uuid/
lib.rs

1// Copyright 2013-2014 The Rust Project Developers.
2// Copyright 2018 The Uuid Project Developers.
3//
4// See the COPYRIGHT file at the top-level directory of this distribution.
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12//! Generate and parse universally unique identifiers (UUIDs).
13//!
14//! Here's an example of a UUID:
15//!
16//! ```text
17//! 67e55044-10b1-426f-9247-bb680e5fe0c8
18//! ```
19//!
20//! A UUID is a unique 128-bit value, stored as 16 octets, and regularly
21//! formatted as a hex string in five groups. UUIDs are used to assign unique
22//! identifiers to entities without requiring a central allocating authority.
23//!
24//! They are particularly useful in distributed systems, though can be used in
25//! disparate areas, such as databases and network protocols.  Typically a UUID
26//! is displayed in a readable string form as a sequence of hexadecimal digits,
27//! separated into groups by hyphens.
28//!
29//! The uniqueness property is not strictly guaranteed, however for all
30//! practical purposes, it can be assumed that an unintentional collision would
31//! be extremely unlikely.
32//!
33//! UUIDs have a number of standardized encodings that are specified in [RFC 9562](https://www.ietf.org/rfc/rfc9562.html).
34//!
35//! # Getting started
36//!
37//! Add the following to your `Cargo.toml`:
38//!
39//! ```toml
40//! [dependencies.uuid]
41//! version = "1.20.0"
42//! # Lets you generate random UUIDs
43//! features = [
44//!     "v4",
45//! ]
46//! ```
47//!
48//! When you want a UUID, you can generate one:
49//!
50//! ```
51//! # fn main() {
52//! # #[cfg(feature = "v4")]
53//! # {
54//! use uuid::Uuid;
55//!
56//! let id = Uuid::new_v4();
57//! # }
58//! # }
59//! ```
60//!
61//! If you have a UUID value, you can use its string literal form inline:
62//!
63//! ```
64//! use uuid::{uuid, Uuid};
65//!
66//! const ID: Uuid = uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
67//! ```
68//!
69//! # Working with different UUID versions
70//!
71//! This library supports all standardized methods for generating UUIDs through individual Cargo features.
72//!
73//! By default, this crate depends on nothing but the Rust standard library and can parse and format
74//! UUIDs, but cannot generate them. Depending on the kind of UUID you'd like to work with, there
75//! are Cargo features that enable generating them:
76//!
77//! * `v1` - Version 1 UUIDs using a timestamp and monotonic counter.
78//! * `v3` - Version 3 UUIDs based on the MD5 hash of some data.
79//! * `v4` - Version 4 UUIDs with random data.
80//! * `v5` - Version 5 UUIDs based on the SHA1 hash of some data.
81//! * `v6` - Version 6 UUIDs using a timestamp and monotonic counter.
82//! * `v7` - Version 7 UUIDs using a Unix timestamp.
83//! * `v8` - Version 8 UUIDs using user-defined data.
84//!
85//! This library also includes a [`Builder`] type that can be used to help construct UUIDs of any
86//! version without any additional dependencies or features. It's a lower-level API than [`Uuid`]
87//! that can be used when you need control over implicit requirements on things like a source
88//! of randomness.
89//!
90//! ## Which UUID version should I use?
91//!
92//! If you just want to generate unique identifiers then consider version 4 (`v4`) UUIDs. If you want
93//! to use UUIDs as database keys or need to sort them then consider version 7 (`v7`) UUIDs.
94//! Other versions should generally be avoided unless there's an existing need for them.
95//!
96//! Some UUID versions supersede others. Prefer version 6 over version 1 and version 5 over version 3.
97//!
98//! # Other features
99//!
100//! Other crate features can also be useful beyond the version support:
101//!
102//! * `serde` - adds the ability to serialize and deserialize a UUID using
103//!   `serde`.
104//! * `borsh` - adds the ability to serialize and deserialize a UUID using
105//!   `borsh`.
106//! * `arbitrary` - adds an `Arbitrary` trait implementation to `Uuid` for
107//!   fuzzing.
108//! * `fast-rng` - uses a faster algorithm for generating random UUIDs when available.
109//!   This feature requires more dependencies to compile, but is just as suitable for
110//!   UUIDs as the default algorithm.
111//! * `rng-rand` - forces `rand` as the backend for randomness.
112//! * `rng-getrandom` - forces `getrandom` as the backend for randomness.
113//! * `bytemuck` - adds a `Pod` trait implementation to `Uuid` for byte manipulation
114//!
115//! # Unstable features
116//!
117//! Some features are unstable. They may be incomplete or depend on other
118//! unstable libraries. These include:
119//!
120//! * `zerocopy` - adds support for zero-copy deserialization using the
121//!   `zerocopy` library.
122//!
123//! Unstable features may break between minor releases.
124//!
125//! To allow unstable features, you'll need to enable the Cargo feature as
126//! normal, but also pass an additional flag through your environment to opt-in
127//! to unstable `uuid` features:
128//!
129//! ```text
130//! RUSTFLAGS="--cfg uuid_unstable"
131//! ```
132//!
133//! # Building for other targets
134//!
135//! ## WebAssembly
136//!
137//! For WebAssembly, enable the `js` feature:
138//!
139//! ```toml
140//! [dependencies.uuid]
141//! version = "1.20.0"
142//! features = [
143//!     "v4",
144//!     "v7",
145//!     "js",
146//! ]
147//! ```
148//!
149//! ## Embedded
150//!
151//! For embedded targets without the standard library, you'll need to
152//! disable default features when building `uuid`:
153//!
154//! ```toml
155//! [dependencies.uuid]
156//! version = "1.20.0"
157//! default-features = false
158//! ```
159//!
160//! Some additional features are supported in no-std environments:
161//!
162//! * `v1`, `v3`, `v5`, `v6`, and `v8`.
163//! * `serde`.
164//!
165//! If you need to use `v4` or `v7` in a no-std environment, you'll need to
166//! produce random bytes yourself and then pass them to [`Builder::from_random_bytes`]
167//! without enabling the `v4` or `v7` features.
168//!
169//! If you're using `getrandom`, you can specify the `rng-getrandom` or `rng-rand`
170//! features of `uuid` and configure `getrandom`'s provider per its docs. `uuid`
171//! may upgrade its version of `getrandom` in minor releases.
172//!
173//! # Examples
174//!
175//! Parse a UUID given in the simple format and print it as a URN:
176//!
177//! ```
178//! # use uuid::Uuid;
179//! # fn main() -> Result<(), uuid::Error> {
180//! let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
181//!
182//! println!("{}", my_uuid.urn());
183//! # Ok(())
184//! # }
185//! ```
186//!
187//! Generate a random UUID and print it out in hexadecimal form:
188//!
189//! ```
190//! // Note that this requires the `v4` feature to be enabled.
191//! # use uuid::Uuid;
192//! # fn main() {
193//! # #[cfg(feature = "v4")] {
194//! let my_uuid = Uuid::new_v4();
195//!
196//! println!("{}", my_uuid);
197//! # }
198//! # }
199//! ```
200//!
201//! # References
202//!
