ElementData.
if el.has_dirty_descendants() {
return true;
}
// If we have a restyle hint or need to recascade, we need to visit the
// element.
//
// Note that this is different than checking has_current_styles_for_traversal(),
// since that can return true even if we have a restyle hint indicating
// that the element's descendants (but not necessarily the element) need
// restyling.
if !data.hint.is_empty() {
return true;
}
// Servo uses the post-order traversal for flow construction, so we need
// to traverse any element with damage so that we can perform fixup /
// reconstruction on our way back up the tree.
if cfg!(feature = "servo") && !data.damage.is_empty() {
return true;
}
trace!("{:?} doesn't need traversal", el);
false
}
/// Return the shared style context common to all worker threads.
fn shared_context(&self) -> &SharedStyleContext;
}
/// Manually resolve style by sequentially walking up the parent chain to the
/// first styled Element, ignoring pending restyles. The resolved style is made
/// available via a callback, and can be dropped by the time this function
/// returns in the display:none subtree case.
pub fn resolve_style<E>(
context: &mut StyleContext<E>,
element: E,
rule_inclusion: RuleInclusion,
pseudo: Option<&PseudoElement>,
mut undisplayed_style_cache: Option<&mut UndisplayedStyleCache>,
) -> ElementStyles
where
E: TElement,
{
debug_assert!(
rule_inclusion == RuleInclusion::DefaultOnly ||
pseudo.map_or(false, |p| p.is_before_or_after()) ||
element.borrow_data().map_or(true, |d| !d.has_styles()),
"Why are we here?"
);
debug_assert!(
rule_inclusion == RuleInclusion::All || undisplayed_style_cache.is_none(),
"can't use the cache for default styles only"
);
let mut ancestors_requiring_style_resolution = SmallVec::<[E; 16]>::new();
// Clear the bloom filter, just in case the caller is reusing TLS.
context.thread_local.bloom_filter.clear();
let mut style = None;
let mut ancestor = element.traversal_parent();
while let Some(current) = ancestor {
if rule_inclusion == RuleInclusion::All {
if let Some(data) = current.borrow_data() {
if let Some(ancestor_style) = data.styles.get_primary() {
style = Some(ancestor_style.clone());
break;
}
}
}
if let Some(ref mut cache) = undisplayed_style_cache {
if let Some(s) = cache.get(¤t.opaque()) {
style = Some(s.clone());
break;
}
}
ancestors_requiring_style_resolution.push(current);
ancestor = current.traversal_parent();
}
if let Some(ancestor) = ancestor {
context.thread_local.bloom_filter.rebuild(ancestor);
context.thread_local.bloom_filter.push(ancestor);
}
let mut layout_parent_style = style.clone();
while let Some(style) = layout_parent_style.take() {
if !style.is_display_contents() {
layout_parent_style = Some(style);
break;
}
ancestor = ancestor.unwrap().traversal_parent();
layout_parent_style =
ancestor.and_then(|a| a.borrow_data().map(|data| data.styles.primary().clone()));
}
for ancestor in ancestors_requiring_style_resolution.iter().rev() {
context.thread_local.bloom_filter.assert_complete(*ancestor);
// Actually `PseudoElementResolution` doesn't really matter here.
// (but it does matter below!).
let primary_style = StyleResolverForElement::new(
*ancestor,
context,
rule_inclusion,
PseudoElementResolution::IfApplicable,
)
.resolve_primary_style(
style.as_deref(),
layout_parent_style.as_deref(),
selectors::matching::IncludeStartingStyle::No,
);
let is_display_contents = primary_style.style().is_display_contents();
style = Some(primary_style.style.0);
if !is_display_contents {
layout_parent_style = style.clone();
}
if let Some(ref mut cache) = undisplayed_style_cache {
cache.insert(ancestor.opaque(), style.clone().unwrap());
}
context.thread_local.bloom_filter.push(*ancestor);
}
context.thread_local.bloom_filter.assert_complete(element);
let styles: ElementStyles = StyleResolverForElement::new(
element,
context,
rule_inclusion,
PseudoElementResolution::Force,
)
.resolve_style(style.as_deref(), layout_parent_style.as_deref())
.into();
if let Some(ref mut cache) = undisplayed_style_cache {
cache.insert(element.opaque(), styles.primary().clone());
}
styles
}
/// Calculates the style for a single node.
