hyper/rt/
io.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use std::fmt;
use std::mem::MaybeUninit;
use std::ops::DerefMut;
use std::pin::Pin;
use std::task::{Context, Poll};

// New IO traits? What?! Why, are you bonkers?
//
// I mean, yes, probably. But, here's the goals:
//
// 1. Supports poll-based IO operations.
// 2. Opt-in vectored IO.
// 3. Can use an optional buffer pool.
// 4. Able to add completion-based (uring) IO eventually.
//
// Frankly, the last point is the entire reason we're doing this. We want to
// have forwards-compatibility with an eventually stable io-uring runtime. We
// don't need that to work right away. But it must be possible to add in here
// without breaking hyper 1.0.
//
// While in here, if there's small tweaks to poll_read or poll_write that would
// allow even the "slow" path to be faster, such as if someone didn't remember
// to forward along an `is_completion` call.

/// Reads bytes from a source.
///
/// This trait is similar to `std::io::Read`, but supports asynchronous reads.
pub trait Read {
    /// Attempts to read bytes into the `buf`.
    ///
    /// On success, returns `Poll::Ready(Ok(()))` and places data in the
    /// unfilled portion of `buf`. If no data was read (`buf.remaining()` is
    /// unchanged), it implies that EOF has been reached.
    ///
    /// If no data is available for reading, the method returns `Poll::Pending`
    /// and arranges for the current task (via `cx.waker()`) to receive a
    /// notification when the object becomes readable or is closed.
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: ReadBufCursor<'_>,
    ) -> Poll<Result<(), std::io::Error>>;
}

/// Write bytes asynchronously.
///
/// This trait is similar to `std::io::Write`, but for asynchronous writes.
pub trait Write {
    /// Attempt to write bytes from `buf` into the destination.
    ///
    /// On success, returns `Poll::Ready(Ok(num_bytes_written)))`. If
    /// successful, it must be guaranteed that `n <= buf.len()`. A return value
    /// of `0` means that the underlying object is no longer able to accept
    /// bytes, or that the provided buffer is empty.
    ///
    /// If the object is not ready for writing, the method returns
    /// `Poll::Pending` and arranges for the current task (via `cx.waker()`) to
    /// receive a notification when the object becomes writable or is closed.
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<Result<usize, std::io::Error>>;

    /// Attempts to flush the object.
    ///
    /// On success, returns `Poll::Ready(Ok(()))`.
    ///
    /// If flushing cannot immediately complete, this method returns
    /// `Poll::Pending` and arranges for the current task (via `cx.waker()`) to
    /// receive a notification when the object can make progress.
    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>>;

    /// Attempts to shut down this writer.
    fn poll_shutdown(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Result<(), std::io::Error>>;

    /// Returns whether this writer has an efficient `poll_write_vectored`
    /// implementation.
    ///
    /// The default implementation returns `false`.
    fn is_write_vectored(&self) -> bool {
        false
    }

    /// Like `poll_write`, except that it writes from a slice of buffers.
    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[std::io::IoSlice<'_>],
    ) -> Poll<Result<usize, std::io::Error>> {
        let buf = bufs
            .iter()
            .find(|b| !b.is_empty())
            .map_or(&[][..], |b| &**b);
        self.poll_write(cx, buf)
    }
}

/// A wrapper around a byte buffer that is incrementally filled and initialized.
///
/// This type is a sort of "double cursor". It tracks three regions in the
/// buffer: a region at the beginning of the buffer that has been logically
/// filled with data, a region that has been initialized at some point but not
/// yet logically filled, and a region at the end that may be uninitialized.
/// The filled region is guaranteed to be a subset of the initialized region.
///
/// In summary, the contents of the buffer can be visualized as:
///
/// ```not_rust
/// [             capacity              ]
/// [ filled |         unfilled         ]
/// [    initialized    | uninitialized ]
/// ```
///
/// It is undefined behavior to de-initialize any bytes from the uninitialized
/// region, since it is merely unknown whether this region is uninitialized or
/// not, and if part of it turns out to be initialized, it must stay initialized.
pub struct ReadBuf<'a> {
    raw: &'a mut [MaybeUninit<u8>],
    filled: usize,
    init: usize,
}