203//! * [Wikipedia: Universally Unique Identifier](http://en.wikipedia.org/wiki/Universally_unique_identifier)
204//! * [RFC 9562: Universally Unique IDentifiers (UUID)](https://www.ietf.org/rfc/rfc9562.html).
205//!
206//! [`wasm-bindgen`]: https://crates.io/crates/wasm-bindgen
207
208#![no_std]
209#![deny(missing_debug_implementations, missing_docs)]
210#![allow(clippy::mixed_attributes_style)]
211#![doc(
212    html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
213    html_favicon_url = "https://www.rust-lang.org/favicon.ico",
214    html_root_url = "https://docs.rs/uuid/1.20.0"
215)]
216
217#[cfg(any(feature = "std", test))]
218#[macro_use]
219extern crate std;
220
221#[cfg(all(not(feature = "std"), not(test)))]
222#[macro_use]
223extern crate core as std;
224
225#[macro_use]
226mod macros;
227
228mod builder;
229mod error;
230mod non_nil;
231mod parser;
232
233pub mod fmt;
234pub mod timestamp;
235
236use core::hash::{Hash, Hasher};
237pub use timestamp::{context::NoContext, ClockSequence, Timestamp};
238
239#[cfg(any(feature = "v1", feature = "v6"))]
240pub use timestamp::context::Context;
241
242#[cfg(feature = "v7")]
243pub use timestamp::context::ContextV7;
244
245#[cfg(feature = "v1")]
246#[doc(hidden)]
247// Soft-deprecated (Rust doesn't support deprecating re-exports)
248// Use `Context` from the crate root instead
249pub mod v1;
250#[cfg(feature = "v3")]
251mod v3;
252#[cfg(feature = "v4")]
253mod v4;
254#[cfg(feature = "v5")]
255mod v5;
256#[cfg(feature = "v6")]
257mod v6;
258#[cfg(feature = "v7")]
259mod v7;
260#[cfg(feature = "v8")]
261mod v8;
262
263#[cfg(feature = "md5")]
264mod md5;
265#[cfg(feature = "rng")]
266mod rng;
267#[cfg(feature = "sha1")]
268mod sha1;
269
270mod external;
271
272#[doc(hidden)]
273pub mod __macro_support {
274    pub use crate::std::result::Result::{Err, Ok};
275}
276
277pub use crate::{builder::Builder, error::Error, non_nil::NonNilUuid};
278
279/// A 128-bit (16 byte) buffer containing the UUID.
280///
281/// # ABI
282///
283/// The `Bytes` type is always guaranteed to be have the same ABI as [`Uuid`].
284pub type Bytes = [u8; 16];
285
286/// The version of the UUID, denoting the generating algorithm.
287///
288/// # References
289///
290/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
291#[derive(Clone, Copy, Debug, PartialEq)]
292#[non_exhaustive]
293#[repr(u8)]
294pub enum Version {
295    /// The "nil" (all zeros) UUID.
296    Nil = 0u8,
297    /// Version 1: Timestamp and node ID.
298    Mac = 1,
299    /// Version 2: DCE Security.
300    Dce = 2,
301    /// Version 3: MD5 hash.
302    Md5 = 3,
303    /// Version 4: Random.
304    Random = 4,
305    /// Version 5: SHA-1 hash.
306    Sha1 = 5,
307    /// Version 6: Sortable Timestamp and node ID.
308    SortMac = 6,
309    /// Version 7: Timestamp and random.
310    SortRand = 7,
311    /// Version 8: Custom.
312    Custom = 8,
313    /// The "max" (all ones) UUID.
314    Max = 0xff,
315}
316
317/// The reserved variants of UUIDs.
318///
319/// # References
320///
321/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
322#[derive(Clone, Copy, Debug, PartialEq)]
323#[non_exhaustive]
324#[repr(u8)]
325pub enum Variant {
326    /// Reserved by the NCS for backward compatibility.
327    NCS = 0u8,
328    /// As described in the RFC 9562 Specification (default).
329    /// (for backward compatibility it is not yet renamed)
330    RFC4122,
331    /// Reserved by Microsoft for backward compatibility.
332    Microsoft,
333    /// Reserved for future expansion.
334    Future,
335}
336
337/// A Universally Unique Identifier (UUID).
338///
339/// # Examples
340///
341/// Parse a UUID given in the simple format and print it as a urn:
342///
343/// ```
344/// # use uuid::Uuid;
345/// # fn main() -> Result<(), uuid::Error> {
346/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
347///
348/// println!("{}", my_uuid.urn());
349/// # Ok(())
350/// # }
351/// ```
352///
353/// Create a new random (V4) UUID and print it out in hexadecimal form:
354///
355/// ```
356/// // Note that this requires the `v4` feature enabled in the uuid crate.
357/// # use uuid::Uuid;
358/// # fn main() {
359/// # #[cfg(feature = "v4")] {
360/// let my_uuid = Uuid::new_v4();
361///
362/// println!("{}", my_uuid);
363/// # }
364/// # }
365/// ```
366///
367/// # Formatting
368///
369/// A UUID can be formatted in one of a few ways:
370///
371/// * [`simple`](#method.simple): `a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8`.
372/// * [`hyphenated`](#method.hyphenated):
373///   `a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8`.
374/// * [`urn`](#method.urn): `urn:uuid:A1A2A3A4-B1B2-C1C2-D1D2-D3D4D5D6D7D8`.
375/// * [`braced`](#method.braced): `{a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8}`.
376///
377/// The default representation when formatting a UUID with `Display` is
378/// hyphenated:
379///
380/// ```
381/// # use uuid::Uuid;
382/// # fn main() -> Result<(), uuid::Error> {
383/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
384///
385/// assert_eq!(
386///     "a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
387///     my_uuid.to_string(),
388/// );
389/// # Ok(())
390/// # }
391/// ```
392///
393/// Other formats can be specified using adapter methods on the UUID:
394///
395/// ```
396/// # use uuid::Uuid;
397/// # fn main() -> Result<(), uuid::Error> {
398/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
399///
400/// assert_eq!(
401///     "urn:uuid:a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
402///     my_uuid.urn().to_string(),
403/// );
404/// # Ok(())
405/// # }
406/// ```
407///
408/// # Endianness
409///
410/// The specification for UUIDs encodes the integer fields that make up the
411/// value in big-endian order. This crate assumes integer inputs are already in
412/// the correct order by default, regardless of the endianness of the
413/// environment. Most methods that accept integers have a `_le` variant (such as
414/// `from_fields_le`) that assumes any integer values will need to have their
415/// bytes flipped, regardless of the endianness of the environment.
416///
417/// Most users won't need to worry about endianness unless they need to operate
418/// on individual fields (such as when converting between Microsoft GUIDs). The
419/// important things to remember are:
420///
421/// - The endianness is in terms of the fields of the UUID, not the environment.
422/// - The endianness is assumed to be big-endian when there's no `_le` suffix
423///   somewhere.
424/// - Byte-flipping in `_le` methods applies to each integer.
425/// - Endianness roundtrips, so if you create a UUID with `from_fields_le`
426///   you'll get the same values back out with `to_fields_le`.
