1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Traversing the DOM tree; the bloom filter.

use crate::context::{ElementCascadeInputs, SharedStyleContext, StyleContext};
use crate::data::{ElementData, ElementStyles, RestyleKind};
use crate::dom::{NodeInfo, OpaqueNode, TElement, TNode};
use crate::invalidation::element::restyle_hints::RestyleHint;
use crate::matching::{ChildRestyleRequirement, MatchMethods};
use crate::selector_parser::PseudoElement;
use crate::sharing::StyleSharingTarget;
use crate::style_resolver::{PseudoElementResolution, StyleResolverForElement};
use crate::stylist::RuleInclusion;
use crate::traversal_flags::TraversalFlags;
use selectors::matching::SelectorCaches;
use smallvec::SmallVec;
use std::collections::HashMap;

/// A cache from element reference to known-valid computed style.
pub type UndisplayedStyleCache =
    HashMap<selectors::OpaqueElement, servo_arc::Arc<crate::properties::ComputedValues>>;

/// A per-traversal-level chunk of data. This is sent down by the traversal, and
/// currently only holds the dom depth for the bloom filter.
///
/// NB: Keep this as small as possible, please!
#[derive(Clone, Copy, Debug)]
pub struct PerLevelTraversalData {
    /// The current dom depth.
    ///
    /// This is kept with cooperation from the traversal code and the bloom
    /// filter.
    pub current_dom_depth: usize,
}

/// We use this structure, rather than just returning a boolean from pre_traverse,
/// to enfore that callers process root invalidations before starting the traversal.
pub struct PreTraverseToken<E: TElement>(Option<E>);
impl<E: TElement> PreTraverseToken<E> {
    /// Whether we should traverse children.
    pub fn should_traverse(&self) -> bool {
        self.0.is_some()
    }

    /// Returns the traversal root for the current traversal.
    pub(crate) fn traversal_root(self) -> Option<E> {
        self.0
    }
}

/// A global variable holding the state of
/// `is_servo_nonincremental_layout()`.
/// See [#22854](https://github.com/servo/servo/issues/22854).
#[cfg(feature = "servo")]
pub static IS_SERVO_NONINCREMENTAL_LAYOUT: std::sync::atomic::AtomicBool =
    std::sync::atomic::AtomicBool::new(false);

#[cfg(feature = "servo")]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
    use std::sync::atomic::Ordering;

    IS_SERVO_NONINCREMENTAL_LAYOUT.load(Ordering::Relaxed)
}

#[cfg(not(feature = "servo"))]
#[inline]
fn is_servo_nonincremental_layout() -> bool {
    false
}

/// A DOM Traversal trait, that is used to generically implement styling for
/// Gecko and Servo.
pub trait DomTraversal<E: TElement>: Sync {
    /// Process `node` on the way down, before its children have been processed.
    ///
    /// The callback is invoked for each child node that should be processed by
    /// the traversal.
    fn process_preorder<F>(
        &self,
        data: &PerLevelTraversalData,
        context: &mut StyleContext<E>,
        node: E::ConcreteNode,
        note_child: F,
    ) where
        F: FnMut(E::ConcreteNode);

    /// Process `node` on the way up, after its children have been processed.
    ///
    /// This is only executed if `needs_postorder_traversal` returns true.
    fn process_postorder(&self, contect: &mut StyleContext<E>, node: E::ConcreteNode);

    /// Boolean that specifies whether a bottom up traversal should be
    /// performed.
    ///
    /// If it's false, then process_postorder has no effect at all.
    fn needs_postorder_traversal() -> bool {
        true
    }

    /// Handles the postorder step of the traversal, if it exists, by bubbling
    /// up the parent chain.
    ///
    /// If we are the last child that finished processing, recursively process
    /// our parent. Else, stop. Also, stop at the root.
    ///
    /// Thus, if we start with all the leaves of a tree, we end up traversing
    /// the whole tree bottom-up because each parent will be processed exactly
    /// once (by the last child that finishes processing).
    ///
    /// The only communication between siblings is that they both
    /// fetch-and-subtract the parent's children count. This makes it safe to
    /// call durign the parallel traversal.
    fn handle_postorder_traversal(
        &self,
        context: &mut StyleContext<E>,
        root: OpaqueNode,
        mut node: E::ConcreteNode,
        children_to_process: isize,
    ) {
        // If the postorder step is a no-op, don't bother.
        if !Self::needs_postorder_traversal() {
            return;
        }

        if children_to_process == 0 {
            // We are a leaf. Walk up the chain.
            loop {
                self.process_postorder(context, node);
                if node.opaque() == root {
                    break;
                }
                let parent = node.traversal_parent().unwrap();
                let remaining = parent.did_process_child();
                if remaining != 0 {
                    // The parent has other unprocessed descendants. We only
                    // perform postorder processing after the last descendant
                    // has been processed.
                    break;
                }

                node = parent.as_node();
            }
        } else {
            // Otherwise record the number of children to process when the time
            // comes.
            node.as_element()
                .unwrap()
                .store_children_to_process(children_to_process);
        }
    }