/// The cursor part of a [`ReadBuf`].
///
/// This is created by calling `ReadBuf::unfilled()`.
#[derive(Debug)]
pub struct ReadBufCursor<'a> {
    buf: &'a mut ReadBuf<'a>,
}

impl<'data> ReadBuf<'data> {
    /// Create a new `ReadBuf` with a slice of initialized bytes.
    #[inline]
    pub fn new(raw: &'data mut [u8]) -> Self {
        let len = raw.len();
        Self {
            // SAFETY: We never de-init the bytes ourselves.
            raw: unsafe { &mut *(raw as *mut [u8] as *mut [MaybeUninit<u8>]) },
            filled: 0,
            init: len,
        }
    }

    /// Create a new `ReadBuf` with a slice of uninitialized bytes.
    #[inline]
    pub fn uninit(raw: &'data mut [MaybeUninit<u8>]) -> Self {
        Self {
            raw,
            filled: 0,
            init: 0,
        }
    }

    /// Get a slice of the buffer that has been filled in with bytes.
    #[inline]
    pub fn filled(&self) -> &[u8] {
        // SAFETY: We only slice the filled part of the buffer, which is always valid
        unsafe { &*(&self.raw[0..self.filled] as *const [MaybeUninit<u8>] as *const [u8]) }
    }

    /// Get a cursor to the unfilled portion of the buffer.
    #[inline]
    pub fn unfilled<'cursor>(&'cursor mut self) -> ReadBufCursor<'cursor> {
        ReadBufCursor {
            // SAFETY: self.buf is never re-assigned, so its safe to narrow
            // the lifetime.
            buf: unsafe {
                std::mem::transmute::<&'cursor mut ReadBuf<'data>, &'cursor mut ReadBuf<'cursor>>(
                    self,
                )
            },
        }
    }

    #[inline]
    #[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
    pub(crate) unsafe fn set_init(&mut self, n: usize) {
        self.init = self.init.max(n);
    }

    #[inline]
    #[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
    pub(crate) unsafe fn set_filled(&mut self, n: usize) {
        self.filled = self.filled.max(n);
    }

    #[inline]
    #[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
    pub(crate) fn len(&self) -> usize {
        self.filled
    }

    #[inline]
    #[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
    pub(crate) fn init_len(&self) -> usize {
        self.init
    }

    #[inline]
    fn remaining(&self) -> usize {
        self.capacity() - self.filled
    }

    #[inline]
    fn capacity(&self) -> usize {
        self.raw.len()
    }
}

impl fmt::Debug for ReadBuf<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ReadBuf")
            .field("filled", &self.filled)
            .field("init", &self.init)
            .field("capacity", &self.capacity())
            .finish()
    }
}

impl ReadBufCursor<'_> {
    /// Access the unfilled part of the buffer.
    ///
    /// # Safety
    ///
    /// The caller must not uninitialize any bytes that may have been
    /// initialized before.
    #[inline]
    pub unsafe fn as_mut(&mut self) -> &mut [MaybeUninit<u8>] {
        &mut self.buf.raw[self.buf.filled..]
    }

    /// Advance the `filled` cursor by `n` bytes.
    ///
    /// # Safety
    ///
    /// The caller must take care that `n` more bytes have been initialized.
    #[inline]
    pub unsafe fn advance(&mut self, n: usize) {
        self.buf.filled = self.buf.filled.checked_add(n).expect("overflow");
        self.buf.init = self.buf.filled.max(self.buf.init);
    }

    /// Returns the number of bytes that can be written from the current
    /// position until the end of the buffer is reached.
    ///
    /// This value is equal to the length of the slice returned by `as_mut()``.
    #[inline]
    pub fn remaining(&self) -> usize {
        self.buf.remaining()
    }