427///
428/// # ABI
429///
430/// The `Uuid` type is always guaranteed to be have the same ABI as [`Bytes`].
431#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
432#[repr(transparent)]
433// NOTE: Also check `NonNilUuid` when ading new derives here
434#[cfg_attr(
435    feature = "borsh",
436    derive(borsh_derive::BorshDeserialize, borsh_derive::BorshSerialize)
437)]
438#[cfg_attr(
439    feature = "bytemuck",
440    derive(bytemuck::Zeroable, bytemuck::Pod, bytemuck::TransparentWrapper)
441)]
442#[cfg_attr(
443    all(uuid_unstable, feature = "zerocopy"),
444    derive(
445        zerocopy::IntoBytes,
446        zerocopy::FromBytes,
447        zerocopy::KnownLayout,
448        zerocopy::Immutable,
449        zerocopy::Unaligned
450    )
451)]
452pub struct Uuid(Bytes);
453
454impl Uuid {
455    /// UUID namespace for Domain Name System (DNS).
456    pub const NAMESPACE_DNS: Self = Uuid([
457        0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
458        0xc8,
459    ]);
460
461    /// UUID namespace for ISO Object Identifiers (OIDs).
462    pub const NAMESPACE_OID: Self = Uuid([
463        0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
464        0xc8,
465    ]);
466
467    /// UUID namespace for Uniform Resource Locators (URLs).
468    pub const NAMESPACE_URL: Self = Uuid([
469        0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
470        0xc8,
471    ]);
472
473    /// UUID namespace for X.500 Distinguished Names (DNs).
474    pub const NAMESPACE_X500: Self = Uuid([
475        0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
476        0xc8,
477    ]);
478
479    /// Returns the variant of the UUID structure.
480    ///
481    /// This determines the interpretation of the structure of the UUID.
482    /// This method simply reads the value of the variant byte. It doesn't
483    /// validate the rest of the UUID as conforming to that variant.
484    ///
485    /// # Examples
486    ///
487    /// Basic usage:
488    ///
489    /// ```
490    /// # use uuid::{Uuid, Variant};
491    /// # fn main() -> Result<(), uuid::Error> {
492    /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
493    ///
494    /// assert_eq!(Variant::RFC4122, my_uuid.get_variant());
495    /// # Ok(())
496    /// # }
497    /// ```
498    ///
499    /// # References
500    ///
501    /// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
502    pub const fn get_variant(&self) -> Variant {
503        match self.as_bytes()[8] {
504            x if x & 0x80 == 0x00 => Variant::NCS,
505            x if x & 0xc0 == 0x80 => Variant::RFC4122,
506            x if x & 0xe0 == 0xc0 => Variant::Microsoft,
507            x if x & 0xe0 == 0xe0 => Variant::Future,
508            // The above match arms are actually exhaustive
509            // We just return `Future` here because we can't
510            // use `unreachable!()` in a `const fn`
511            _ => Variant::Future,
512        }
513    }
514
515    /// Returns the version number of the UUID.
516    ///
517    /// This represents the algorithm used to generate the value.
518    /// This method is the future-proof alternative to [`Uuid::get_version`].
519    ///
520    /// # Examples
521    ///
522    /// Basic usage:
523    ///
524    /// ```
525    /// # use uuid::Uuid;
526    /// # fn main() -> Result<(), uuid::Error> {
527    /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
528    ///
529    /// assert_eq!(3, my_uuid.get_version_num());
530    /// # Ok(())
531    /// # }
532    /// ```
533    ///
534    /// # References
535    ///
536    /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
537    pub const fn get_version_num(&self) -> usize {
538        (self.as_bytes()[6] >> 4) as usize
539    }
540
541    /// Returns the version of the UUID.
542    ///
543    /// This represents the algorithm used to generate the value.
544    /// If the version field doesn't contain a recognized version then `None`
545    /// is returned. If you're trying to read the version for a future extension
546    /// you can also use [`Uuid::get_version_num`] to unconditionally return a
547    /// number. Future extensions may start to return `Some` once they're
548    /// standardized and supported.
549    ///
550    /// # Examples
551    ///
552    /// Basic usage:
553    ///
554    /// ```
555    /// # use uuid::{Uuid, Version};
556    /// # fn main() -> Result<(), uuid::Error> {
557    /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
558    ///
559    /// assert_eq!(Some(Version::Md5), my_uuid.get_version());
560    /// # Ok(())
561    /// # }
562    /// ```
563    ///
564    /// # References
565    ///
566    /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
567    pub const fn get_version(&self) -> Option<Version> {
568        match self.get_version_num() {
569            0 if self.is_nil() => Some(Version::Nil),
570            1 => Some(Version::Mac),
571            2 => Some(Version::Dce),
572            3 => Some(Version::Md5),
573            4 => Some(Version::Random),
574            5 => Some(Version::Sha1),
575            6 => Some(Version::SortMac),
576            7 => Some(Version::SortRand),
577            8 => Some(Version::Custom),
578            0xf => Some(Version::Max),
579            _ => None,
580        }
581    }
582
583    /// Returns the four field values of the UUID.
584    ///
585    /// These values can be passed to the [`Uuid::from_fields`] method to get
586    /// the original `Uuid` back.
587    ///
588    /// * The first field value represents the first group of (eight) hex
589    ///   digits, taken as a big-endian `u32` value.  For V1 UUIDs, this field
590    ///   represents the low 32 bits of the timestamp.
591    /// * The second field value represents the second group of (four) hex
592    ///   digits, taken as a big-endian `u16` value.  For V1 UUIDs, this field
593    ///   represents the middle 16 bits of the timestamp.
594    /// * The third field value represents the third group of (four) hex digits,
595    ///   taken as a big-endian `u16` value.  The 4 most significant bits give
596    ///   the UUID version, and for V1 UUIDs, the last 12 bits represent the
597    ///   high 12 bits of the timestamp.
598    /// * The last field value represents the last two groups of four and twelve
599    ///   hex digits, taken in order.  The first 1-3 bits of this indicate the
600    ///   UUID variant, and for V1 UUIDs, the next 13-15 bits indicate the clock
601    ///   sequence and the last 48 bits indicate the node ID.
602    ///
603    /// # Examples
604    ///
605    /// ```
606    /// # use uuid::Uuid;
607    /// # fn main() -> Result<(), uuid::Error> {
608    /// let uuid = Uuid::nil();
609    ///
610    /// assert_eq!(uuid.as_fields(), (0, 0, 0, &[0u8; 8]));
611    ///
612    /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
613    ///
614    /// assert_eq!(
615    ///     uuid.as_fields(),
616    ///     (
617    ///         0xa1a2a3a4,
618    ///         0xb1b2,
619    ///         0xc1c2,
620    ///         &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
621    ///     )
622    /// );
623    /// # Ok(())
624    /// # }
625    /// ```
626    pub fn as_fields(&self) -> (u32, u16, u16, &[u8; 8]) {
627        let bytes = self.as_bytes();
628
629        let d1 = (bytes[0] as u32) << 24
630            | (bytes[1] as u32) << 16
631            | (bytes[2] as u32) << 8
632            | (bytes[3] as u32);
633
634        let d2 = (bytes[4] as u16) << 8 | (bytes[5] as u16);
635
636        let d3 = (bytes[6] as u16) << 8 | (bytes[7] as u16);
637
638        let d4: &[u8; 8] = bytes[8..16].try_into().unwrap();
639        (d1, d2, d3, d4)
640    }
641
642    /// Returns the four field values of the UUID in little-endian order.
