hyper/rt/io.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
use std::fmt;
use std::mem::MaybeUninit;
use std::ops::DerefMut;
use std::pin::Pin;
use std::task::{Context, Poll};
// New IO traits? What?! Why, are you bonkers?
//
// I mean, yes, probably. But, here's the goals:
//
// 1. Supports poll-based IO operations.
// 2. Opt-in vectored IO.
// 3. Can use an optional buffer pool.
// 4. Able to add completion-based (uring) IO eventually.
//
// Frankly, the last point is the entire reason we're doing this. We want to
// have forwards-compatibility with an eventually stable io-uring runtime. We
// don't need that to work right away. But it must be possible to add in here
// without breaking hyper 1.0.
//
// While in here, if there's small tweaks to poll_read or poll_write that would
// allow even the "slow" path to be faster, such as if someone didn't remember
// to forward along an `is_completion` call.
/// Reads bytes from a source.
///
/// This trait is similar to `std::io::Read`, but supports asynchronous reads.
pub trait Read {
/// Attempts to read bytes into the `buf`.
///
/// On success, returns `Poll::Ready(Ok(()))` and places data in the
/// unfilled portion of `buf`. If no data was read (`buf.remaining()` is
/// unchanged), it implies that EOF has been reached.
///
/// If no data is available for reading, the method returns `Poll::Pending`
/// and arranges for the current task (via `cx.waker()`) to receive a
/// notification when the object becomes readable or is closed.
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: ReadBufCursor<'_>,
) -> Poll<Result<(), std::io::Error>>;
}
/// Write bytes asynchronously.
///
/// This trait is similar to `std::io::Write`, but for asynchronous writes.
pub trait Write {
/// Attempt to write bytes from `buf` into the destination.
///
/// On success, returns `Poll::Ready(Ok(num_bytes_written)))`. If
/// successful, it must be guaranteed that `n <= buf.len()`. A return value
/// of `0` means that the underlying object is no longer able to accept
/// bytes, or that the provided buffer is empty.
///
/// If the object is not ready for writing, the method returns
/// `Poll::Pending` and arranges for the current task (via `cx.waker()`) to
/// receive a notification when the object becomes writable or is closed.
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, std::io::Error>>;
/// Attempts to flush the object.
///
/// On success, returns `Poll::Ready(Ok(()))`.
///
/// If flushing cannot immediately complete, this method returns
/// `Poll::Pending` and arranges for the current task (via `cx.waker()`) to
/// receive a notification when the object can make progress.
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>>;
/// Attempts to shut down this writer.
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), std::io::Error>>;
/// Returns whether this writer has an efficient `poll_write_vectored`
/// implementation.
///
/// The default implementation returns `false`.
fn is_write_vectored(&self) -> bool {
false
}
/// Like `poll_write`, except that it writes from a slice of buffers.
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
let buf = bufs
.iter()
.find(|b| !b.is_empty())
.map_or(&[][..], |b| &**b);
self.poll_write(cx, buf)
}
}
/// A wrapper around a byte buffer that is incrementally filled and initialized.
///
/// This type is a sort of "double cursor". It tracks three regions in the
/// buffer: a region at the beginning of the buffer that has been logically
/// filled with data, a region that has been initialized at some point but not
/// yet logically filled, and a region at the end that may be uninitialized.
/// The filled region is guaranteed to be a subset of the initialized region.
///
/// In summary, the contents of the buffer can be visualized as:
///
/// ```not_rust
/// [ capacity ]
/// [ filled | unfilled ]
/// [ initialized | uninitialized ]
/// ```
///
/// It is undefined behavior to de-initialize any bytes from the uninitialized
/// region, since it is merely unknown whether this region is uninitialized or
/// not, and if part of it turns out to be initialized, it must stay initialized.
pub struct ReadBuf<'a> {
raw: &'a mut [MaybeUninit<u8>],
filled: usize,
init: usize,
}
/// The cursor part of a [`ReadBuf`].
///
/// This is created by calling `ReadBuf::unfilled()`.
#[derive(Debug)]
pub struct ReadBufCursor<'a> {
buf: &'a mut ReadBuf<'a>,
}
impl<'data> ReadBuf<'data> {
/// Create a new `ReadBuf` with a slice of initialized bytes.
#[inline]
pub fn new(raw: &'data mut [u8]) -> Self {
let len = raw.len();
Self {
// SAFETY: We never de-init the bytes ourselves.
raw: unsafe { &mut *(raw as *mut [u8] as *mut [MaybeUninit<u8>]) },
filled: 0,
init: len,
}
}
/// Create a new `ReadBuf` with a slice of uninitialized bytes.
#[inline]
pub fn uninit(raw: &'data mut [MaybeUninit<u8>]) -> Self {
Self {
raw,
filled: 0,
init: 0,
}
}
/// Get a slice of the buffer that has been filled in with bytes.
#[inline]
pub fn filled(&self) -> &[u8] {
// SAFETY: We only slice the filled part of the buffer, which is always valid
unsafe { &*(&self.raw[0..self.filled] as *const [MaybeUninit<u8>] as *const [u8]) }
}
/// Get a cursor to the unfilled portion of the buffer.