    /// Style invalidations happen when traversing from a parent to its children.
    /// However, this mechanism can't handle style invalidations on the root. As
    /// such, we have a pre-traversal step to handle that part and determine whether
    /// a full traversal is needed.
    fn pre_traverse(root: E, shared_context: &SharedStyleContext) -> PreTraverseToken<E> {
        use crate::invalidation::element::state_and_attributes::propagate_dirty_bit_up_to;

        let traversal_flags = shared_context.traversal_flags;

        let mut data = root.mutate_data();
        let mut data = data.as_mut().map(|d| &mut **d);

        if let Some(ref mut data) = data {
            if !traversal_flags.for_animation_only() {
                // Invalidate our style, and that of our siblings and
                // descendants as needed.
                let invalidation_result = data.invalidate_style_if_needed(
                    root,
                    shared_context,
                    None,
                    &mut SelectorCaches::default(),
                );

                if invalidation_result.has_invalidated_siblings() {
                    let actual_root = root.as_node().parent_element_or_host().expect(
                        "How in the world can you invalidate \
                         siblings without a parent?",
                    );
                    propagate_dirty_bit_up_to(actual_root, root);
                    return PreTraverseToken(Some(actual_root));
                }
            }
        }

        let should_traverse =
            Self::element_needs_traversal(root, traversal_flags, data.as_mut().map(|d| &**d));

        // If we're not going to traverse at all, we may need to clear some state
        // off the root (which would normally be done at the end of recalc_style_at).
        if !should_traverse && data.is_some() {
            clear_state_after_traversing(root, data.unwrap(), traversal_flags);
        }

        PreTraverseToken(if should_traverse { Some(root) } else { None })
    }

    /// Returns true if traversal should visit a text node. The style system
    /// never processes text nodes, but Servo overrides this to visit them for
    /// flow construction when necessary.
    fn text_node_needs_traversal(node: E::ConcreteNode, _parent_data: &ElementData) -> bool {
        debug_assert!(node.is_text_node());
        false
    }

    /// Returns true if traversal is needed for the given element and subtree.
    fn element_needs_traversal(
        el: E,
        traversal_flags: TraversalFlags,
        data: Option<&ElementData>,
    ) -> bool {
        debug!(
            "element_needs_traversal({:?}, {:?}, {:?})",
            el, traversal_flags, data
        );

        // In case of animation-only traversal we need to traverse the element if the element has
        // animation only dirty descendants bit, animation-only restyle hint.
        if traversal_flags.for_animation_only() {
            return data.map_or(false, |d| d.has_styles()) &&
                (el.has_animation_only_dirty_descendants() ||
                    data.as_ref()
                        .unwrap()
                        .hint
                        .has_animation_hint_or_recascade());
        }

        // Non-incremental layout visits every node.
        if is_servo_nonincremental_layout() {
            return true;
        }

        // Unwrap the data.
        let data = match data {
            Some(d) if d.has_styles() => d,
            _ => return true,
        };

        // If the dirty descendants bit is set, we need to traverse no matter
        // what. Skip examining the ElementData.
        if el.has_dirty_descendants() {
            return true;
        }

        // If we have a restyle hint or need to recascade, we need to visit the
        // element.
        //
        // Note that this is different than checking has_current_styles_for_traversal(),
        // since that can return true even if we have a restyle hint indicating
        // that the element's descendants (but not necessarily the element) need
        // restyling.
        if !data.hint.is_empty() {
            return true;
        }

        // Servo uses the post-order traversal for flow construction, so we need
        // to traverse any element with damage so that we can perform fixup /
        // reconstruction on our way back up the tree.
        if cfg!(feature = "servo") && !data.damage.is_empty() {
            return true;
        }

        trace!("{:?} doesn't need traversal", el);
        false
    }

    /// Return the shared style context common to all worker threads.
    fn shared_context(&self) -> &SharedStyleContext;
}

