1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
use core::ops::{Deref, DerefMut};

use crate::EitherOrBoth::*;

use either::Either;

/// Value that either holds a single A or B, or both.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum EitherOrBoth<A, B = A> {
    /// Both values are present.
    Both(A, B),
    /// Only the left value of type `A` is present.
    Left(A),
    /// Only the right value of type `B` is present.
    Right(B),
}

impl<A, B> EitherOrBoth<A, B> {
    /// If `Left`, or `Both`, return true. Otherwise, return false.
    pub fn has_left(&self) -> bool {
        self.as_ref().left().is_some()
    }

    /// If `Right`, or `Both`, return true, otherwise, return false.
    pub fn has_right(&self) -> bool {
        self.as_ref().right().is_some()
    }

    /// If `Left`, return true. Otherwise, return false.
    /// Exclusive version of [`has_left`](EitherOrBoth::has_left).
    pub fn is_left(&self) -> bool {
        matches!(self, Left(_))
    }

    /// If `Right`, return true. Otherwise, return false.
    /// Exclusive version of [`has_right`](EitherOrBoth::has_right).
    pub fn is_right(&self) -> bool {
        matches!(self, Right(_))
    }

    /// If `Both`, return true. Otherwise, return false.
    pub fn is_both(&self) -> bool {
        self.as_ref().both().is_some()
    }

    /// If `Left`, or `Both`, return `Some` with the left value. Otherwise, return `None`.
    pub fn left(self) -> Option<A> {
        match self {
            Left(left) | Both(left, _) => Some(left),
            _ => None,
        }
    }

    /// If `Right`, or `Both`, return `Some` with the right value. Otherwise, return `None`.
    pub fn right(self) -> Option<B> {
        match self {
            Right(right) | Both(_, right) => Some(right),
            _ => None,
        }
    }

    /// Return tuple of options corresponding to the left and right value respectively
    ///
    /// If `Left` return `(Some(..), None)`, if `Right` return `(None,Some(..))`, else return
    /// `(Some(..),Some(..))`
    pub fn left_and_right(self) -> (Option<A>, Option<B>) {
        self.map_any(Some, Some).or_default()
    }

    /// If `Left`, return `Some` with the left value. If `Right` or `Both`, return `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// // On the `Left` variant.
    /// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}};
    /// let x: EitherOrBoth<_, ()> = Left("bonjour");
    /// assert_eq!(x.just_left(), Some("bonjour"));
    ///
    /// // On the `Right` variant.
    /// let x: EitherOrBoth<(), _> = Right("hola");
    /// assert_eq!(x.just_left(), None);
    ///
    /// // On the `Both` variant.
    /// let x = Both("bonjour", "hola");
    /// assert_eq!(x.just_left(), None);
    /// ```
    pub fn just_left(self) -> Option<A> {
        match self {
            Left(left) => Some(left),
            _ => None,
        }
    }

    /// If `Right`, return `Some` with the right value. If `Left` or `Both`, return `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// // On the `Left` variant.
    /// # use itertools::{EitherOrBoth::{Left, Right, Both}, EitherOrBoth};
    /// let x: EitherOrBoth<_, ()> = Left("auf wiedersehen");
    /// assert_eq!(x.just_left(), Some("auf wiedersehen"));
    ///
    /// // On the `Right` variant.
    /// let x: EitherOrBoth<(), _> = Right("adios");
    /// assert_eq!(x.just_left(), None);
    ///
    /// // On the `Both` variant.
    /// let x = Both("auf wiedersehen", "adios");
    /// assert_eq!(x.just_left(), None);
    /// ```
    pub fn just_right(self) -> Option<B> {
        match self {
            Right(right) => Some(right),
            _ => None,
        }
    }

    /// If `Both`, return `Some` containing the left and right values. Otherwise, return `None`.
    pub fn both(self) -> Option<(A, B)> {
        match self {
            Both(a, b) => Some((a, b)),
            _ => None,
        }
    }

    /// If `Left` or `Both`, return the left value. Otherwise, convert the right value and return it.
    pub fn into_left(self) -> A
    where
        B: Into<A>,
    {
        match self {
            Left(a) | Both(a, _) => a,
            Right(b) => b.into(),
        }
    }