#[inline]
pub fn unfilled<'cursor>(&'cursor mut self) -> ReadBufCursor<'cursor> {
ReadBufCursor {
// SAFETY: self.buf is never re-assigned, so its safe to narrow
// the lifetime.
buf: unsafe {
std::mem::transmute::<&'cursor mut ReadBuf<'data>, &'cursor mut ReadBuf<'cursor>>(
self,
)
},
}
}
#[inline]
#[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
pub(crate) unsafe fn set_init(&mut self, n: usize) {
self.init = self.init.max(n);
}
#[inline]
#[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
pub(crate) unsafe fn set_filled(&mut self, n: usize) {
self.filled = self.filled.max(n);
}
#[inline]
#[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
pub(crate) fn len(&self) -> usize {
self.filled
}
#[inline]
#[cfg(all(any(feature = "client", feature = "server"), feature = "http2"))]
pub(crate) fn init_len(&self) -> usize {
self.init
}
#[inline]
fn remaining(&self) -> usize {
self.capacity() - self.filled
}
#[inline]
fn capacity(&self) -> usize {
self.raw.len()
}
}
impl fmt::Debug for ReadBuf<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ReadBuf")
.field("filled", &self.filled)
.field("init", &self.init)
.field("capacity", &self.capacity())
.finish()
}
}
impl ReadBufCursor<'_> {
/// Access the unfilled part of the buffer.
///
/// # Safety
///
/// The caller must not uninitialize any bytes that may have been
/// initialized before.
#[inline]
pub unsafe fn as_mut(&mut self) -> &mut [MaybeUninit<u8>] {
&mut self.buf.raw[self.buf.filled..]
}
/// Advance the `filled` cursor by `n` bytes.
///
/// # Safety
///
/// The caller must take care that `n` more bytes have been initialized.
#[inline]
pub unsafe fn advance(&mut self, n: usize) {
self.buf.filled = self.buf.filled.checked_add(n).expect("overflow");
self.buf.init = self.buf.filled.max(self.buf.init);
}
/// Returns the number of bytes that can be written from the current
/// position until the end of the buffer is reached.
///
/// This value is equal to the length of the slice returned by `as_mut()``.
#[inline]
pub fn remaining(&self) -> usize {
self.buf.remaining()
}
/// Transfer bytes into `self`` from `src` and advance the cursor
/// by the number of bytes written.
///
/// # Panics
///
/// `self` must have enough remaining capacity to contain all of `src`.
#[inline]
pub fn put_slice(&mut self, src: &[u8]) {
assert!(
self.buf.remaining() >= src.len(),
"src.len() must fit in remaining()"
);
let amt = src.len();
// Cannot overflow, asserted above
let end = self.buf.filled + amt;
// Safety: the length is asserted above
unsafe {
self.buf.raw[self.buf.filled..end]
.as_mut_ptr()
.cast::<u8>()
.copy_from_nonoverlapping(src.as_ptr(), amt);
}
if self.buf.init < end {
self.buf.init = end;
}
self.buf.filled = end;
}
}
macro_rules! deref_async_read {
() => {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: ReadBufCursor<'_>,
) -> Poll<std::io::Result<()>> {
Pin::new(&mut **self).poll_read(cx, buf)
}
};
}
impl<T: ?Sized + Read + Unpin> Read for Box<T> {
deref_async_read!();
}
impl<T: ?Sized + Read + Unpin> Read for &mut T {
deref_async_read!();
}
impl<P> Read for Pin<P>
where
P: DerefMut,
P::Target: Read,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: ReadBufCursor<'_>,
) -> Poll<std::io::Result<()>> {
pin_as_deref_mut(self).poll_read(cx, buf)
}
}
macro_rules! deref_async_write {
() => {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
Pin::new(&mut **self).poll_write(cx, buf)
}
fn poll_write_vectored(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<std::io::Result<usize>> {
Pin::new(&mut **self).poll_write_vectored(cx, bufs)
}
fn is_write_vectored(&self) -> bool {
(**self).is_write_vectored()
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
Pin::new(&mut **self).poll_flush(cx)
}
fn poll_shutdown(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<std::io::Result<()>> {
Pin::new(&mut **self).poll_shutdown(cx)
}
};
}
impl<T: ?Sized + Write + Unpin> Write for Box<T> {
deref_async_write!();
}
impl<T: ?Sized + Write + Unpin> Write for &mut T {
deref_async_write!();
}
impl<P> Write for Pin<P>
where
P: DerefMut,
P::Target: Write,
{
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
pin_as_deref_mut(self).poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<std::io::Result<usize>> {
pin_as_deref_mut(self).poll_write_vectored(cx, bufs)
}
fn is_write_vectored(&self) -> bool {
(**self).is_write_vectored()
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
pin_as_deref_mut(self).poll_flush(cx)
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<std::io::Result<()>> {
pin_as_deref_mut(self).poll_shutdown(cx)
}
}
/// Polyfill for Pin::as_deref_mut()
/// TODO: use Pin::as_deref_mut() instead once stabilized
fn pin_as_deref_mut<P: DerefMut>(pin: Pin<&mut Pin<P>>) -> Pin<&mut P::Target> {
// SAFETY: we go directly from Pin<&mut Pin<P>> to Pin<&mut P::Target>, without moving or
// giving out the &mut Pin<P> in the process. See Pin::as_deref_mut() for more detail.
unsafe { pin.get_unchecked_mut() }.as_mut()
}