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<E, D, F>(
_traversal: &D,
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
element: E,
data: &mut ElementData,
note_child: F,
) where
E: TElement,
D: DomTraversal<E>,
F: FnMut(E::ConcreteNode),
{
use std::cmp;
let flags = context.shared.traversal_flags;
let is_initial_style = !data.has_styles();
context.thread_local.statistics.elements_traversed += 1;
debug_assert!(
flags.intersects(TraversalFlags::AnimationOnly) ||
is_initial_style ||
!element.has_snapshot() ||
element.handled_snapshot(),
"Should've handled snapshots here already"
);
let restyle_kind = data.restyle_kind(&context.shared);
debug!(
"recalc_style_at: {:?} (restyle_kind={:?}, dirty_descendants={:?}, data={:?})",
element,
restyle_kind,
element.has_dirty_descendants(),
data
);
let mut child_restyle_requirement = ChildRestyleRequirement::CanSkipCascade;
// Compute style for this element if necessary.
if let Some(restyle_kind) = restyle_kind {
child_restyle_requirement =
compute_style(traversal_data, context, element, data, restyle_kind);
if !element.matches_user_and_content_rules() {
// We must always cascade native anonymous subtrees, since they
// may have pseudo-elements underneath that would inherit from the
// closest non-NAC ancestor instead of us.
child_restyle_requirement = cmp::max(
child_restyle_requirement,
ChildRestyleRequirement::MustCascadeChildren,
);
}
// If we're restyling this element to display:none, throw away all style
// data in the subtree, notify the caller to early-return.
if data.styles.is_display_none() {
debug!(
"{:?} style is display:none - clearing data from descendants.",
element
);
unsafe {
clear_descendant_data(element);
}
}
// Inform any paint worklets of changed style, to speculatively
// evaluate the worklet code. In the case that the size hasn't changed,
// this will result in increased concurrency between script and layout.
notify_paint_worklet(context, data);
} else {
debug_assert!(data.has_styles());
data.set_traversed_without_styling();
}
// Now that matching and cascading is done, clear the bits corresponding to
// those operations and compute the propagated restyle hint (unless we're
// not processing invalidations, in which case don't need to propagate it
// and must avoid clearing it).
debug_assert!(
flags.for_animation_only() || !data.hint.has_animation_hint(),
"animation restyle hint should be handled during \
animation-only restyles"
);
let mut propagated_hint = data.hint.propagate(&flags);
trace!(
"propagated_hint={:?}, restyle_requirement={:?}, \
is_display_none={:?}, implementing_pseudo={:?}",
propagated_hint,
child_restyle_requirement,
data.styles.is_display_none(),
element.implemented_pseudo_element()
);
// Integrate the child cascade requirement into the propagated hint.
match child_restyle_requirement {
ChildRestyleRequirement::CanSkipCascade => {},
ChildRestyleRequirement::MustCascadeDescendants => {
propagated_hint |= RestyleHint::RECASCADE_SELF | RestyleHint::RECASCADE_DESCENDANTS;
},
ChildRestyleRequirement::MustCascadeChildrenIfInheritResetStyle => {
propagated_hint |= RestyleHint::RECASCADE_SELF_IF_INHERIT_RESET_STYLE;
},
ChildRestyleRequirement::MustCascadeChildren => {
propagated_hint |= RestyleHint::RECASCADE_SELF;
},
ChildRestyleRequirement::MustMatchDescendants => {
propagated_hint |= RestyleHint::restyle_subtree();
},
}
let has_dirty_descendants_for_this_restyle = if flags.for_animation_only() {
element.has_animation_only_dirty_descendants()
} else {
element.has_dirty_descendants()
};
// Before examining each child individually, try to prove that our children
// don't need style processing. They need processing if any of the following
// conditions hold:
//
// * We have the dirty descendants bit.
// * We're propagating a restyle hint.
// * This is a servo non-incremental traversal.
