1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

#![deny(unsafe_code)]

//! The rule tree.

use crate::applicable_declarations::{ApplicableDeclarationList, CascadePriority};
use crate::properties::{LonghandIdSet, PropertyDeclarationBlock};
use crate::shared_lock::{Locked, StylesheetGuards};
use crate::stylesheets::layer_rule::LayerOrder;
use servo_arc::ArcBorrow;
use smallvec::SmallVec;
use std::io::{self, Write};

mod core;
mod level;
mod map;
mod source;
mod unsafe_box;

pub use self::core::{RuleTree, StrongRuleNode};
pub use self::level::{CascadeLevel, ShadowCascadeOrder};
pub use self::source::StyleSource;

impl RuleTree {
    fn dump<W: Write>(&self, guards: &StylesheetGuards, writer: &mut W) {
        let _ = writeln!(writer, " + RuleTree");
        self.root().dump(guards, writer, 0);
    }

    /// Dump the rule tree to stdout.
    pub fn dump_stdout(&self, guards: &StylesheetGuards) {
        let mut stdout = io::stdout();
        self.dump(guards, &mut stdout);
    }

    /// Inserts the given rules, that must be in proper order by specifity, and
    /// returns the corresponding rule node representing the last inserted one.
    ///
    /// !important rules are detected and inserted into the appropriate position
    /// in the rule tree. This allows selector matching to ignore importance,
    /// while still maintaining the appropriate cascade order in the rule tree.
    pub fn insert_ordered_rules_with_important<'a, I>(
        &self,
        iter: I,
        guards: &StylesheetGuards,
    ) -> StrongRuleNode
    where
        I: Iterator<Item = (StyleSource, CascadePriority)>,
    {
        use self::CascadeLevel::*;
        let mut current = self.root().clone();

        let mut found_important = false;

        let mut important_author = SmallVec::<[(StyleSource, CascadePriority); 4]>::new();
        let mut important_user = SmallVec::<[(StyleSource, CascadePriority); 4]>::new();
        let mut important_ua = SmallVec::<[(StyleSource, CascadePriority); 4]>::new();
        let mut transition = None;

        for (source, priority) in iter {
            let level = priority.cascade_level();
            debug_assert!(!level.is_important(), "Important levels handled internally");

            let any_important = {
                let pdb = source.read(level.guard(guards));
                pdb.any_important()
            };

            if any_important {
                found_important = true;
                match level {
                    AuthorNormal { .. } => {
                        important_author.push((source.clone(), priority.important()))
                    },
                    UANormal => important_ua.push((source.clone(), priority.important())),
                    UserNormal => important_user.push((source.clone(), priority.important())),
                    _ => {},
                };
            }

            // We don't optimize out empty rules, even though we could.
            //
            // Inspector relies on every rule being inserted in the normal level
            // at least once, in order to return the rules with the correct
            // specificity order.
            //
            // TODO(emilio): If we want to apply these optimizations without
            // breaking inspector's expectations, we'd need to run
            // selector-matching again at the inspector's request. That may or
            // may not be a better trade-off.
            if matches!(level, Transitions) && found_important {
                // There can be at most one transition, and it will come at
                // the end of the iterator. Stash it and apply it after
                // !important rules.
                debug_assert!(transition.is_none());
                transition = Some(source);
            } else {
                current = current.ensure_child(self.root(), source, priority);
            }
        }

        // Early-return in the common case of no !important declarations.
        if !found_important {
            return current;
        }

        // Insert important declarations, in order of increasing importance,
        // followed by any transition rule.
        //
        // Important rules are sorted differently from unimportant ones by
        // shadow order and cascade order.
        if !important_author.is_empty() &&
            important_author.first().unwrap().1 != important_author.last().unwrap().1
        {
            // We only need to sort if the important rules come from
            // different trees, but we need this sort to be stable.
            //
            // FIXME(emilio): This could maybe be smarter, probably by chunking
            // the important rules while inserting, and iterating the outer
            // chunks in reverse order.
            //
            // That is, if we have rules with levels like: -1 -1 -1 0 0 0 1 1 1,
            // we're really only sorting the chunks, while keeping elements
            // inside the same chunk already sorted. Seems like we could try to
            // keep a SmallVec-of-SmallVecs with the chunks and just iterate the
            // outer in reverse.
            important_author.sort_by_key(|&(_, priority)| priority);
        }