    /// If `Right` or `Both`, return the right value. Otherwise, convert the left value and return it.
    pub fn into_right(self) -> B
    where
        A: Into<B>,
    {
        match self {
            Right(b) | Both(_, b) => b,
            Left(a) => a.into(),
        }
    }

    /// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&A, &B>`.
    pub fn as_ref(&self) -> EitherOrBoth<&A, &B> {
        match *self {
            Left(ref left) => Left(left),
            Right(ref right) => Right(right),
            Both(ref left, ref right) => Both(left, right),
        }
    }

    /// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut A, &mut B>`.
    pub fn as_mut(&mut self) -> EitherOrBoth<&mut A, &mut B> {
        match *self {
            Left(ref mut left) => Left(left),
            Right(ref mut right) => Right(right),
            Both(ref mut left, ref mut right) => Both(left, right),
        }
    }

    /// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&_, &_>` using the [`Deref`] trait.
    pub fn as_deref(&self) -> EitherOrBoth<&A::Target, &B::Target>
    where
        A: Deref,
        B: Deref,
    {
        match *self {
            Left(ref left) => Left(left),
            Right(ref right) => Right(right),
            Both(ref left, ref right) => Both(left, right),
        }
    }

    /// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut _, &mut _>` using the [`DerefMut`] trait.
    pub fn as_deref_mut(&mut self) -> EitherOrBoth<&mut A::Target, &mut B::Target>
    where
        A: DerefMut,
        B: DerefMut,
    {
        match *self {
            Left(ref mut left) => Left(left),
            Right(ref mut right) => Right(right),
            Both(ref mut left, ref mut right) => Both(left, right),
        }
    }

    /// Convert `EitherOrBoth<A, B>` to `EitherOrBoth<B, A>`.
    pub fn flip(self) -> EitherOrBoth<B, A> {
        match self {
            Left(a) => Right(a),
            Right(b) => Left(b),
            Both(a, b) => Both(b, a),
        }
    }

    /// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, b)` variants. If it is
    /// present rewrapping the result in `self`'s original variant.
    pub fn map_left<F, M>(self, f: F) -> EitherOrBoth<M, B>
    where
        F: FnOnce(A) -> M,
    {
        match self {
            Both(a, b) => Both(f(a), b),
            Left(a) => Left(f(a)),
            Right(b) => Right(b),
        }
    }

    /// Apply the function `f` on the value `b` in `Right(b)` or `Both(a, b)` variants.
    /// If it is present rewrapping the result in `self`'s original variant.
    pub fn map_right<F, M>(self, f: F) -> EitherOrBoth<A, M>
    where
        F: FnOnce(B) -> M,
    {
        match self {
            Left(a) => Left(a),
            Right(b) => Right(f(b)),
            Both(a, b) => Both(a, f(b)),
        }
    }

    /// Apply the functions `f` and `g` on the value `a` and `b` respectively;
    /// found in `Left(a)`, `Right(b)`, or `Both(a, b)` variants.
    /// The Result is rewrapped `self`'s original variant.
    pub fn map_any<F, L, G, R>(self, f: F, g: G) -> EitherOrBoth<L, R>
    where
        F: FnOnce(A) -> L,
        G: FnOnce(B) -> R,
    {
        match self {
            Left(a) => Left(f(a)),
            Right(b) => Right(g(b)),
            Both(a, b) => Both(f(a), g(b)),
        }
    }

    /// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, _)` variants if it is
    /// present.
    pub fn left_and_then<F, L>(self, f: F) -> EitherOrBoth<L, B>
    where
        F: FnOnce(A) -> EitherOrBoth<L, B>,
    {
        match self {
            Left(a) | Both(a, _) => f(a),
            Right(b) => Right(b),
        }
    }

    /// Apply the function `f` on the value `b`
    /// in `Right(b)` or `Both(_, b)` variants if it is present.
    pub fn right_and_then<F, R>(self, f: F) -> EitherOrBoth<A, R>
    where
        F: FnOnce(B) -> EitherOrBoth<A, R>,
    {
        match self {
            Left(a) => Left(a),
            Right(b) | Both(_, b) => f(b),
        }
    }