//
// We only do this if we're not a display: none root, since in that case
// it's useless to style children.
let mut traverse_children = has_dirty_descendants_for_this_restyle ||
!propagated_hint.is_empty() ||
is_servo_nonincremental_layout();
traverse_children = traverse_children && !data.styles.is_display_none();
// Examine our children, and enqueue the appropriate ones for traversal.
if traverse_children {
note_children::<E, D, F>(
context,
element,
data,
propagated_hint,
is_initial_style,
note_child,
);
}
// FIXME(bholley): Make these assertions pass for servo.
if cfg!(feature = "gecko") && cfg!(debug_assertions) && data.styles.is_display_none() {
debug_assert!(!element.has_dirty_descendants());
debug_assert!(!element.has_animation_only_dirty_descendants());
}
clear_state_after_traversing(element, data, flags);
}
fn clear_state_after_traversing<E>(element: E, data: &mut ElementData, flags: TraversalFlags)
where
E: TElement,
{
if flags.intersects(TraversalFlags::FinalAnimationTraversal) {
debug_assert!(flags.for_animation_only());
data.clear_restyle_flags_and_damage();
unsafe {
element.unset_animation_only_dirty_descendants();
}
}
}
fn compute_style<E>(
traversal_data: &PerLevelTraversalData,
context: &mut StyleContext<E>,
element: E,
data: &mut ElementData,
kind: RestyleKind,
) -> ChildRestyleRequirement
where
E: TElement,
{
use crate::data::RestyleKind::*;
context.thread_local.statistics.elements_styled += 1;
debug!("compute_style: {:?} (kind={:?})", element, kind);
if data.has_styles() {
data.set_restyled();
}
let mut important_rules_changed = false;
let new_styles = match kind {
MatchAndCascade => {
debug_assert!(
!context.shared.traversal_flags.for_animation_only(),
"MatchAndCascade shouldn't be processed during \
animation-only traversal"
);
// Ensure the bloom filter is up to date.
context
.thread_local
.bloom_filter
.insert_parents_recovering(element, traversal_data.current_dom_depth);
context.thread_local.bloom_filter.assert_complete(element);
debug_assert_eq!(
context.thread_local.bloom_filter.matching_depth(),
traversal_data.current_dom_depth
);
// This is only relevant for animations as of right now.
important_rules_changed = true;
let mut target = StyleSharingTarget::new(element);
// Now that our bloom filter is set up, try the style sharing
// cache.
match target.share_style_if_possible(context) {
Some(shared_styles) => {
context.thread_local.statistics.styles_shared += 1;
shared_styles
},
None => {
context.thread_local.statistics.elements_matched += 1;
// Perform the matching and cascading.
let new_styles = {
let mut resolver = StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable,
);
resolver.resolve_style_with_default_parents()
};
context.thread_local.sharing_cache.insert_if_possible(
&element,
&new_styles.primary,
Some(&mut target),
traversal_data.current_dom_depth,
&context.shared,
);
new_styles
},
}
},
CascadeWithReplacements(flags) => {
// Skipping full matching, load cascade inputs from previous values.
let mut cascade_inputs = ElementCascadeInputs::new_from_element_data(data);
important_rules_changed = element.replace_rules(flags, context, &mut cascade_inputs);
let mut resolver = StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable,
);
resolver
.cascade_styles_with_default_parents(cascade_inputs, data.may_have_starting_style())
},
CascadeOnly => {
// Skipping full matching, load cascade inputs from previous values.
let cascade_inputs = ElementCascadeInputs::new_from_element_data(data);
let new_styles = {
let mut resolver = StyleResolverForElement::new(
element,
context,
RuleInclusion::All,
PseudoElementResolution::IfApplicable,
);
resolver.cascade_styles_with_default_parents(
cascade_inputs,
data.may_have_starting_style(),
)
};
// Insert into the cache, but only if this style isn't reused from a
// sibling or cousin. Otherwise, recascading a bunch of identical
// elements would unnecessarily flood the cache with identical entries.
//
// This is analogous to the obvious "don't insert an element that just
// got a hit in the style sharing cache" behavior in the MatchAndCascade
// handling above.
//
// Note that, for the MatchAndCascade path, we still insert elements that
// shared styles via the rule node, because we know that there's something
// different about them that caused them to miss the sharing cache before
// selector matching. If we didn't, we would still end up with the same
// number of eventual styles, but would potentially miss out on various
// opportunities for skipping selector matching, which could hurt
// performance.
if !new_styles.primary.reused_via_rule_node {
context.thread_local.sharing_cache.insert_if_possible(
&element,
&new_styles.primary,
None,
traversal_data.current_dom_depth,
&context.shared,
);
}
new_styles
},
};
element.finish_restyle(context, data, new_styles, important_rules_changed)
}
#[cfg(feature = "servo")]
fn notify_paint_worklet<E>(context: &StyleContext<E>, data: &ElementData)
where
E: TElement,
{
use crate::values::generics::image::Image;
use style_traits::ToCss;
// We speculatively evaluate any paint worklets during styling.