        for (source, priority) in important_author.drain(..) {
            current = current.ensure_child(self.root(), source, priority);
        }

        for (source, priority) in important_user.drain(..) {
            current = current.ensure_child(self.root(), source, priority);
        }

        for (source, priority) in important_ua.drain(..) {
            current = current.ensure_child(self.root(), source, priority);
        }

        if let Some(source) = transition {
            current = current.ensure_child(
                self.root(),
                source,
                CascadePriority::new(Transitions, LayerOrder::root()),
            );
        }

        current
    }

    /// Given a list of applicable declarations, insert the rules and return the
    /// corresponding rule node.
    pub fn compute_rule_node(
        &self,
        applicable_declarations: &mut ApplicableDeclarationList,
        guards: &StylesheetGuards,
    ) -> StrongRuleNode {
        self.insert_ordered_rules_with_important(
            applicable_declarations.drain(..).map(|d| d.for_rule_tree()),
            guards,
        )
    }

    /// Insert the given rules, that must be in proper order by specifity, and
    /// return the corresponding rule node representing the last inserted one.
    pub fn insert_ordered_rules<'a, I>(&self, iter: I) -> StrongRuleNode
    where
        I: Iterator<Item = (StyleSource, CascadePriority)>,
    {
        self.insert_ordered_rules_from(self.root().clone(), iter)
    }

    fn insert_ordered_rules_from<'a, I>(&self, from: StrongRuleNode, iter: I) -> StrongRuleNode
    where
        I: Iterator<Item = (StyleSource, CascadePriority)>,
    {
        let mut current = from;
        for (source, priority) in iter {
            current = current.ensure_child(self.root(), source, priority);
        }
        current
    }

    /// Replaces a rule in a given level (if present) for another rule.
    ///
    /// Returns the resulting node that represents the new path, or None if
    /// the old path is still valid.
    pub fn update_rule_at_level(
        &self,
        level: CascadeLevel,
        layer_order: LayerOrder,
        pdb: Option<ArcBorrow<Locked<PropertyDeclarationBlock>>>,
        path: &StrongRuleNode,
        guards: &StylesheetGuards,
        important_rules_changed: &mut bool,
    ) -> Option<StrongRuleNode> {
        // TODO(emilio): Being smarter with lifetimes we could avoid a bit of
        // the refcount churn.
        let mut current = path.clone();
        *important_rules_changed = false;

        // First walk up until the first less-or-equally specific rule.
        let mut children = SmallVec::<[_; 10]>::new();
        while current.cascade_priority().cascade_level() > level {
            children.push((
                current.style_source().unwrap().clone(),
                current.cascade_priority(),
            ));
            current = current.parent().unwrap().clone();
        }

        // Then remove the one at the level we want to replace, if any.
        //
        // NOTE: Here we assume that only one rule can be at the level we're
        // replacing.
        //
        // This is certainly true for HTML style attribute rules, animations and
        // transitions, but could not be so for SMIL animations, which we'd need
        // to special-case (isn't hard, it's just about removing the `if` and
        // special cases, and replacing them for a `while` loop, avoiding the
        // optimizations).
        if current.cascade_priority().cascade_level() == level {
            *important_rules_changed |= level.is_important();

            let current_decls = current.style_source().unwrap().as_declarations();

            // If the only rule at the level we're replacing is exactly the
            // same as `pdb`, we're done, and `path` is still valid.
            if let (Some(ref pdb), Some(ref current_decls)) = (pdb, current_decls) {
                // If the only rule at the level we're replacing is exactly the
                // same as `pdb`, we're done, and `path` is still valid.
                //
                // TODO(emilio): Another potential optimization is the one where
                // we can just replace the rule at that level for `pdb`, and
                // then we don't need to re-create the children, and `path` is
                // also equally valid. This is less likely, and would require an
                // in-place mutation of the source, which is, at best, fiddly,
                // so let's skip it for now.
                let is_here_already = ArcBorrow::ptr_eq(pdb, current_decls);
                if is_here_already {
                    debug!("Picking the fast path in rule replacement");
                    return None;
                }
            }

            if current_decls.is_some() {
                current = current.parent().unwrap().clone();
            }
        }

