1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#[cfg(target_arch = "x86")]
use std::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use std::arch::x86_64::*;

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[target_feature(enable = "ssse3")]
unsafe fn idct8(data: &mut [__m128i; 8]) {
    // The fixed-point constants here are obtained by taking the fractional part of the constants
    // from the non-SIMD implementation and scaling them up by 1<<15. This is because
    // _mm_mulhrs_epi16(a, b) is effectively equivalent to (a*b)>>15 (except for possibly some
    // slight differences in rounding).

    // The code here is effectively equivalent to the calls to "kernel" in idct.rs, except that it
    // doesn't apply any further scaling and fixed point constants have a different precision.

    let p2 = data[2];
    let p3 = data[6];
    let p1 = _mm_mulhrs_epi16(_mm_adds_epi16(p2, p3), _mm_set1_epi16(17734)); // 0.5411961
    let t2 = _mm_subs_epi16(
        _mm_subs_epi16(p1, p3),
        _mm_mulhrs_epi16(p3, _mm_set1_epi16(27779)), // 0.847759065
    );
    let t3 = _mm_adds_epi16(p1, _mm_mulhrs_epi16(p2, _mm_set1_epi16(25079))); // 0.765366865

    let p2 = data[0];
    let p3 = data[4];
    let t0 = _mm_adds_epi16(p2, p3);
    let t1 = _mm_subs_epi16(p2, p3);

    let x0 = _mm_adds_epi16(t0, t3);
    let x3 = _mm_subs_epi16(t0, t3);
    let x1 = _mm_adds_epi16(t1, t2);
    let x2 = _mm_subs_epi16(t1, t2);

    let t0 = data[7];
    let t1 = data[5];
    let t2 = data[3];
    let t3 = data[1];

    let p3 = _mm_adds_epi16(t0, t2);
    let p4 = _mm_adds_epi16(t1, t3);
    let p1 = _mm_adds_epi16(t0, t3);
    let p2 = _mm_adds_epi16(t1, t2);
    let p5 = _mm_adds_epi16(p3, p4);
    let p5 = _mm_adds_epi16(p5, _mm_mulhrs_epi16(p5, _mm_set1_epi16(5763))); // 0.175875602

    let t0 = _mm_mulhrs_epi16(t0, _mm_set1_epi16(9786)); // 0.298631336
    let t1 = _mm_adds_epi16(
        _mm_adds_epi16(t1, t1),
        _mm_mulhrs_epi16(t1, _mm_set1_epi16(1741)), // 0.053119869
    );
    let t2 = _mm_adds_epi16(
        _mm_adds_epi16(t2, _mm_adds_epi16(t2, t2)),
        _mm_mulhrs_epi16(t2, _mm_set1_epi16(2383)), // 0.072711026
    );
    let t3 = _mm_adds_epi16(t3, _mm_mulhrs_epi16(t3, _mm_set1_epi16(16427))); // 0.501321110

    let p1 = _mm_subs_epi16(p5, _mm_mulhrs_epi16(p1, _mm_set1_epi16(29490))); // 0.899976223
    let p2 = _mm_subs_epi16(
        _mm_subs_epi16(_mm_subs_epi16(p5, p2), p2),
        _mm_mulhrs_epi16(p2, _mm_set1_epi16(18446)), // 0.562915447
    );

    let p3 = _mm_subs_epi16(
        _mm_mulhrs_epi16(p3, _mm_set1_epi16(-31509)), // -0.961570560
        p3,
    );
    let p4 = _mm_mulhrs_epi16(p4, _mm_set1_epi16(-12785)); // -0.390180644

    let t3 = _mm_adds_epi16(_mm_adds_epi16(p1, p4), t3);
    let t2 = _mm_adds_epi16(_mm_adds_epi16(p2, p3), t2);
    let t1 = _mm_adds_epi16(_mm_adds_epi16(p2, p4), t1);
    let t0 = _mm_adds_epi16(_mm_adds_epi16(p1, p3), t0);

    data[0] = _mm_adds_epi16(x0, t3);
    data[7] = _mm_subs_epi16(x0, t3);
    data[1] = _mm_adds_epi16(x1, t2);
    data[6] = _mm_subs_epi16(x1, t2);
    data[2] = _mm_adds_epi16(x2, t1);
    data[5] = _mm_subs_epi16(x2, t1);
    data[3] = _mm_adds_epi16(x3, t0);
    data[4] = _mm_subs_epi16(x3, t0);
}