643    ///
644    /// The bytes in the returned integer fields will be converted from
645    /// big-endian order. This is based on the endianness of the UUID,
646    /// rather than the target environment so bytes will be flipped on both
647    /// big and little endian machines.
648    ///
649    /// # Examples
650    ///
651    /// ```
652    /// use uuid::Uuid;
653    ///
654    /// # fn main() -> Result<(), uuid::Error> {
655    /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
656    ///
657    /// assert_eq!(
658    ///     uuid.to_fields_le(),
659    ///     (
660    ///         0xa4a3a2a1,
661    ///         0xb2b1,
662    ///         0xc2c1,
663    ///         &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
664    ///     )
665    /// );
666    /// # Ok(())
667    /// # }
668    /// ```
669    pub fn to_fields_le(&self) -> (u32, u16, u16, &[u8; 8]) {
670        let d1 = (self.as_bytes()[0] as u32)
671            | (self.as_bytes()[1] as u32) << 8
672            | (self.as_bytes()[2] as u32) << 16
673            | (self.as_bytes()[3] as u32) << 24;
674
675        let d2 = (self.as_bytes()[4] as u16) | (self.as_bytes()[5] as u16) << 8;
676
677        let d3 = (self.as_bytes()[6] as u16) | (self.as_bytes()[7] as u16) << 8;
678
679        let d4: &[u8; 8] = self.as_bytes()[8..16].try_into().unwrap();
680        (d1, d2, d3, d4)
681    }
682
683    /// Returns a 128bit value containing the value.
684    ///
685    /// The bytes in the UUID will be packed directly into a `u128`.
686    ///
687    /// # Examples
688    ///
689    /// ```
690    /// # use uuid::Uuid;
691    /// # fn main() -> Result<(), uuid::Error> {
692    /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
693    ///
694    /// assert_eq!(
695    ///     uuid.as_u128(),
696    ///     0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8,
697    /// );
698    /// # Ok(())
699    /// # }
700    /// ```
701    pub const fn as_u128(&self) -> u128 {
702        u128::from_be_bytes(*self.as_bytes())
703    }
704
705    /// Returns a 128bit little-endian value containing the value.
706    ///
707    /// The bytes in the `u128` will be flipped to convert into big-endian
708    /// order. This is based on the endianness of the UUID, rather than the
709    /// target environment so bytes will be flipped on both big and little
710    /// endian machines.
711    ///
712    /// Note that this will produce a different result than
713    /// [`Uuid::to_fields_le`], because the entire UUID is reversed, rather
714    /// than reversing the individual fields in-place.
715    ///
716    /// # Examples
717    ///
718    /// ```
719    /// # use uuid::Uuid;
720    /// # fn main() -> Result<(), uuid::Error> {
721    /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
722    ///
723    /// assert_eq!(
724    ///     uuid.to_u128_le(),
725    ///     0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1,
726    /// );
727    /// # Ok(())
728    /// # }
729    /// ```
730    pub const fn to_u128_le(&self) -> u128 {
731        u128::from_le_bytes(*self.as_bytes())
732    }
733
734    /// Returns two 64bit values containing the value.
735    ///
736    /// The bytes in the UUID will be split into two `u64`.
737    /// The first u64 represents the 64 most significant bits,
738    /// the second one represents the 64 least significant.
739    ///
740    /// # Examples
741    ///
742    /// ```
743    /// # use uuid::Uuid;
744    /// # fn main() -> Result<(), uuid::Error> {
745    /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
746    /// assert_eq!(
747    ///     uuid.as_u64_pair(),
748    ///     (0xa1a2a3a4b1b2c1c2, 0xd1d2d3d4d5d6d7d8),
749    /// );
750    /// # Ok(())
751    /// # }
752    /// ```
753    pub const fn as_u64_pair(&self) -> (u64, u64) {
754        let value = self.as_u128();
755        ((value >> 64) as u64, value as u64)
756    }
757
758    /// Returns a slice of 16 octets containing the value.
759    ///
760    /// This method borrows the underlying byte value of the UUID.
761    ///
762    /// # Examples
763    ///
764    /// ```
765    /// # use uuid::Uuid;
766    /// let bytes1 = [
767    ///     0xa1, 0xa2, 0xa3, 0xa4,
768    ///     0xb1, 0xb2,
769    ///     0xc1, 0xc2,
770    ///     0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
771    /// ];
772    /// let uuid1 = Uuid::from_bytes_ref(&bytes1);
773    ///
774    /// let bytes2 = uuid1.as_bytes();
775    /// let uuid2 = Uuid::from_bytes_ref(bytes2);
776    ///
777    /// assert_eq!(uuid1, uuid2);
778    ///
779    /// assert!(std::ptr::eq(
780    ///     uuid2 as *const Uuid as *const u8,
781    ///     &bytes1 as *const [u8; 16] as *const u8,
782    /// ));
783    /// ```
784    #[inline]
785    pub const fn as_bytes(&self) -> &Bytes {
786        &self.0
787    }
788
789    /// Consumes self and returns the underlying byte value of the UUID.
790    ///
791    /// # Examples
792    ///
793    /// ```
794    /// # use uuid::Uuid;
795    /// let bytes = [
796    ///     0xa1, 0xa2, 0xa3, 0xa4,
797    ///     0xb1, 0xb2,
798    ///     0xc1, 0xc2,
799    ///     0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
800    /// ];
801    /// let uuid = Uuid::from_bytes(bytes);
802    /// assert_eq!(bytes, uuid.into_bytes());
803    /// ```
804    #[inline]
805    pub const fn into_bytes(self) -> Bytes {
806        self.0
807    }
808
809    /// Returns the bytes of the UUID in little-endian order.
810    ///
811    /// The bytes for each field will be flipped to convert into little-endian order.
812    /// This is based on the endianness of the UUID, rather than the target environment
813    /// so bytes will be flipped on both big and little endian machines.
814    ///
815    /// Note that ordering is applied to each _field_, rather than to the bytes as a whole.
816    /// This ordering is compatible with Microsoft's mixed endian GUID format.
817    ///
818    /// # Examples
819    ///
820    /// ```
821    /// use uuid::Uuid;
822    ///
823    /// # fn main() -> Result<(), uuid::Error> {
824    /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
825    ///
826    /// assert_eq!(
827    ///     uuid.to_bytes_le(),
828    ///     ([
829    ///         0xa4, 0xa3, 0xa2, 0xa1, 0xb2, 0xb1, 0xc2, 0xc1, 0xd1, 0xd2,
830    ///         0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8
831    ///     ])
832    /// );
833    /// # Ok(())
834    /// # }
835    /// ```
836    pub const fn to_bytes_le(&self) -> Bytes {
837        [
838            self.0[3], self.0[2], self.0[1], self.0[0], self.0[5], self.0[4], self.0[7], self.0[6],
839            self.0[8], self.0[9], self.0[10], self.0[11], self.0[12], self.0[13], self.0[14],
840            self.0[15],
841        ]
842    }
843
844    /// Tests if the UUID is nil (all zeros).