/// Manually resolve style by sequentially walking up the parent chain to the
/// first styled Element, ignoring pending restyles. The resolved style is made
/// available via a callback, and can be dropped by the time this function
/// returns in the display:none subtree case.
pub fn resolve_style<E>(
    context: &mut StyleContext<E>,
    element: E,
    rule_inclusion: RuleInclusion,
    pseudo: Option<&PseudoElement>,
    mut undisplayed_style_cache: Option<&mut UndisplayedStyleCache>,
) -> ElementStyles
where
    E: TElement,
{
    debug_assert!(
        rule_inclusion == RuleInclusion::DefaultOnly ||
            pseudo.map_or(false, |p| p.is_before_or_after()) ||
            element.borrow_data().map_or(true, |d| !d.has_styles()),
        "Why are we here?"
    );
    debug_assert!(
        rule_inclusion == RuleInclusion::All || undisplayed_style_cache.is_none(),
        "can't use the cache for default styles only"
    );

    let mut ancestors_requiring_style_resolution = SmallVec::<[E; 16]>::new();

    // Clear the bloom filter, just in case the caller is reusing TLS.
    context.thread_local.bloom_filter.clear();

    let mut style = None;
    let mut ancestor = element.traversal_parent();
    while let Some(current) = ancestor {
        if rule_inclusion == RuleInclusion::All {
            if let Some(data) = current.borrow_data() {
                if let Some(ancestor_style) = data.styles.get_primary() {
                    style = Some(ancestor_style.clone());
                    break;
                }
            }
        }
        if let Some(ref mut cache) = undisplayed_style_cache {
            if let Some(s) = cache.get(&current.opaque()) {
                style = Some(s.clone());
                break;
            }
        }
        ancestors_requiring_style_resolution.push(current);
        ancestor = current.traversal_parent();
    }

    if let Some(ancestor) = ancestor {
        context.thread_local.bloom_filter.rebuild(ancestor);
        context.thread_local.bloom_filter.push(ancestor);
    }

    let mut layout_parent_style = style.clone();
    while let Some(style) = layout_parent_style.take() {
        if !style.is_display_contents() {
            layout_parent_style = Some(style);
            break;
        }

        ancestor = ancestor.unwrap().traversal_parent();
        layout_parent_style =
            ancestor.and_then(|a| a.borrow_data().map(|data| data.styles.primary().clone()));
    }

    for ancestor in ancestors_requiring_style_resolution.iter().rev() {
        context.thread_local.bloom_filter.assert_complete(*ancestor);

        // Actually `PseudoElementResolution` doesn't really matter here.
        // (but it does matter below!).
        let primary_style = StyleResolverForElement::new(
            *ancestor,
            context,
            rule_inclusion,
            PseudoElementResolution::IfApplicable,
        )
        .resolve_primary_style(
            style.as_deref(),
            layout_parent_style.as_deref(),
            selectors::matching::IncludeStartingStyle::No,
        );

        let is_display_contents = primary_style.style().is_display_contents();

        style = Some(primary_style.style.0);
        if !is_display_contents {
            layout_parent_style = style.clone();
        }

        if let Some(ref mut cache) = undisplayed_style_cache {
            cache.insert(ancestor.opaque(), style.clone().unwrap());
        }
        context.thread_local.bloom_filter.push(*ancestor);
    }

    context.thread_local.bloom_filter.assert_complete(element);
    let styles: ElementStyles = StyleResolverForElement::new(
        element,
        context,
        rule_inclusion,
        PseudoElementResolution::Force,
    )
    .resolve_style(style.as_deref(), layout_parent_style.as_deref())
    .into();

    if let Some(ref mut cache) = undisplayed_style_cache {
        cache.insert(element.opaque(), styles.primary().clone());
    }

    styles
}

/// Calculates the style for a single node.
#[inline]
#[allow(unsafe_code)]
pub fn recalc_style_at<E, D, F>(
    _traversal: &D,
    traversal_data: &PerLevelTraversalData,
    context: &mut StyleContext<E>,
    element: E,
    data: &mut ElementData,
    note_child: F,
) where
    E: TElement,
    D: DomTraversal<E>,
    F: FnMut(E::ConcreteNode),
{
    use std::cmp;

    let flags = context.shared.traversal_flags;
    let is_initial_style = !data.has_styles();

    context.thread_local.statistics.elements_traversed += 1;
    debug_assert!(
        flags.intersects(TraversalFlags::AnimationOnly) ||
            is_initial_style ||
            !element.has_snapshot() ||
            element.handled_snapshot(),
        "Should've handled snapshots here already"
    );

    let restyle_kind = data.restyle_kind(&context.shared);
    debug!(
        "recalc_style_at: {:?} (restyle_kind={:?}, dirty_descendants={:?}, data={:?})",
        element,
        restyle_kind,
        element.has_dirty_descendants(),
        data
    );

    let mut child_restyle_requirement = ChildRestyleRequirement::CanSkipCascade;