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[target_feature(enable = "ssse3")]
unsafe fn transpose8(data: &mut [__m128i; 8]) {
    // Transpose a 8x8 matrix with a sequence of interleaving operations.
    // Naming: dABl contains elements from the *l*ower halves of vectors A and B, interleaved, i.e.
    // A0 B0 A1 B1 ...
    // dABCDll contains elements from the lower quarter (ll) of vectors A, B, C, D, interleaved -
    // A0 B0 C0 D0 A1 B1 C1 D1 ...
    let d01l = _mm_unpacklo_epi16(data[0], data[1]);
    let d23l = _mm_unpacklo_epi16(data[2], data[3]);
    let d45l = _mm_unpacklo_epi16(data[4], data[5]);
    let d67l = _mm_unpacklo_epi16(data[6], data[7]);
    let d01h = _mm_unpackhi_epi16(data[0], data[1]);
    let d23h = _mm_unpackhi_epi16(data[2], data[3]);
    let d45h = _mm_unpackhi_epi16(data[4], data[5]);
    let d67h = _mm_unpackhi_epi16(data[6], data[7]);
    // Operating on 32-bits will interleave *consecutive pairs* of 16-bit integers.
    let d0123ll = _mm_unpacklo_epi32(d01l, d23l);
    let d0123lh = _mm_unpackhi_epi32(d01l, d23l);
    let d4567ll = _mm_unpacklo_epi32(d45l, d67l);
    let d4567lh = _mm_unpackhi_epi32(d45l, d67l);
    let d0123hl = _mm_unpacklo_epi32(d01h, d23h);
    let d0123hh = _mm_unpackhi_epi32(d01h, d23h);
    let d4567hl = _mm_unpacklo_epi32(d45h, d67h);
    let d4567hh = _mm_unpackhi_epi32(d45h, d67h);
    // Operating on 64-bits will interleave *consecutive quadruples* of 16-bit integers.
    data[0] = _mm_unpacklo_epi64(d0123ll, d4567ll);
    data[1] = _mm_unpackhi_epi64(d0123ll, d4567ll);
    data[2] = _mm_unpacklo_epi64(d0123lh, d4567lh);
    data[3] = _mm_unpackhi_epi64(d0123lh, d4567lh);
    data[4] = _mm_unpacklo_epi64(d0123hl, d4567hl);
    data[5] = _mm_unpackhi_epi64(d0123hl, d4567hl);
    data[6] = _mm_unpacklo_epi64(d0123hh, d4567hh);
    data[7] = _mm_unpackhi_epi64(d0123hh, d4567hh);
}

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[target_feature(enable = "ssse3")]
pub unsafe fn dequantize_and_idct_block_8x8(
    coefficients: &[i16; 64],
    quantization_table: &[u16; 64],
    output_linestride: usize,
    output: &mut [u8],
) {
    // The loop below will write to positions [output_linestride * i, output_linestride * i + 8)
    // for 0<=i<8. Thus, the last accessed position is at an offset of output_linestrade * 7 + 7,
    // and if that position is in-bounds, so are all other accesses.
    assert!(
        output.len()
            > output_linestride
                .checked_mul(7)
                .unwrap()
                .checked_add(7)
                .unwrap()
    );

    #[cfg(target_arch = "x86")]
    use std::arch::x86::*;
    #[cfg(target_arch = "x86_64")]
    use std::arch::x86_64::*;

    const SHIFT: i32 = 3;

    // Read the DCT coefficients, scale them up and dequantize them.
    let mut data = [_mm_setzero_si128(); 8];
    for (i, item) in data.iter_mut().enumerate() {
        *item = _mm_slli_epi16(
            _mm_mullo_epi16(
                _mm_loadu_si128(coefficients.as_ptr().wrapping_add(i * 8) as *const _),
                _mm_loadu_si128(quantization_table.as_ptr().wrapping_add(i * 8) as *const _),
            ),
            SHIFT,
        );
    }

    // Usual column IDCT - transpose - column IDCT - transpose approach.
    idct8(&mut data);
    transpose8(&mut data);
    idct8(&mut data);
    transpose8(&mut data);

    for (i, item) in data.iter_mut().enumerate() {
        let mut buf = [0u8; 16];
        // The two passes of the IDCT algorithm give us a factor of 8, so the shift here is
        // increased by 3.
        // As values will be stored in a u8, they need to be 128-centered and not 0-centered.
        // We add 128 with the appropriate shift for that purpose.
        const OFFSET: i16 = 128 << (SHIFT + 3);
        // We want rounding right shift, so we should add (1/2) << (SHIFT+3) before shifting.
        const ROUNDING_BIAS: i16 = (1 << (SHIFT + 3)) >> 1;

        let data_with_offset = _mm_adds_epi16(*item, _mm_set1_epi16(OFFSET + ROUNDING_BIAS));

        _mm_storeu_si128(
            buf.as_mut_ptr() as *mut _,
            _mm_packus_epi16(
                _mm_srai_epi16(data_with_offset, SHIFT + 3),
                _mm_setzero_si128(),
            ),
        );
        std::ptr::copy_nonoverlapping::<u8>(
            buf.as_ptr(),
            output.as_mut_ptr().wrapping_add(output_linestride * i) as *mut _,
            8,
        );
    }
}