845    pub const fn is_nil(&self) -> bool {
846        self.as_u128() == u128::MIN
847    }
848
849    /// Tests if the UUID is max (all ones).
850    pub const fn is_max(&self) -> bool {
851        self.as_u128() == u128::MAX
852    }
853
854    /// A buffer that can be used for `encode_...` calls, that is
855    /// guaranteed to be long enough for any of the format adapters.
856    ///
857    /// # Examples
858    ///
859    /// ```
860    /// # use uuid::Uuid;
861    /// let uuid = Uuid::nil();
862    ///
863    /// assert_eq!(
864    ///     uuid.simple().encode_lower(&mut Uuid::encode_buffer()),
865    ///     "00000000000000000000000000000000"
866    /// );
867    ///
868    /// assert_eq!(
869    ///     uuid.hyphenated()
870    ///         .encode_lower(&mut Uuid::encode_buffer()),
871    ///     "00000000-0000-0000-0000-000000000000"
872    /// );
873    ///
874    /// assert_eq!(
875    ///     uuid.urn().encode_lower(&mut Uuid::encode_buffer()),
876    ///     "urn:uuid:00000000-0000-0000-0000-000000000000"
877    /// );
878    /// ```
879    pub const fn encode_buffer() -> [u8; fmt::Urn::LENGTH] {
880        [0; fmt::Urn::LENGTH]
881    }
882
883    /// If the UUID is the correct version (v1, v6, or v7) this will return
884    /// the timestamp in a version-agnostic [`Timestamp`]. For other versions
885    /// this will return `None`.
886    ///
887    /// # Roundtripping
888    ///
889    /// This method is unlikely to roundtrip a timestamp in a UUID due to the way
890    /// UUIDs encode timestamps. The timestamp returned from this method will be truncated to
891    /// 100ns precision for version 1 and 6 UUIDs, and to millisecond precision for version 7 UUIDs.
892    pub const fn get_timestamp(&self) -> Option<Timestamp> {
893        match self.get_version() {
894            Some(Version::Mac) => {
895                let (ticks, counter) = timestamp::decode_gregorian_timestamp(self);
896
897                Some(Timestamp::from_gregorian(ticks, counter))
898            }
899            Some(Version::SortMac) => {
900                let (ticks, counter) = timestamp::decode_sorted_gregorian_timestamp(self);
901
902                Some(Timestamp::from_gregorian(ticks, counter))
903            }
904            Some(Version::SortRand) => {
905                let millis = timestamp::decode_unix_timestamp_millis(self);
906
907                let seconds = millis / 1000;
908                let nanos = ((millis % 1000) * 1_000_000) as u32;
909
910                Some(Timestamp::from_unix_time(seconds, nanos, 0, 0))
911            }
912            _ => None,
913        }
914    }
915
916    /// If the UUID is the correct version (v1, or v6) this will return the
917    /// node value as a 6-byte array. For other versions this will return `None`.
918    pub const fn get_node_id(&self) -> Option<[u8; 6]> {
919        match self.get_version() {
920            Some(Version::Mac) | Some(Version::SortMac) => {
921                let mut node_id = [0; 6];
922
923                node_id[0] = self.0[10];
924                node_id[1] = self.0[11];
925                node_id[2] = self.0[12];
926                node_id[3] = self.0[13];
927                node_id[4] = self.0[14];
928                node_id[5] = self.0[15];
929
930                Some(node_id)
931            }
932            _ => None,
933        }
934    }
935}
936
937impl Hash for Uuid {
938    fn hash<H: Hasher>(&self, state: &mut H) {
939        state.write(&self.0);
940    }
941}
942
943impl Default for Uuid {
944    #[inline]
945    fn default() -> Self {
946        Uuid::nil()
947    }
948}
949
950impl AsRef<Uuid> for Uuid {
951    #[inline]
952    fn as_ref(&self) -> &Uuid {
953        self
954    }
955}
956
957impl AsRef<[u8]> for Uuid {
958    #[inline]
959    fn as_ref(&self) -> &[u8] {
960        &self.0
961    }
962}
963
964#[cfg(feature = "std")]
965impl From<Uuid> for std::vec::Vec<u8> {
966    fn from(value: Uuid) -> Self {
967        value.0.to_vec()
968    }
969}
970
971#[cfg(feature = "std")]
972impl TryFrom<std::vec::Vec<u8>> for Uuid {
973    type Error = Error;
974
975    fn try_from(value: std::vec::Vec<u8>) -> Result<Self, Self::Error> {
976        Uuid::from_slice(&value)
977    }
978}
979
980#[cfg(feature = "serde")]
981pub mod serde {
982    //! Adapters for alternative `serde` formats.
983    //!
984    //! This module contains adapters you can use with [`#[serde(with)]`](https://serde.rs/field-attrs.html#with)
985    //! to change the way a [`Uuid`](../struct.Uuid.html) is serialized
986    //! and deserialized.