    // Compute style for this element if necessary.
    if let Some(restyle_kind) = restyle_kind {
        child_restyle_requirement =
            compute_style(traversal_data, context, element, data, restyle_kind);

        if !element.matches_user_and_content_rules() {
            // We must always cascade native anonymous subtrees, since they
            // may have pseudo-elements underneath that would inherit from the
            // closest non-NAC ancestor instead of us.
            child_restyle_requirement = cmp::max(
                child_restyle_requirement,
                ChildRestyleRequirement::MustCascadeChildren,
            );
        }

        // If we're restyling this element to display:none, throw away all style
        // data in the subtree, notify the caller to early-return.
        if data.styles.is_display_none() {
            debug!(
                "{:?} style is display:none - clearing data from descendants.",
                element
            );
            unsafe {
                clear_descendant_data(element);
            }
        }

        // Inform any paint worklets of changed style, to speculatively
        // evaluate the worklet code. In the case that the size hasn't changed,
        // this will result in increased concurrency between script and layout.
        notify_paint_worklet(context, data);
    } else {
        debug_assert!(data.has_styles());
        data.set_traversed_without_styling();
    }

    // Now that matching and cascading is done, clear the bits corresponding to
    // those operations and compute the propagated restyle hint (unless we're
    // not processing invalidations, in which case don't need to propagate it
    // and must avoid clearing it).
    debug_assert!(
        flags.for_animation_only() || !data.hint.has_animation_hint(),
        "animation restyle hint should be handled during \
         animation-only restyles"
    );
    let mut propagated_hint = data.hint.propagate(&flags);
    trace!(
        "propagated_hint={:?}, restyle_requirement={:?}, \
         is_display_none={:?}, implementing_pseudo={:?}",
        propagated_hint,
        child_restyle_requirement,
        data.styles.is_display_none(),
        element.implemented_pseudo_element()
    );

    // Integrate the child cascade requirement into the propagated hint.
    match child_restyle_requirement {
        ChildRestyleRequirement::CanSkipCascade => {},
        ChildRestyleRequirement::MustCascadeDescendants => {
            propagated_hint |= RestyleHint::RECASCADE_SELF | RestyleHint::RECASCADE_DESCENDANTS;
        },
        ChildRestyleRequirement::MustCascadeChildrenIfInheritResetStyle => {
            propagated_hint |= RestyleHint::RECASCADE_SELF_IF_INHERIT_RESET_STYLE;
        },
        ChildRestyleRequirement::MustCascadeChildren => {
            propagated_hint |= RestyleHint::RECASCADE_SELF;
        },
        ChildRestyleRequirement::MustMatchDescendants => {
            propagated_hint |= RestyleHint::restyle_subtree();
        },
    }

    let has_dirty_descendants_for_this_restyle = if flags.for_animation_only() {
        element.has_animation_only_dirty_descendants()
    } else {
        element.has_dirty_descendants()
    };

    // Before examining each child individually, try to prove that our children
    // don't need style processing. They need processing if any of the following
    // conditions hold:
    //
    //  * We have the dirty descendants bit.
    //  * We're propagating a restyle hint.
    //  * This is a servo non-incremental traversal.
    //
    // We only do this if we're not a display: none root, since in that case
    // it's useless to style children.
    let mut traverse_children = has_dirty_descendants_for_this_restyle ||
        !propagated_hint.is_empty() ||
        is_servo_nonincremental_layout();

    traverse_children = traverse_children && !data.styles.is_display_none();

    // Examine our children, and enqueue the appropriate ones for traversal.
    if traverse_children {
        note_children::<E, D, F>(
            context,
            element,
            data,
            propagated_hint,
            is_initial_style,
            note_child,
        );
    }