// This allows us to run paint worklets in parallel with style and layout.
// Note that this is wasted effort if the size of the node has
// changed, but in may cases it won't have.
if let Some(ref values) = data.styles.primary {
for image in &values.get_background().background_image.0 {
let (name, arguments) = match *image {
Image::PaintWorklet(ref worklet) => (&worklet.name, &worklet.arguments),
_ => continue,
};
let painter = match context.shared.registered_speculative_painters.get(name) {
Some(painter) => painter,
None => continue,
};
let properties = painter
.properties()
.iter()
.filter_map(|(name, id)| id.as_shorthand().err().map(|id| (name, id)))
.map(|(name, id)| (name.clone(), values.computed_value_to_string(id)))
.collect();
let arguments = arguments
.iter()
.map(|argument| argument.to_css_string())
.collect();
debug!("Notifying paint worklet {}.", painter.name());
painter.speculatively_draw_a_paint_image(properties, arguments);
}
}
}
#[cfg(not(feature = "servo"))]
fn notify_paint_worklet<E>(_context: &StyleContext<E>, _data: &ElementData)
where
E: TElement,
{
// The CSS paint API is Servo-only at the moment
}
fn note_children<E, D, F>(
context: &mut StyleContext<E>,
element: E,
data: &ElementData,
propagated_hint: RestyleHint,
is_initial_style: bool,
mut note_child: F,
) where
E: TElement,
D: DomTraversal<E>,
F: FnMut(E::ConcreteNode),
{
trace!("note_children: {:?}", element);
let flags = context.shared.traversal_flags;
// Loop over all the traversal children.
for child_node in element.traversal_children() {
let child = match child_node.as_element() {
Some(el) => el,
None => {
if is_servo_nonincremental_layout() ||
D::text_node_needs_traversal(child_node, data)
{
note_child(child_node);
}
continue;
},
};
let mut child_data = child.mutate_data();
let mut child_data = child_data.as_mut().map(|d| &mut **d);
trace!(
" > {:?} -> {:?} + {:?}, pseudo: {:?}",
child,
child_data.as_ref().map(|d| d.hint),
propagated_hint,
child.implemented_pseudo_element()
);
if let Some(ref mut child_data) = child_data {
child_data.hint.insert(propagated_hint);
// Handle element snapshots and invalidation of descendants and siblings
// as needed.
//
// NB: This will be a no-op if there's no snapshot.
child_data.invalidate_style_if_needed(
child,
&context.shared,
Some(&context.thread_local.stack_limit_checker),
&mut context.thread_local.selector_caches,
);
}
if D::element_needs_traversal(child, flags, child_data.map(|d| &*d)) {
note_child(child_node);
// Set the dirty descendants bit on the parent as needed, so that we
// can find elements during the post-traversal.
//
// Note that these bits may be cleared again at the bottom of
// recalc_style_at if requested by the caller.
if !is_initial_style {
if flags.for_animation_only() {
unsafe {
element.set_animation_only_dirty_descendants();
}
} else {
unsafe {
element.set_dirty_descendants();
}
}
}
}
}
}
/// Clear style data for all the subtree under `root` (but not for root itself).
///
/// We use a list to avoid unbounded recursion, which we need to avoid in the
/// parallel traversal because the rayon stacks are small.
pub unsafe fn clear_descendant_data<E>(root: E)
where
E: TElement,
{
let mut parents = SmallVec::<[E; 32]>::new();
parents.push(root);
while let Some(p) = parents.pop() {
for kid in p.traversal_children() {
if let Some(kid) = kid.as_element() {
// We maintain an invariant that, if an element has data, all its
// ancestors have data as well.
//
// By consequence, any element without data has no descendants with
// data.
if kid.has_data() {
kid.clear_data();
parents.push(kid);
}
}
}
}
// Make sure not to clear NODE_NEEDS_FRAME on the root.
root.clear_descendant_bits();
}