    /// Transfer bytes into `self`` from `src` and advance the cursor
    /// by the number of bytes written.
    ///
    /// # Panics
    ///
    /// `self` must have enough remaining capacity to contain all of `src`.
    #[inline]
    pub fn put_slice(&mut self, src: &[u8]) {
        assert!(
            self.buf.remaining() >= src.len(),
            "src.len() must fit in remaining()"
        );

        let amt = src.len();
        // Cannot overflow, asserted above
        let end = self.buf.filled + amt;

        // Safety: the length is asserted above
        unsafe {
            self.buf.raw[self.buf.filled..end]
                .as_mut_ptr()
                .cast::<u8>()
                .copy_from_nonoverlapping(src.as_ptr(), amt);
        }

        if self.buf.init < end {
            self.buf.init = end;
        }
        self.buf.filled = end;
    }
}

macro_rules! deref_async_read {
    () => {
        fn poll_read(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
            buf: ReadBufCursor<'_>,
        ) -> Poll<std::io::Result<()>> {
            Pin::new(&mut **self).poll_read(cx, buf)
        }
    };
}

impl<T: ?Sized + Read + Unpin> Read for Box<T> {
    deref_async_read!();
}

impl<T: ?Sized + Read + Unpin> Read for &mut T {
    deref_async_read!();
}

impl<P> Read for Pin<P>
where
    P: DerefMut,
    P::Target: Read,
{
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: ReadBufCursor<'_>,
    ) -> Poll<std::io::Result<()>> {
        pin_as_deref_mut(self).poll_read(cx, buf)
    }
}

macro_rules! deref_async_write {
    () => {
        fn poll_write(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
            buf: &[u8],
        ) -> Poll<std::io::Result<usize>> {
            Pin::new(&mut **self).poll_write(cx, buf)
        }

        fn poll_write_vectored(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
            bufs: &[std::io::IoSlice<'_>],
        ) -> Poll<std::io::Result<usize>> {
            Pin::new(&mut **self).poll_write_vectored(cx, bufs)
        }

        fn is_write_vectored(&self) -> bool {
            (**self).is_write_vectored()
        }

        fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
            Pin::new(&mut **self).poll_flush(cx)
        }

        fn poll_shutdown(
            mut self: Pin<&mut Self>,
            cx: &mut Context<'_>,
        ) -> Poll<std::io::Result<()>> {
            Pin::new(&mut **self).poll_shutdown(cx)
        }
    };
}

impl<T: ?Sized + Write + Unpin> Write for Box<T> {
    deref_async_write!();
}

impl<T: ?Sized + Write + Unpin> Write for &mut T {
    deref_async_write!();
}

impl<P> Write for Pin<P>
where
    P: DerefMut,
    P::Target: Write,
{
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<std::io::Result<usize>> {
        pin_as_deref_mut(self).poll_write(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[std::io::IoSlice<'_>],
    ) -> Poll<std::io::Result<usize>> {
        pin_as_deref_mut(self).poll_write_vectored(cx, bufs)
    }

    fn is_write_vectored(&self) -> bool {
        (**self).is_write_vectored()
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
        pin_as_deref_mut(self).poll_flush(cx)
    }

    fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
        pin_as_deref_mut(self).poll_shutdown(cx)
    }
}

/// Polyfill for Pin::as_deref_mut()
/// TODO: use Pin::as_deref_mut() instead once stabilized
fn pin_as_deref_mut<P: DerefMut>(pin: Pin<&mut Pin<P>>) -> Pin<&mut P::Target> {
    // SAFETY: we go directly from Pin<&mut Pin<P>> to Pin<&mut P::Target>, without moving or
    // giving out the &mut Pin<P> in the process. See Pin::as_deref_mut() for more detail.
    unsafe { pin.get_unchecked_mut() }.as_mut()
}