    /// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
    /// Otherwise, returns the wrapped value for the present element, and the supplied
    /// value for the other. The first (`l`) argument is used for a missing `Left`
    /// value. The second (`r`) argument is used for a missing `Right` value.
    ///
    /// Arguments passed to `or` are eagerly evaluated; if you are passing
    /// the result of a function call, it is recommended to use [`or_else`],
    /// which is lazily evaluated.
    ///
    /// [`or_else`]: EitherOrBoth::or_else
    ///
    /// # Examples
    ///
    /// ```
    /// # use itertools::EitherOrBoth;
    /// assert_eq!(EitherOrBoth::Both("tree", 1).or("stone", 5), ("tree", 1));
    /// assert_eq!(EitherOrBoth::Left("tree").or("stone", 5), ("tree", 5));
    /// assert_eq!(EitherOrBoth::Right(1).or("stone", 5), ("stone", 1));
    /// ```
    pub fn or(self, l: A, r: B) -> (A, B) {
        match self {
            Left(inner_l) => (inner_l, r),
            Right(inner_r) => (l, inner_r),
            Both(inner_l, inner_r) => (inner_l, inner_r),
        }
    }

    /// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
    /// Otherwise, returns the wrapped value for the present element, and the [`default`](Default::default)
    /// for the other.
    pub fn or_default(self) -> (A, B)
    where
        A: Default,
        B: Default,
    {
        match self {
            Left(l) => (l, B::default()),
            Right(r) => (A::default(), r),
            Both(l, r) => (l, r),
        }
    }

    /// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
    /// Otherwise, returns the wrapped value for the present element, and computes the
    /// missing value with the supplied closure. The first argument (`l`) is used for a
    /// missing `Left` value. The second argument (`r`) is used for a missing `Right` value.
    ///
    /// # Examples
    ///
    /// ```
    /// # use itertools::EitherOrBoth;
    /// let k = 10;
    /// assert_eq!(EitherOrBoth::Both("tree", 1).or_else(|| "stone", || 2 * k), ("tree", 1));
    /// assert_eq!(EitherOrBoth::Left("tree").or_else(|| "stone", || 2 * k), ("tree", 20));
    /// assert_eq!(EitherOrBoth::Right(1).or_else(|| "stone", || 2 * k), ("stone", 1));
    /// ```
    pub fn or_else<L: FnOnce() -> A, R: FnOnce() -> B>(self, l: L, r: R) -> (A, B) {
        match self {
            Left(inner_l) => (inner_l, r()),
            Right(inner_r) => (l(), inner_r),
            Both(inner_l, inner_r) => (inner_l, inner_r),
        }
    }

    /// Returns a mutable reference to the left value. If the left value is not present,
    /// it is replaced with `val`.
    pub fn left_or_insert(&mut self, val: A) -> &mut A {
        self.left_or_insert_with(|| val)
    }

    /// Returns a mutable reference to the right value. If the right value is not present,
    /// it is replaced with `val`.
    pub fn right_or_insert(&mut self, val: B) -> &mut B {
        self.right_or_insert_with(|| val)
    }

    /// If the left value is not present, replace it the value computed by the closure `f`.
    /// Returns a mutable reference to the now-present left value.
    pub fn left_or_insert_with<F>(&mut self, f: F) -> &mut A
    where
        F: FnOnce() -> A,
    {
        match self {
            Left(left) | Both(left, _) => left,
            Right(_) => self.insert_left(f()),
        }
    }

    /// If the right value is not present, replace it the value computed by the closure `f`.
    /// Returns a mutable reference to the now-present right value.
    pub fn right_or_insert_with<F>(&mut self, f: F) -> &mut B
    where
        F: FnOnce() -> B,
    {
        match self {
            Right(right) | Both(_, right) => right,
            Left(_) => self.insert_right(f()),
        }
    }

    /// Sets the `left` value of this instance, and returns a mutable reference to it.
    /// Does not affect the `right` value.
    ///
    /// # Examples
    /// ```
    /// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}};
    ///
    /// // Overwriting a pre-existing value.
    /// let mut either: EitherOrBoth<_, ()> = Left(0_u32);
    /// assert_eq!(*either.insert_left(69), 69);
    ///
    /// // Inserting a second value.
    /// let mut either = Right("no");
    /// assert_eq!(*either.insert_left("yes"), "yes");
    /// assert_eq!(either, Both("yes", "no"));
    /// ```
    pub fn insert_left(&mut self, val: A) -> &mut A {
        match self {
            Left(left) | Both(left, _) => {
                *left = val;
                left
            }
            Right(right) => {
                // This is like a map in place operation. We move out of the reference,
                // change the value, and then move back into the reference.
                unsafe {
                    // SAFETY: We know this pointer is valid for reading since we got it from a reference.
                    let right = std::ptr::read(right as *mut _);
                    // SAFETY: Again, we know the pointer is valid since we got it from a reference.
                    std::ptr::write(self as *mut _, Both(val, right));
                }

                if let Both(left, _) = self {
                    left
                } else {
                    // SAFETY: The above pattern will always match, since we just
                    // set `self` equal to `Both`.
                    unsafe { std::hint::unreachable_unchecked() }
                }
            }
        }
    }