987
988    pub use crate::external::serde_support::{braced, compact, simple, urn};
989}
990
991#[cfg(test)]
992mod tests {
993    use super::*;
994
995    use crate::std::string::{String, ToString};
996
997    #[cfg(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")))]
998    use wasm_bindgen_test::*;
999
1000    macro_rules! check {
1001        ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1002            $buf.clear();
1003            write!($buf, $format, $target).unwrap();
1004            assert!($buf.len() == $len);
1005            assert!($buf.chars().all($cond), "{}", $buf);
1006        };
1007    }
1008
1009    pub const fn new() -> Uuid {
1010        Uuid::from_bytes([
1011            0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAA, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1012            0xA1, 0xE4,
1013        ])
1014    }
1015
1016    pub const fn new2() -> Uuid {
1017        Uuid::from_bytes([
1018            0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAB, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1019            0xA1, 0xE4,
1020        ])
1021    }
1022
1023    #[test]
1024    #[cfg_attr(
1025        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1026        wasm_bindgen_test
1027    )]
1028    fn test_uuid_compare() {
1029        let uuid1 = new();
1030        let uuid2 = new2();
1031
1032        assert_eq!(uuid1, uuid1);
1033        assert_eq!(uuid2, uuid2);
1034
1035        assert_ne!(uuid1, uuid2);
1036        assert_ne!(uuid2, uuid1);
1037    }
1038
1039    #[test]
1040    #[cfg_attr(
1041        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1042        wasm_bindgen_test
1043    )]
1044    fn test_uuid_default() {
1045        let default_uuid = Uuid::default();
1046        let nil_uuid = Uuid::nil();
1047
1048        assert_eq!(default_uuid, nil_uuid);
1049    }
1050
1051    #[test]
1052    #[cfg_attr(
1053        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1054        wasm_bindgen_test
1055    )]
1056    fn test_uuid_display() {
1057        use crate::std::fmt::Write;
1058
1059        let uuid = new();
1060        let s = uuid.to_string();
1061        let mut buffer = String::new();
1062
1063        assert_eq!(s, uuid.hyphenated().to_string());
1064
1065        check!(buffer, "{}", uuid, 36, |c| c.is_lowercase()
1066            || c.is_ascii_digit()
1067            || c == '-');
1068    }
1069
1070    #[test]
1071    #[cfg_attr(
1072        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1073        wasm_bindgen_test
1074    )]
1075    fn test_uuid_lowerhex() {
1076        use crate::std::fmt::Write;
1077
1078        let mut buffer = String::new();
1079        let uuid = new();
1080
1081        check!(buffer, "{:x}", uuid, 36, |c| c.is_lowercase()
1082            || c.is_ascii_digit()
1083            || c == '-');
1084    }
1085
1086    // noinspection RsAssertEqual
1087    #[test]
1088    #[cfg_attr(
1089        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1090        wasm_bindgen_test
1091    )]
1092    fn test_uuid_operator_eq() {
1093        let uuid1 = new();
1094        let uuid1_dup = uuid1;
1095        let uuid2 = new2();
1096
1097        assert!(uuid1 == uuid1);
1098        assert!(uuid1 == uuid1_dup);
1099        assert!(uuid1_dup == uuid1);
1100
1101        assert!(uuid1 != uuid2);
1102        assert!(uuid2 != uuid1);
1103        assert!(uuid1_dup != uuid2);
1104        assert!(uuid2 != uuid1_dup);
1105    }
1106
1107    #[test]
1108    #[cfg_attr(
1109        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1110        wasm_bindgen_test
1111    )]
1112    fn test_uuid_to_string() {
1113        use crate::std::fmt::Write;
1114
1115        let uuid = new();
1116        let s = uuid.to_string();
1117        let mut buffer = String::new();
1118
1119        assert_eq!(s.len(), 36);
1120
1121        check!(buffer, "{}", s, 36, |c| c.is_lowercase()
1122            || c.is_ascii_digit()
1123            || c == '-');
1124    }
1125
1126    #[test]
1127    #[cfg_attr(
1128        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1129        wasm_bindgen_test
1130    )]
1131    fn test_non_conforming() {
1132        let from_bytes =
1133            Uuid::from_bytes([4, 54, 67, 12, 43, 2, 2, 76, 32, 50, 87, 5, 1, 33, 43, 87]);
1134
1135        assert_eq!(from_bytes.get_version(), None);
1136    }
1137
1138    #[test]
1139    #[cfg_attr(
1140        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1141        wasm_bindgen_test
1142    )]
1143    fn test_nil() {
1144        let nil = Uuid::nil();
1145        let not_nil = new();
1146
1147        assert!(nil.is_nil());
1148        assert!(!not_nil.is_nil());
1149
1150        assert_eq!(nil.get_version(), Some(Version::Nil));
1151        assert_eq!(not_nil.get_version(), Some(Version::Random));
1152
1153        assert_eq!(
1154            nil,
1155            Builder::from_bytes([0; 16])
1156                .with_version(Version::Nil)
1157                .into_uuid()
1158        );
1159    }
1160
1161    #[test]
1162    #[cfg_attr(
1163        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1164        wasm_bindgen_test
1165    )]
1166    fn test_max() {
1167        let max = Uuid::max();
1168        let not_max = new();
1169
1170        assert!(max.is_max());
1171        assert!(!not_max.is_max());
1172
1173        assert_eq!(max.get_version(), Some(Version::Max));
1174        assert_eq!(not_max.get_version(), Some(Version::Random));
1175
1176        assert_eq!(
1177            max,
1178            Builder::from_bytes([0xff; 16])
1179                .with_version(Version::Max)
1180                .into_uuid()
1181        );
1182    }
1183
1184    #[test]
1185    #[cfg_attr(
1186        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1187        wasm_bindgen_test
1188    )]
1189    fn test_predefined_namespaces() {
1190        assert_eq!(
1191            Uuid::NAMESPACE_DNS.hyphenated().to_string(),
1192            "6ba7b810-9dad-11d1-80b4-00c04fd430c8"
1193        );
1194        assert_eq!(
1195            Uuid::NAMESPACE_URL.hyphenated().to_string(),
1196            "6ba7b811-9dad-11d1-80b4-00c04fd430c8"
1197        );
1198        assert_eq!(
1199            Uuid::NAMESPACE_OID.hyphenated().to_string(),
1200            "6ba7b812-9dad-11d1-80b4-00c04fd430c8"
1201        );
1202        assert_eq!(
1203            Uuid::NAMESPACE_X500.hyphenated().to_string(),
1204            "6ba7b814-9dad-11d1-80b4-00c04fd430c8"
1205        );
1206    }
1207
1208    #[cfg(feature = "v3")]
1209    #[test]
1210    #[cfg_attr(
1211        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1212        wasm_bindgen_test
1213    )]
1214    fn test_get_version_v3() {
1215        let uuid = Uuid::new_v3(&Uuid::NAMESPACE_DNS, "rust-lang.org".as_bytes());
1216
1217        assert_eq!(uuid.get_version().unwrap(), Version::Md5);
1218        assert_eq!(uuid.get_version_num(), 3);
1219    }
1220
1221    #[test]
1222    #[cfg_attr(
1223        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1224        wasm_bindgen_test
1225    )]
1226    fn test_get_timestamp_unsupported_version() {
1227        let uuid = new();
1228
1229        assert_ne!(Version::Mac, uuid.get_version().unwrap());
1230        assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1231        assert_ne!(Version::SortRand, uuid.get_version().unwrap());
1232
1233        assert!(uuid.get_timestamp().is_none());
1234    }
1235
1236    #[test]
1237    #[cfg_attr(
1238        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1239        wasm_bindgen_test
1240    )]
1241    fn test_get_node_id_unsupported_version() {
1242        let uuid = new();
1243
1244        assert_ne!(Version::Mac, uuid.get_version().unwrap());
1245        assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1246
1247        assert!(uuid.get_node_id().is_none());