    // FIXME(bholley): Make these assertions pass for servo.
    if cfg!(feature = "gecko") && cfg!(debug_assertions) && data.styles.is_display_none() {
        debug_assert!(!element.has_dirty_descendants());
        debug_assert!(!element.has_animation_only_dirty_descendants());
    }

    clear_state_after_traversing(element, data, flags);
}

fn clear_state_after_traversing<E>(element: E, data: &mut ElementData, flags: TraversalFlags)
where
    E: TElement,
{
    if flags.intersects(TraversalFlags::FinalAnimationTraversal) {
        debug_assert!(flags.for_animation_only());
        data.clear_restyle_flags_and_damage();
        unsafe {
            element.unset_animation_only_dirty_descendants();
        }
    }
}

fn compute_style<E>(
    traversal_data: &PerLevelTraversalData,
    context: &mut StyleContext<E>,
    element: E,
    data: &mut ElementData,
    kind: RestyleKind,
) -> ChildRestyleRequirement
where
    E: TElement,
{
    use crate::data::RestyleKind::*;

    context.thread_local.statistics.elements_styled += 1;
    debug!("compute_style: {:?} (kind={:?})", element, kind);

    if data.has_styles() {
        data.set_restyled();
    }

    let mut important_rules_changed = false;
    let new_styles = match kind {
        MatchAndCascade => {
            debug_assert!(
                !context.shared.traversal_flags.for_animation_only(),
                "MatchAndCascade shouldn't be processed during \
                 animation-only traversal"
            );
            // Ensure the bloom filter is up to date.
            context
                .thread_local
                .bloom_filter
                .insert_parents_recovering(element, traversal_data.current_dom_depth);

            context.thread_local.bloom_filter.assert_complete(element);
            debug_assert_eq!(
                context.thread_local.bloom_filter.matching_depth(),
                traversal_data.current_dom_depth
            );

            // This is only relevant for animations as of right now.
            important_rules_changed = true;

            let mut target = StyleSharingTarget::new(element);

            // Now that our bloom filter is set up, try the style sharing
            // cache.
            match target.share_style_if_possible(context) {
                Some(shared_styles) => {
                    context.thread_local.statistics.styles_shared += 1;
                    shared_styles
                },
                None => {
                    context.thread_local.statistics.elements_matched += 1;
                    // Perform the matching and cascading.
                    let new_styles = {
                        let mut resolver = StyleResolverForElement::new(
                            element,
                            context,
                            RuleInclusion::All,
                            PseudoElementResolution::IfApplicable,
                        );

                        resolver.resolve_style_with_default_parents()
                    };

                    context.thread_local.sharing_cache.insert_if_possible(
                        &element,
                        &new_styles.primary,
                        Some(&mut target),
                        traversal_data.current_dom_depth,
                        &context.shared,
                    );

                    new_styles
                },
            }
        },
        CascadeWithReplacements(flags) => {
            // Skipping full matching, load cascade inputs from previous values.
            let mut cascade_inputs = ElementCascadeInputs::new_from_element_data(data);
            important_rules_changed = element.replace_rules(flags, context, &mut cascade_inputs);

            let mut resolver = StyleResolverForElement::new(
                element,
                context,
                RuleInclusion::All,
                PseudoElementResolution::IfApplicable,
            );

            resolver
                .cascade_styles_with_default_parents(cascade_inputs, data.may_have_starting_style())
        },
        CascadeOnly => {
            // Skipping full matching, load cascade inputs from previous values.
            let cascade_inputs = ElementCascadeInputs::new_from_element_data(data);

            let new_styles = {
                let mut resolver = StyleResolverForElement::new(
                    element,
                    context,
                    RuleInclusion::All,
                    PseudoElementResolution::IfApplicable,
                );

                resolver.cascade_styles_with_default_parents(
                    cascade_inputs,
                    data.may_have_starting_style(),
                )
            };

            // Insert into the cache, but only if this style isn't reused from a
            // sibling or cousin. Otherwise, recascading a bunch of identical
            // elements would unnecessarily flood the cache with identical entries.
            //
            // This is analogous to the obvious "don't insert an element that just
            // got a hit in the style sharing cache" behavior in the MatchAndCascade
            // handling above.
            //
            // Note that, for the MatchAndCascade path, we still insert elements that
            // shared styles via the rule node, because we know that there's something
            // different about them that caused them to miss the sharing cache before
            // selector matching. If we didn't, we would still end up with the same
            // number of eventual styles, but would potentially miss out on various
            // opportunities for skipping selector matching, which could hurt
            // performance.
            if !new_styles.primary.reused_via_rule_node {
                context.thread_local.sharing_cache.insert_if_possible(
                    &element,
                    &new_styles.primary,
                    None,
                    traversal_data.current_dom_depth,
                    &context.shared,
                );
            }

            new_styles
        },
    };

    element.finish_restyle(context, data, new_styles, important_rules_changed)
}

#[cfg(feature = "servo")]
fn notify_paint_worklet<E>(context: &StyleContext<E>, data: &ElementData)
where
    E: TElement,
{
    use crate::values::generics::image::Image;
    use style_traits::ToCss;