    /// Sets the `right` value of this instance, and returns a mutable reference to it.
    /// Does not affect the `left` value.
    ///
    /// # Examples
    /// ```
    /// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Both}};
    /// // Overwriting a pre-existing value.
    /// let mut either: EitherOrBoth<_, ()> = Left(0_u32);
    /// assert_eq!(*either.insert_left(69), 69);
    ///
    /// // Inserting a second value.
    /// let mut either = Left("what's");
    /// assert_eq!(*either.insert_right(9 + 10), 21 - 2);
    /// assert_eq!(either, Both("what's", 9+10));
    /// ```
    pub fn insert_right(&mut self, val: B) -> &mut B {
        match self {
            Right(right) | Both(_, right) => {
                *right = val;
                right
            }
            Left(left) => {
                // This is like a map in place operation. We move out of the reference,
                // change the value, and then move back into the reference.
                unsafe {
                    // SAFETY: We know this pointer is valid for reading since we got it from a reference.
                    let left = std::ptr::read(left as *mut _);
                    // SAFETY: Again, we know the pointer is valid since we got it from a reference.
                    std::ptr::write(self as *mut _, Both(left, val));
                }
                if let Both(_, right) = self {
                    right
                } else {
                    // SAFETY: The above pattern will always match, since we just
                    // set `self` equal to `Both`.
                    unsafe { std::hint::unreachable_unchecked() }
                }
            }
        }
    }

    /// Set `self` to `Both(..)`, containing the specified left and right values,
    /// and returns a mutable reference to those values.
    pub fn insert_both(&mut self, left: A, right: B) -> (&mut A, &mut B) {
        *self = Both(left, right);
        if let Both(left, right) = self {
            (left, right)
        } else {
            // SAFETY: The above pattern will always match, since we just
            // set `self` equal to `Both`.
            unsafe { std::hint::unreachable_unchecked() }
        }
    }
}

impl<T> EitherOrBoth<T, T> {
    /// Return either value of left, right, or apply a function `f` to both values if both are present.
    /// The input function has to return the same type as both Right and Left carry.
    ///
    /// This function can be used to preferrably extract the left resp. right value,
    /// but fall back to the other (i.e. right resp. left) if the preferred one is not present.
    ///
    /// # Examples
    /// ```
    /// # use itertools::EitherOrBoth;
    /// assert_eq!(EitherOrBoth::Both(3, 7).reduce(u32::max), 7);
    /// assert_eq!(EitherOrBoth::Left(3).reduce(u32::max), 3);
    /// assert_eq!(EitherOrBoth::Right(7).reduce(u32::max), 7);
    ///
    /// // Extract the left value if present, fall back to the right otherwise.
    /// assert_eq!(EitherOrBoth::Left("left").reduce(|l, _r| l), "left");
    /// assert_eq!(EitherOrBoth::Right("right").reduce(|l, _r| l), "right");
    /// assert_eq!(EitherOrBoth::Both("left", "right").reduce(|l, _r| l), "left");
    /// ```
    pub fn reduce<F>(self, f: F) -> T
    where
        F: FnOnce(T, T) -> T,
    {
        match self {
            Left(a) => a,
            Right(b) => b,
            Both(a, b) => f(a, b),
        }
    }
}

impl<A, B> From<EitherOrBoth<A, B>> for Option<Either<A, B>> {
    fn from(value: EitherOrBoth<A, B>) -> Self {
        match value {
            Left(l) => Some(Either::Left(l)),
            Right(r) => Some(Either::Right(r)),
            Both(..) => None,
        }
    }
}

impl<A, B> From<Either<A, B>> for EitherOrBoth<A, B> {
    fn from(either: Either<A, B>) -> Self {
        match either {
            Either::Left(l) => Left(l),
            Either::Right(l) => Right(l),
        }
    }
}