1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use super::super::branch_meta::BranchMeta;
use super::super::bytestr::ByteStr;
use super::store::const_for_each;
use super::store::ConstArrayBuilder;
use super::store::ConstLengthsStack;
use super::store::ConstSlice;
use crate::error::Error;
use crate::varint;
/// A low-level builder for ZeroTrieSimpleAscii. Works in const contexts.
pub(crate) struct ZeroTrieBuilderConst<const N: usize> {
data: ConstArrayBuilder<N, u8>,
}
impl<const N: usize> ZeroTrieBuilderConst<N> {
/// Non-const function that returns the current trie data as a slice.
#[cfg(feature = "litemap")]
pub fn as_bytes(&self) -> &[u8] {
self.data.as_const_slice().as_slice()
}
/// Returns the trie data, panicking if the buffer is the wrong size.
pub const fn take_or_panic(self) -> [u8; N] {
self.data.const_take_or_panic()
}
/// Creates a new empty builder.
pub const fn new() -> Self {
Self {
data: ConstArrayBuilder::new_empty([0; N], N),
}
}
/// Prepends an ASCII node to the front of the builder. Returns the new builder
/// and the delta in length, which is always 1.
#[must_use]
const fn prepend_ascii(self, ascii: u8) -> (Self, usize) {
if ascii >= 128 {
panic!("Non-ASCII not supported in ZeroTrieSimpleAscii");
}
let data = self.data.const_push_front_or_panic(ascii);
(Self { data }, 1)
}
/// Prepends a value node to the front of the builder. Returns the new builder
/// and the delta in length, which depends on the size of the varint.
#[must_use]
const fn prepend_value(self, value: usize) -> (Self, usize) {
let mut data = self.data;
let varint_array = varint::write_varint_meta3(value);
data = data.const_extend_front_or_panic(varint_array.as_const_slice());
data = data.const_bitor_assign(0, 0b10000000);
(Self { data }, varint_array.len())
}
/// Prepends a branch node to the front of the builder. Returns the new builder
/// and the delta in length, which depends on the size of the varint.
#[must_use]
const fn prepend_branch(self, value: usize) -> (Self, usize) {
let mut data = self.data;
let varint_array = varint::write_varint_meta2(value);
data = data.const_extend_front_or_panic(varint_array.as_const_slice());
data = data.const_bitor_assign(0, 0b11000000);
(Self { data }, varint_array.len())
}
/// Prepends multiple arbitrary bytes to the front of the builder. Returns the new builder
/// and the delta in length, which is the length of the slice.
#[must_use]
const fn prepend_slice(self, s: ConstSlice<u8>) -> (Self, usize) {
let mut data = self.data;
let mut i = s.len();
while i > 0 {
data = data.const_push_front_or_panic(*s.get_or_panic(i - 1));
i -= 1;
}
(Self { data }, s.len())
}
/// Prepends multiple zeros to the front of the builder. Returns the new builder.
#[must_use]
const fn prepend_n_zeros(self, n: usize) -> Self {
let mut data = self.data;
let mut i = 0;
while i < n {
data = data.const_push_front_or_panic(0);
i += 1;
}
Self { data }
}
/// Performs the operation `self[index] |= bits`
const fn bitor_assign_at(self, index: usize, bits: u8) -> Self {
let mut data = self.data;
data = data.const_bitor_assign(index, bits);
Self { data }
}
/// Creates a new builder containing the elements in the given slice of key/value pairs.
///
/// `K` is the stack size of the lengths stack. If you get an error such as
/// "AsciiTrie Builder: Need more stack", try increasing `K`.
///
/// # Panics
///
/// Panics if the items are not sorted
pub const fn from_tuple_slice<'a, const K: usize>(
items: &[(&'a ByteStr, usize)],
) -> Result<Self, Error> {
let items = ConstSlice::from_slice(items);
let mut prev: Option<&'a ByteStr> = None;
const_for_each!(items, (ascii_str, _), {
match prev {
None => (),
Some(prev) => {
if !prev.is_less_then(ascii_str) {
panic!("Strings in ByteStr constructor are not sorted");
}
}
};
prev = Some(ascii_str)
});
Self::from_sorted_const_tuple_slice::<K>(items)
}
/// Creates a new builder containing the elements in the given slice of key/value pairs.
///
/// Assumes that the items are sorted. If they are not, unexpected behavior may occur.
///
/// `K` is the stack size of the lengths stack. If you get an error such as
/// "AsciiTrie Builder: Need more stack", try increasing `K`.
pub const fn from_sorted_const_tuple_slice<const K: usize>(
items: ConstSlice<(&ByteStr, usize)>,
) -> Result<Self, Error> {
let mut result = Self::new();
let total_size;
(result, total_size) = result.create_or_panic::<K>(items);
debug_assert!(total_size == result.data.len());
Ok(result)
}
/// The actual builder algorithm. For an explanation, see [`crate::builder`].