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[target_feature(enable = "ssse3")]
pub unsafe fn color_convert_line_ycbcr(y: &[u8], cb: &[u8], cr: &[u8], output: &mut [u8]) -> usize {
    assert!(output.len() % 3 == 0);
    let num = output.len() / 3;
    assert!(num <= y.len());
    assert!(num <= cb.len());
    assert!(num <= cr.len());
    // _mm_loadu_si64 generates incorrect code for Rust <1.58. To circumvent this, we use a full
    // 128-bit load, but that requires leaving an extra vector of border to the scalar code.
    // From Rust 1.58 on, the _mm_loadu_si128 can be replaced with _mm_loadu_si64 and this
    // .saturating_sub() can be removed.
    let num_vecs = (num / 8).saturating_sub(1);

    for i in 0..num_vecs {
        const SHIFT: i32 = 6;
        // Load.
        let y = _mm_loadu_si128(y.as_ptr().wrapping_add(i * 8) as *const _);
        let cb = _mm_loadu_si128(cb.as_ptr().wrapping_add(i * 8) as *const _);
        let cr = _mm_loadu_si128(cr.as_ptr().wrapping_add(i * 8) as *const _);

        // Convert to 16 bit.
        let shuf16 = _mm_setr_epi8(
            0, -0x7F, 1, -0x7F, 2, -0x7F, 3, -0x7F, 4, -0x7F, 5, -0x7F, 6, -0x7F, 7, -0x7F,
        );
        let y = _mm_slli_epi16(_mm_shuffle_epi8(y, shuf16), SHIFT);
        let cb = _mm_slli_epi16(_mm_shuffle_epi8(cb, shuf16), SHIFT);
        let cr = _mm_slli_epi16(_mm_shuffle_epi8(cr, shuf16), SHIFT);

        // Add offsets
        let c128 = _mm_set1_epi16(128 << SHIFT);
        let y = _mm_adds_epi16(y, _mm_set1_epi16((1 << SHIFT) >> 1));
        let cb = _mm_subs_epi16(cb, c128);
        let cr = _mm_subs_epi16(cr, c128);

        // Compute cr * 1.402, cb * 0.34414, cr * 0.71414, cb * 1.772
        let cr_140200 = _mm_adds_epi16(_mm_mulhrs_epi16(cr, _mm_set1_epi16(13173)), cr);
        let cb_034414 = _mm_mulhrs_epi16(cb, _mm_set1_epi16(11276));
        let cr_071414 = _mm_mulhrs_epi16(cr, _mm_set1_epi16(23401));
        let cb_177200 = _mm_adds_epi16(_mm_mulhrs_epi16(cb, _mm_set1_epi16(25297)), cb);

        // Last conversion step.
        let r = _mm_adds_epi16(y, cr_140200);
        let g = _mm_subs_epi16(y, _mm_adds_epi16(cb_034414, cr_071414));
        let b = _mm_adds_epi16(y, cb_177200);

        // Shift back and convert to u8.
        let zero = _mm_setzero_si128();
        let r = _mm_packus_epi16(_mm_srai_epi16(r, SHIFT), zero);
        let g = _mm_packus_epi16(_mm_srai_epi16(g, SHIFT), zero);
        let b = _mm_packus_epi16(_mm_srai_epi16(b, SHIFT), zero);

        // Shuffle rrrrrrrrggggggggbbbbbbbb to rgbrgbrgb...

        // Control vectors for _mm_shuffle_epi8. -0x7F is selected so that the resulting position
        // after _mm_shuffle_epi8 will be filled with 0, so that the r, g, and b vectors can then
        // be OR-ed together.
        let shufr = _mm_setr_epi8(
            0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F, -0x7F, 5,
        );
        let shufg = _mm_setr_epi8(
            -0x7F, 0, -0x7F, -0x7F, 1, -0x7F, -0x7F, 2, -0x7F, -0x7F, 3, -0x7F, -0x7F, 4, -0x7F,
            -0x7F,
        );
        let shufb = _mm_alignr_epi8(shufg, shufg, 15);

        let rgb_low = _mm_or_si128(
            _mm_shuffle_epi8(r, shufr),
            _mm_or_si128(_mm_shuffle_epi8(g, shufg), _mm_shuffle_epi8(b, shufb)),
        );

        // For the next part of the rgb vectors, we need to select R values from 6 up, G and B from
        // 5 up. The highest bit of -0x7F + 6 is still set, so the corresponding location will
        // still be 0.
        let shufr1 = _mm_add_epi8(shufb, _mm_set1_epi8(6));
        let shufg1 = _mm_add_epi8(shufr, _mm_set1_epi8(5));
        let shufb1 = _mm_add_epi8(shufg, _mm_set1_epi8(5));

        let rgb_hi = _mm_or_si128(
            _mm_shuffle_epi8(r, shufr1),
            _mm_or_si128(_mm_shuffle_epi8(g, shufg1), _mm_shuffle_epi8(b, shufb1)),
        );

        let mut data = [0u8; 32];
        _mm_storeu_si128(data.as_mut_ptr() as *mut _, rgb_low);
        _mm_storeu_si128(data.as_mut_ptr().wrapping_add(16) as *mut _, rgb_hi);
        std::ptr::copy_nonoverlapping::<u8>(
            data.as_ptr(),
            output.as_mut_ptr().wrapping_add(24 * i),
            24,
        );
    }

    num_vecs * 8
}