    // We speculatively evaluate any paint worklets during styling.
    // This allows us to run paint worklets in parallel with style and layout.
    // Note that this is wasted effort if the size of the node has
    // changed, but in may cases it won't have.
    if let Some(ref values) = data.styles.primary {
        for image in &values.get_background().background_image.0 {
            let (name, arguments) = match *image {
                Image::PaintWorklet(ref worklet) => (&worklet.name, &worklet.arguments),
                _ => continue,
            };
            let painter = match context.shared.registered_speculative_painters.get(name) {
                Some(painter) => painter,
                None => continue,
            };
            let properties = painter
                .properties()
                .iter()
                .filter_map(|(name, id)| id.as_shorthand().err().map(|id| (name, id)))
                .map(|(name, id)| (name.clone(), values.computed_value_to_string(id)))
                .collect();
            let arguments = arguments
                .iter()
                .map(|argument| argument.to_css_string())
                .collect();
            debug!("Notifying paint worklet {}.", painter.name());
            painter.speculatively_draw_a_paint_image(properties, arguments);
        }
    }
}

#[cfg(not(feature = "servo"))]
fn notify_paint_worklet<E>(_context: &StyleContext<E>, _data: &ElementData)
where
    E: TElement,
{
    // The CSS paint API is Servo-only at the moment
}

fn note_children<E, D, F>(
    context: &mut StyleContext<E>,
    element: E,
    data: &ElementData,
    propagated_hint: RestyleHint,
    is_initial_style: bool,
    mut note_child: F,
) where
    E: TElement,
    D: DomTraversal<E>,
    F: FnMut(E::ConcreteNode),
{
    trace!("note_children: {:?}", element);
    let flags = context.shared.traversal_flags;

    // Loop over all the traversal children.
    for child_node in element.traversal_children() {
        let child = match child_node.as_element() {
            Some(el) => el,
            None => {
                if is_servo_nonincremental_layout() ||
                    D::text_node_needs_traversal(child_node, data)
                {
                    note_child(child_node);
                }
                continue;
            },
        };

        let mut child_data = child.mutate_data();
        let mut child_data = child_data.as_mut().map(|d| &mut **d);
        trace!(
            " > {:?} -> {:?} + {:?}, pseudo: {:?}",
            child,
            child_data.as_ref().map(|d| d.hint),
            propagated_hint,
            child.implemented_pseudo_element()
        );

        if let Some(ref mut child_data) = child_data {
            child_data.hint.insert(propagated_hint);

            // Handle element snapshots and invalidation of descendants and siblings
            // as needed.
            //
            // NB: This will be a no-op if there's no snapshot.
            child_data.invalidate_style_if_needed(
                child,
                &context.shared,
                Some(&context.thread_local.stack_limit_checker),
                &mut context.thread_local.selector_caches,
            );
        }

        if D::element_needs_traversal(child, flags, child_data.map(|d| &*d)) {
            note_child(child_node);

            // Set the dirty descendants bit on the parent as needed, so that we
            // can find elements during the post-traversal.
            //
            // Note that these bits may be cleared again at the bottom of
            // recalc_style_at if requested by the caller.
            if !is_initial_style {
                if flags.for_animation_only() {
                    unsafe {
                        element.set_animation_only_dirty_descendants();
                    }
                } else {
                    unsafe {
                        element.set_dirty_descendants();
                    }
                }
            }
        }
    }
}

/// Clear style data for all the subtree under `root` (but not for root itself).
///
/// We use a list to avoid unbounded recursion, which we need to avoid in the
/// parallel traversal because the rayon stacks are small.
pub unsafe fn clear_descendant_data<E>(root: E)
where
    E: TElement,
{
    let mut parents = SmallVec::<[E; 32]>::new();
    parents.push(root);
    while let Some(p) = parents.pop() {
        for kid in p.traversal_children() {
            if let Some(kid) = kid.as_element() {
                // We maintain an invariant that, if an element has data, all its
                // ancestors have data as well.
                //
                // By consequence, any element without data has no descendants with
                // data.
                if kid.has_data() {
                    kid.clear_data();
                    parents.push(kid);
                }
            }
        }
    }

    // Make sure not to clear NODE_NEEDS_FRAME on the root.
    root.clear_descendant_bits();
}