#[must_use]
const fn create_or_panic<const K: usize>(
mut self,
all_items: ConstSlice<(&ByteStr, usize)>,
) -> (Self, usize) {
let mut prefix_len = match all_items.last() {
Some(x) => x.0.len(),
// Empty slice:
None => return (Self::new(), 0),
};
// Initialize the main loop to point at the last string.
let mut lengths_stack = ConstLengthsStack::<K>::new();
let mut i = all_items.len() - 1;
let mut j = all_items.len();
let mut current_len = 0;
// Start the main loop.
loop {
let item_i = all_items.get_or_panic(i);
let item_j = all_items.get_or_panic(j - 1);
debug_assert!(item_i.0.prefix_eq(item_j.0, prefix_len));
// Check if we need to add a value node here.
if item_i.0.len() == prefix_len {
let len;
(self, len) = self.prepend_value(item_i.1);
current_len += len;
}
if prefix_len == 0 {
// All done! Leave the main loop.
break;
}
// Reduce the prefix length by 1 and recalculate i and j.
prefix_len -= 1;
let mut new_i = i;
let mut new_j = j;
let mut ascii_i = item_i.0.byte_at_or_panic(prefix_len);
let mut ascii_j = item_j.0.byte_at_or_panic(prefix_len);
debug_assert!(ascii_i == ascii_j);
let key_ascii = ascii_i;
loop {
if new_i == 0 {
break;
}
let candidate = all_items.get_or_panic(new_i - 1).0;
if candidate.len() < prefix_len {
// Too short
break;
}
if item_i.0.prefix_eq(candidate, prefix_len) {
new_i -= 1;
} else {
break;
}
if candidate.len() == prefix_len {
// A string that equals the prefix does not take part in the branch node.
break;
}
let candidate = candidate.byte_at_or_panic(prefix_len);
if candidate != ascii_i {
ascii_i = candidate;
}
}
loop {
if new_j == all_items.len() {
break;
}
let candidate = all_items.get_or_panic(new_j).0;
if candidate.len() < prefix_len {
// Too short
break;
}
if item_j.0.prefix_eq(candidate, prefix_len) {
new_j += 1;
} else {
break;
}
if candidate.len() == prefix_len {
panic!("A shorter string should be earlier in the sequence");
}
let candidate = candidate.byte_at_or_panic(prefix_len);
if candidate != ascii_j {
ascii_j = candidate;
}
}
// If there are no different bytes at this prefix level, we can add an ASCII or Span
// node and then continue to the next iteration of the main loop.
if ascii_i == key_ascii && ascii_j == key_ascii {
let len;
(self, len) = self.prepend_ascii(ascii_i);
current_len += len;
debug_assert!(i == new_i || i == new_i + 1);
i = new_i;
debug_assert!(j == new_j);
continue;
}
// If i and j changed, we are a target of a branch node.
if ascii_j == key_ascii {
// We are the _last_ target of a branch node.
lengths_stack = lengths_stack.push_or_panic(BranchMeta {
ascii: key_ascii,
cumulative_length: current_len,
local_length: current_len,
count: 1,
});
} else {
// We are the _not the last_ target of a branch node.
let BranchMeta {
cumulative_length,
count,
..
} = lengths_stack.peek_or_panic();
lengths_stack = lengths_stack.push_or_panic(BranchMeta {
ascii: key_ascii,
cumulative_length: cumulative_length + current_len,
local_length: current_len,
count: count + 1,
});
}
if ascii_i != key_ascii {
// We are _not the first_ target of a branch node.
// Set the cursor to the previous string and continue the loop.
j = i;
i -= 1;
prefix_len = all_items.get_or_panic(i).0.len();
current_len = 0;
continue;
}
// Branch (first)
let (total_length, total_count) = {
let BranchMeta {
cumulative_length,
count,
..
} = lengths_stack.peek_or_panic();
(cumulative_length, count)
};
let branch_metas;
(lengths_stack, branch_metas) = lengths_stack.pop_many_or_panic(total_count);
let original_keys = branch_metas.map_to_ascii_bytes();
// Write out the offset table
current_len = total_length;
const USIZE_BITS: usize = core::mem::size_of::<usize>() * 8;
let w = (USIZE_BITS - (total_length.leading_zeros() as usize) - 1) / 8;
if w > 3 {
panic!("ZeroTrie capacity exceeded");
}
let mut k = 0;
while k <= w {
self = self.prepend_n_zeros(total_count - 1);
current_len += total_count - 1;
let mut l = 0;
let mut length_to_write = 0;
while l < total_count {
let BranchMeta { local_length, .. } = *branch_metas
.as_const_slice()
.get_or_panic(total_count - l - 1);
let mut adjusted_length = length_to_write;
let mut m = 0;
while m < k {
adjusted_length >>= 8;
m += 1;
}
if l > 0 {
self = self.bitor_assign_at(l - 1, adjusted_length as u8);
}
l += 1;
length_to_write += local_length;
}
k += 1;
}
// Write out the lookup table
assert!(0 < total_count && total_count <= 256);
let branch_value = (w << 8) + (total_count & 0xff);
let slice_len;
(self, slice_len) = self.prepend_slice(original_keys.as_const_slice());
let branch_len;
(self, branch_len) = self.prepend_branch(branch_value);
current_len += slice_len + branch_len;
i = new_i;
j = new_j;
}
assert!(lengths_stack.is_empty());
(self, current_len)
}
}