1248    }
1249
1250    #[test]
1251    #[cfg_attr(
1252        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1253        wasm_bindgen_test
1254    )]
1255    fn test_get_variant() {
1256        let uuid1 = new();
1257        let uuid2 = Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap();
1258        let uuid3 = Uuid::parse_str("67e55044-10b1-426f-9247-bb680e5fe0c8").unwrap();
1259        let uuid4 = Uuid::parse_str("936DA01F9ABD4d9dC0C702AF85C822A8").unwrap();
1260        let uuid5 = Uuid::parse_str("F9168C5E-CEB2-4faa-D6BF-329BF39FA1E4").unwrap();
1261        let uuid6 = Uuid::parse_str("f81d4fae-7dec-11d0-7765-00a0c91e6bf6").unwrap();
1262
1263        assert_eq!(uuid1.get_variant(), Variant::RFC4122);
1264        assert_eq!(uuid2.get_variant(), Variant::RFC4122);
1265        assert_eq!(uuid3.get_variant(), Variant::RFC4122);
1266        assert_eq!(uuid4.get_variant(), Variant::Microsoft);
1267        assert_eq!(uuid5.get_variant(), Variant::Microsoft);
1268        assert_eq!(uuid6.get_variant(), Variant::NCS);
1269    }
1270
1271    #[test]
1272    #[cfg_attr(
1273        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1274        wasm_bindgen_test
1275    )]
1276    fn test_to_simple_string() {
1277        let uuid1 = new();
1278        let s = uuid1.simple().to_string();
1279
1280        assert_eq!(s.len(), 32);
1281        assert!(s.chars().all(|c| c.is_ascii_hexdigit()));
1282    }
1283
1284    #[test]
1285    #[cfg_attr(
1286        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1287        wasm_bindgen_test
1288    )]
1289    fn test_hyphenated_string() {
1290        let uuid1 = new();
1291        let s = uuid1.hyphenated().to_string();
1292
1293        assert_eq!(36, s.len());
1294        assert!(s.chars().all(|c| c.is_ascii_hexdigit() || c == '-'));
1295    }
1296
1297    #[test]
1298    #[cfg_attr(
1299        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1300        wasm_bindgen_test
1301    )]
1302    fn test_upper_lower_hex() {
1303        use std::fmt::Write;
1304
1305        let mut buf = String::new();
1306        let u = new();
1307
1308        macro_rules! check {
1309            ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1310                $buf.clear();
1311                write!($buf, $format, $target).unwrap();
1312                assert_eq!($len, buf.len());
1313                assert!($buf.chars().all($cond), "{}", $buf);
1314            };
1315        }
1316
1317        check!(buf, "{:x}", u, 36, |c| c.is_lowercase()
1318            || c.is_ascii_digit()
1319            || c == '-');
1320        check!(buf, "{:X}", u, 36, |c| c.is_uppercase()
1321            || c.is_ascii_digit()
1322            || c == '-');
1323        check!(buf, "{:#x}", u, 36, |c| c.is_lowercase()
1324            || c.is_ascii_digit()
1325            || c == '-');
1326        check!(buf, "{:#X}", u, 36, |c| c.is_uppercase()
1327            || c.is_ascii_digit()
1328            || c == '-');
1329
1330        check!(buf, "{:X}", u.hyphenated(), 36, |c| c.is_uppercase()
1331            || c.is_ascii_digit()
1332            || c == '-');
1333        check!(buf, "{:X}", u.simple(), 32, |c| c.is_uppercase()
1334            || c.is_ascii_digit());
1335        check!(buf, "{:#X}", u.hyphenated(), 36, |c| c.is_uppercase()
1336            || c.is_ascii_digit()
1337            || c == '-');
1338        check!(buf, "{:#X}", u.simple(), 32, |c| c.is_uppercase()
1339            || c.is_ascii_digit());
1340
1341        check!(buf, "{:x}", u.hyphenated(), 36, |c| c.is_lowercase()
1342            || c.is_ascii_digit()
1343            || c == '-');
1344        check!(buf, "{:x}", u.simple(), 32, |c| c.is_lowercase()
1345            || c.is_ascii_digit());
1346        check!(buf, "{:#x}", u.hyphenated(), 36, |c| c.is_lowercase()
1347            || c.is_ascii_digit()
1348            || c == '-');
1349        check!(buf, "{:#x}", u.simple(), 32, |c| c.is_lowercase()
1350            || c.is_ascii_digit());
1351    }
1352
1353    #[test]
1354    #[cfg_attr(
1355        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1356        wasm_bindgen_test
1357    )]
1358    fn test_to_urn_string() {
1359        let uuid1 = new();
1360        let ss = uuid1.urn().to_string();
1361        let s = &ss[9..];
1362
1363        assert!(ss.starts_with("urn:uuid:"));
1364        assert_eq!(s.len(), 36);
1365        assert!(s.chars().all(|c| c.is_ascii_hexdigit() || c == '-'));
1366    }
1367
1368    #[test]
1369    #[cfg_attr(
1370        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1371        wasm_bindgen_test
1372    )]
1373    fn test_to_simple_string_matching() {
1374        let uuid1 = new();
1375
1376        let hs = uuid1.hyphenated().to_string();
1377        let ss = uuid1.simple().to_string();
1378
1379        let hsn = hs.chars().filter(|&c| c != '-').collect::<String>();
1380
1381        assert_eq!(hsn, ss);
1382    }
1383
1384    #[test]
1385    #[cfg_attr(
1386        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1387        wasm_bindgen_test
1388    )]
1389    fn test_string_roundtrip() {
1390        let uuid = new();
1391
1392        let hs = uuid.hyphenated().to_string();
1393        let uuid_hs = Uuid::parse_str(&hs).unwrap();
1394        assert_eq!(uuid_hs, uuid);
1395
1396        let ss = uuid.to_string();
1397        let uuid_ss = Uuid::parse_str(&ss).unwrap();
1398        assert_eq!(uuid_ss, uuid);
1399    }
1400
1401    #[test]
1402    #[cfg_attr(
1403        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1404        wasm_bindgen_test
1405    )]
1406    fn test_from_fields() {
1407        let d1: u32 = 0xa1a2a3a4;
1408        let d2: u16 = 0xb1b2;
1409        let d3: u16 = 0xc1c2;
1410        let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1411
1412        let u = Uuid::from_fields(d1, d2, d3, &d4);
1413
1414        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1415        let result = u.simple().to_string();
1416        assert_eq!(result, expected);
1417    }
1418
1419    #[test]
1420    #[cfg_attr(
1421        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1422        wasm_bindgen_test
1423    )]
1424    fn test_from_fields_le() {
1425        let d1: u32 = 0xa4a3a2a1;
1426        let d2: u16 = 0xb2b1;
1427        let d3: u16 = 0xc2c1;
1428        let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1429
1430        let u = Uuid::from_fields_le(d1, d2, d3, &d4);
1431
1432        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1433        let result = u.simple().to_string();
1434        assert_eq!(result, expected);
1435    }
1436
1437    #[test]
1438    #[cfg_attr(
1439        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1440        wasm_bindgen_test
1441    )]
1442    fn test_as_fields() {
1443        let u = new();
1444        let (d1, d2, d3, d4) = u.as_fields();
1445
1446        assert_ne!(d1, 0);
1447        assert_ne!(d2, 0);
1448        assert_ne!(d3, 0);
1449        assert_eq!(d4.len(), 8);
1450        assert!(!d4.iter().all(|&b| b == 0));
1451    }
1452
1453    #[test]
1454    #[cfg_attr(
1455        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1456        wasm_bindgen_test
1457    )]
1458    fn test_fields_roundtrip() {
1459        let d1_in: u32 = 0xa1a2a3a4;
1460        let d2_in: u16 = 0xb1b2;
1461        let d3_in: u16 = 0xc1c2;
1462        let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1463
1464        let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1465        let (d1_out, d2_out, d3_out, d4_out) = u.as_fields();
1466
1467        assert_eq!(d1_in, d1_out);
1468        assert_eq!(d2_in, d2_out);
1469        assert_eq!(d3_in, d3_out);
1470        assert_eq!(d4_in, d4_out);
1471    }
1472
1473    #[test]
1474    #[cfg_attr(
1475        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1476        wasm_bindgen_test
1477    )]