        // Insert the rule if it's relevant at this level in the cascade.
        //
        // These optimizations are likely to be important, because the levels
        // where replacements apply (style and animations) tend to trigger
        // pretty bad styling cases already.
        if let Some(pdb) = pdb {
            if level.is_important() {
                if pdb.read_with(level.guard(guards)).any_important() {
                    current = current.ensure_child(
                        self.root(),
                        StyleSource::from_declarations(pdb.clone_arc()),
                        CascadePriority::new(level, layer_order),
                    );
                    *important_rules_changed = true;
                }
            } else {
                if pdb.read_with(level.guard(guards)).any_normal() {
                    current = current.ensure_child(
                        self.root(),
                        StyleSource::from_declarations(pdb.clone_arc()),
                        CascadePriority::new(level, layer_order),
                    );
                }
            }
        }

        // Now the rule is in the relevant place, push the children as
        // necessary.
        let rule = self.insert_ordered_rules_from(current, children.drain(..).rev());
        Some(rule)
    }

    /// Returns new rule nodes without Transitions level rule.
    pub fn remove_transition_rule_if_applicable(&self, path: &StrongRuleNode) -> StrongRuleNode {
        // Return a clone if there is no transition level.
        if path.cascade_level() != CascadeLevel::Transitions {
            return path.clone();
        }

        path.parent().unwrap().clone()
    }

    /// Returns new rule node without rules from declarative animations.
    pub fn remove_animation_rules(&self, path: &StrongRuleNode) -> StrongRuleNode {
        // Return a clone if there are no animation rules.
        if !path.has_animation_or_transition_rules() {
            return path.clone();
        }

        let iter = path
            .self_and_ancestors()
            .take_while(|node| node.cascade_level() >= CascadeLevel::SMILOverride);
        let mut last = path;
        let mut children = SmallVec::<[_; 10]>::new();
        for node in iter {
            if !node.cascade_level().is_animation() {
                children.push((
                    node.style_source().unwrap().clone(),
                    node.cascade_priority(),
                ));
            }
            last = node;
        }

        let rule = self
            .insert_ordered_rules_from(last.parent().unwrap().clone(), children.drain(..).rev());
        rule
    }
}

impl StrongRuleNode {
    /// Get an iterator for this rule node and its ancestors.
    pub fn self_and_ancestors(&self) -> SelfAndAncestors {
        SelfAndAncestors {
            current: Some(self),
        }
    }

    /// Returns true if there is either animation or transition level rule.
    pub fn has_animation_or_transition_rules(&self) -> bool {
        self.self_and_ancestors()
            .take_while(|node| node.cascade_level() >= CascadeLevel::SMILOverride)
            .any(|node| node.cascade_level().is_animation())
    }

    /// Get a set of properties whose CascadeLevel are higher than Animations
    /// but not equal to Transitions.
    ///
    /// If there are any custom properties, we set the boolean value of the
    /// returned tuple to true.
    pub fn get_properties_overriding_animations(
        &self,
        guards: &StylesheetGuards,
    ) -> (LonghandIdSet, bool) {
        use crate::properties::PropertyDeclarationId;

        // We want to iterate over cascade levels that override the animations
        // level, i.e.  !important levels and the transitions level.
        //
        // However, we actually want to skip the transitions level because
        // although it is higher in the cascade than animations, when both
        // transitions and animations are present for a given element and
        // property, transitions are suppressed so that they don't actually
        // override animations.
        let iter = self
            .self_and_ancestors()
            .skip_while(|node| node.cascade_level() == CascadeLevel::Transitions)
            .take_while(|node| node.cascade_level() > CascadeLevel::Animations);
        let mut result = (LonghandIdSet::new(), false);
        for node in iter {
            let style = node.style_source().unwrap();
            for (decl, important) in style
                .read(node.cascade_level().guard(guards))
                .declaration_importance_iter()
            {
                // Although we are only iterating over cascade levels that
                // override animations, in a given property declaration block we
                // can have a mixture of !important and non-!important
                // declarations but only the !important declarations actually
                // override animations.
                if important.important() {
                    match decl.id() {
                        PropertyDeclarationId::Longhand(id) => result.0.insert(id),
                        PropertyDeclarationId::Custom(_) => result.1 = true,
                    }
                }
            }
        }
        result
    }
}

/// An iterator over a rule node and its ancestors.
#[derive(Clone)]
pub struct SelfAndAncestors<'a> {
    current: Option<&'a StrongRuleNode>,
}

impl<'a> Iterator for SelfAndAncestors<'a> {
    type Item = &'a StrongRuleNode;

    fn next(&mut self) -> Option<Self::Item> {
        self.current.map(|node| {
            self.current = node.parent();
            node
        })
    }
}