1478    fn test_fields_le_roundtrip() {
1479        let d1_in: u32 = 0xa4a3a2a1;
1480        let d2_in: u16 = 0xb2b1;
1481        let d3_in: u16 = 0xc2c1;
1482        let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1483
1484        let u = Uuid::from_fields_le(d1_in, d2_in, d3_in, d4_in);
1485        let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1486
1487        assert_eq!(d1_in, d1_out);
1488        assert_eq!(d2_in, d2_out);
1489        assert_eq!(d3_in, d3_out);
1490        assert_eq!(d4_in, d4_out);
1491    }
1492
1493    #[test]
1494    #[cfg_attr(
1495        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1496        wasm_bindgen_test
1497    )]
1498    fn test_fields_le_are_actually_le() {
1499        let d1_in: u32 = 0xa1a2a3a4;
1500        let d2_in: u16 = 0xb1b2;
1501        let d3_in: u16 = 0xc1c2;
1502        let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1503
1504        let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1505        let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1506
1507        assert_eq!(d1_in, d1_out.swap_bytes());
1508        assert_eq!(d2_in, d2_out.swap_bytes());
1509        assert_eq!(d3_in, d3_out.swap_bytes());
1510        assert_eq!(d4_in, d4_out);
1511    }
1512
1513    #[test]
1514    #[cfg_attr(
1515        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1516        wasm_bindgen_test
1517    )]
1518    fn test_from_u128() {
1519        let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1520
1521        let u = Uuid::from_u128(v_in);
1522
1523        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1524        let result = u.simple().to_string();
1525        assert_eq!(result, expected);
1526    }
1527
1528    #[test]
1529    #[cfg_attr(
1530        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1531        wasm_bindgen_test
1532    )]
1533    fn test_from_u128_le() {
1534        let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1535
1536        let u = Uuid::from_u128_le(v_in);
1537
1538        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1539        let result = u.simple().to_string();
1540        assert_eq!(result, expected);
1541    }
1542
1543    #[test]
1544    #[cfg_attr(
1545        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1546        wasm_bindgen_test
1547    )]
1548    fn test_from_u64_pair() {
1549        let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1550        let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1551
1552        let u = Uuid::from_u64_pair(high_in, low_in);
1553
1554        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1555        let result = u.simple().to_string();
1556        assert_eq!(result, expected);
1557    }
1558
1559    #[test]
1560    #[cfg_attr(
1561        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1562        wasm_bindgen_test
1563    )]
1564    fn test_u128_roundtrip() {
1565        let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1566
1567        let u = Uuid::from_u128(v_in);
1568        let v_out = u.as_u128();
1569
1570        assert_eq!(v_in, v_out);
1571    }
1572
1573    #[test]
1574    #[cfg_attr(
1575        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1576        wasm_bindgen_test
1577    )]
1578    fn test_u128_le_roundtrip() {
1579        let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1580
1581        let u = Uuid::from_u128_le(v_in);
1582        let v_out = u.to_u128_le();
1583
1584        assert_eq!(v_in, v_out);
1585    }
1586
1587    #[test]
1588    #[cfg_attr(
1589        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1590        wasm_bindgen_test
1591    )]
1592    fn test_u64_pair_roundtrip() {
1593        let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1594        let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1595
1596        let u = Uuid::from_u64_pair(high_in, low_in);
1597        let (high_out, low_out) = u.as_u64_pair();
1598
1599        assert_eq!(high_in, high_out);
1600        assert_eq!(low_in, low_out);
1601    }
1602
1603    #[test]
1604    #[cfg_attr(
1605        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1606        wasm_bindgen_test
1607    )]
1608    fn test_u128_le_is_actually_le() {
1609        let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1610
1611        let u = Uuid::from_u128(v_in);
1612        let v_out = u.to_u128_le();
1613
1614        assert_eq!(v_in, v_out.swap_bytes());
1615    }
1616
1617    #[test]
1618    #[cfg_attr(
1619        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1620        wasm_bindgen_test
1621    )]
1622    fn test_from_slice() {
1623        let b = [
1624            0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1625            0xd7, 0xd8,
1626        ];
1627
1628        let u = Uuid::from_slice(&b).unwrap();
1629        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1630
1631        assert_eq!(u.simple().to_string(), expected);
1632    }
1633
1634    #[test]
1635    #[cfg_attr(
1636        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1637        wasm_bindgen_test
1638    )]
1639    fn test_from_bytes() {
1640        let b = [
1641            0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1642            0xd7, 0xd8,
1643        ];
1644
1645        let u = Uuid::from_bytes(b);
1646        let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1647
1648        assert_eq!(u.simple().to_string(), expected);
1649    }
1650
1651    #[test]
1652    #[cfg_attr(
1653        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1654        wasm_bindgen_test
1655    )]
1656    fn test_as_bytes() {
1657        let u = new();
1658        let ub = u.as_bytes();
1659        let ur: &[u8] = u.as_ref();
1660
1661        assert_eq!(ub.len(), 16);
1662        assert_eq!(ur.len(), 16);
1663        assert!(!ub.iter().all(|&b| b == 0));
1664        assert!(!ur.iter().all(|&b| b == 0));
1665    }
1666
1667    #[test]
1668    #[cfg(feature = "std")]
1669    #[cfg_attr(
1670        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1671        wasm_bindgen_test
1672    )]
1673    fn test_convert_vec() {
1674        let u = new();
1675        let ub: &[u8] = u.as_ref();
1676
1677        let v: std::vec::Vec<u8> = u.into();
1678
1679        assert_eq!(&v, ub);
1680
1681        let uv: Uuid = v.try_into().unwrap();
1682
1683        assert_eq!(uv, u);
1684    }
1685
1686    #[test]
1687    #[cfg_attr(
1688        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1689        wasm_bindgen_test
1690    )]
1691    fn test_bytes_roundtrip() {
1692        let b_in: crate::Bytes = [
1693            0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1694            0xd7, 0xd8,
1695        ];
1696
1697        let u = Uuid::from_slice(&b_in).unwrap();
1698
1699        let b_out = u.as_bytes();
1700
1701        assert_eq!(&b_in, b_out);
1702    }
1703
1704    #[test]
1705    #[cfg_attr(
1706        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1707        wasm_bindgen_test
1708    )]
1709    fn test_bytes_le_roundtrip() {
1710        let b = [
1711            0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1712            0xd7, 0xd8,
1713        ];
1714
1715        let u1 = Uuid::from_bytes(b);
1716
1717        let b_le = u1.to_bytes_le();
1718
1719        let u2 = Uuid::from_bytes_le(b_le);
1720
1721        assert_eq!(u1, u2);
1722    }
1723
1724    #[test]
1725    #[cfg_attr(
1726        all(target_arch = "wasm32", any(target_os = "unknown", target_os = "none")),
1727        wasm_bindgen_test
1728    )]
1729    fn test_iterbytes_impl_for_uuid() {
1730        let mut set = std::collections::HashSet::new();
1731        let id1 = new();
1732        let id2 = new2();
1733        set.insert(id1);
1734
1735        assert!(set.contains(&id1));
1736        assert!(!set.contains(&id2));
1737    }
1738}