1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*!
Plane splitting.
Uses [euclid](https://crates.io/crates/euclid) for the math basis.
Introduces new geometrical primitives and associated logic.
Automatically splits a given set of 4-point polygons into sub-polygons
that don't intersect each other. This is useful for WebRender, to sort
the resulting sub-polygons by depth and avoid transparency blending issues.
*/
#![warn(missing_docs)]
mod bsp;
mod clip;
mod polygon;
pub use polygon::PlaneCut;
use euclid::{
approxeq::ApproxEq,
default::{Point3D, Scale, Vector3D},
};
use std::ops;
pub use self::bsp::BspSplitter;
pub use self::clip::Clipper;
pub use self::polygon::{Intersection, LineProjection, Polygon};
fn is_zero(value: f64) -> bool {
//HACK: this is rough, but the original Epsilon is too strict
(value * value).approx_eq(&0.0)
}
fn is_zero_vec(vec: Vector3D<f64>) -> bool {
vec.dot(vec).approx_eq(&0.0)
}
/// A generic line.
#[derive(Debug)]
pub struct Line {
/// Arbitrary point on the line.
pub origin: Point3D<f64>,
/// Normalized direction of the line.
pub dir: Vector3D<f64>,
}
impl Line {
/// Check if the line has consistent parameters.
pub fn is_valid(&self) -> bool {
is_zero(self.dir.dot(self.dir) - 1.0)
}
/// Check if two lines match each other.
pub fn matches(&self, other: &Self) -> bool {
let diff = self.origin - other.origin;
is_zero_vec(self.dir.cross(other.dir)) && is_zero_vec(self.dir.cross(diff))
}
/// Intersect an edge given by the end points.
/// Returns the fraction of the edge where the intersection occurs.
fn intersect_edge(&self, edge: ops::Range<Point3D<f64>>) -> Option<f64> {
let edge_vec = edge.end - edge.start;
let origin_vec = self.origin - edge.start;
// edge.start + edge_vec * t = r + k * d
// (edge.start, d) + t * (edge_vec, d) - (r, d) = k
// edge.start + t * edge_vec = r + t * (edge_vec, d) * d + (start-r, d) * d
// t * (edge_vec - (edge_vec, d)*d) = origin_vec - (origin_vec, d) * d
let pr = origin_vec - self.dir * self.dir.dot(origin_vec);
let pb = edge_vec - self.dir * self.dir.dot(edge_vec);
let denom = pb.dot(pb);
if denom.approx_eq(&0.0) {
None
} else {
Some(pr.dot(pb) / denom)
}
}
}
/// An infinite plane in 3D space, defined by equation:
/// dot(v, normal) + offset = 0
/// When used for plane splitting, it's defining a hemisphere
/// with equation "dot(v, normal) + offset > 0".
#[derive(Debug, PartialEq)]
pub struct Plane {
/// Normalized vector perpendicular to the plane.
pub normal: Vector3D<f64>,
/// Constant offset from the normal plane, specified in the
/// direction opposite to the normal.
pub offset: f64,
}
impl Clone for Plane {
fn clone(&self) -> Self {
Plane {
normal: self.normal.clone(),
offset: self.offset.clone(),
}
}
}
/// An error returned when everything would end up projected
/// to the negative hemisphere (W <= 0.0);
#[derive(Clone, Debug, Hash, PartialEq, PartialOrd)]
pub struct NegativeHemisphereError;
impl Plane {
/// Construct a new plane from unnormalized equation.
pub fn from_unnormalized(
normal: Vector3D<f64>,
offset: f64,
) -> Result<Option<Self>, NegativeHemisphereError> {
let square_len = normal.square_length();
if square_len < f64::approx_epsilon() * f64::approx_epsilon() {
if offset > 0.0 {
Ok(None)
} else {
Err(NegativeHemisphereError)
}
} else {
let kf = 1.0 / square_len.sqrt();
Ok(Some(Plane {
normal: normal * Scale::new(kf),
offset: offset * kf,
}))
}
}
/// Check if this plane contains another one.
pub fn contains(&self, other: &Self) -> bool {
//TODO: actually check for inside/outside
self.normal == other.normal && self.offset == other.offset
}
/// Return the signed distance from this plane to a point.
/// The distance is negative if the point is on the other side of the plane
/// from the direction of the normal.
pub fn signed_distance_to(&self, point: &Point3D<f64>) -> f64 {
point.to_vector().dot(self.normal) + self.offset
}
/// Compute the distance across the line to the plane plane,
/// starting from the line origin.
pub fn distance_to_line(&self, line: &Line) -> f64 {
self.signed_distance_to(&line.origin) / -self.normal.dot(line.dir)
}
/// Compute the sum of signed distances to each of the points
/// of another plane. Useful to know the relation of a plane that
/// is a product of a split, and we know it doesn't intersect `self`.
pub fn signed_distance_sum_to<A>(&self, poly: &Polygon<A>) -> f64 {
poly.points
.iter()
.fold(0.0, |u, p| u + self.signed_distance_to(p))
}
/// Check if a convex shape defined by a set of points is completely
/// outside of this plane. Merely touching the surface is not
/// considered an intersection.
pub fn are_outside(&self, points: &[Point3D<f64>]) -> bool {
let d0 = self.signed_distance_to(&points[0]);
points[1..]
.iter()
.all(|p| self.signed_distance_to(p) * d0 > 0.0)
}
//TODO(breaking): turn this into Result<Line, DotProduct>
/// Compute the line of intersection with another plane.
pub fn intersect(&self, other: &Self) -> Option<Line> {
// compute any point on the intersection between planes
// (n1, v) + d1 = 0
// (n2, v) + d2 = 0
// v = a*n1/w + b*n2/w; w = (n1, n2)
// v = (d2*w - d1) / (1 - w*w) * n1 - (d2 - d1*w) / (1 - w*w) * n2
let w = self.normal.dot(other.normal);
let divisor = 1.0 - w * w;
if divisor < f64::approx_epsilon() * f64::approx_epsilon() {
return None;
}
let origin = Point3D::origin() + self.normal * ((other.offset * w - self.offset) / divisor)
- other.normal * ((other.offset - self.offset * w) / divisor);
let cross_dir = self.normal.cross(other.normal);
// note: the cross product isn't too close to zero
// due to the previous check
Some(Line {
origin,
dir: cross_dir.normalize(),
})
}
}
/// Helper method used for benchmarks and tests.
/// Constructs a 3D grid of polygons.
#[doc(hidden)]
pub fn make_grid(count: usize) -> Vec<Polygon<usize>> {
let mut polys: Vec<Polygon<usize>> = Vec::with_capacity(count * 3);
let len = count as f64;
polys.extend((0..count).map(|i| Polygon {
points: [
Point3D::new(0.0, i as f64, 0.0),
Point3D::new(len, i as f64, 0.0),
Point3D::new(len, i as f64, len),
Point3D::new(0.0, i as f64, len),
],
plane: Plane {
normal: Vector3D::new(0.0, 1.0, 0.0),
offset: -(i as f64),
},
anchor: 0,
}));
polys.extend((0..count).map(|i| Polygon {
points: [
Point3D::new(i as f64, 0.0, 0.0),
Point3D::new(i as f64, len, 0.0),
Point3D::new(i as f64, len, len),
Point3D::new(i as f64, 0.0, len),
],
plane: Plane {
normal: Vector3D::new(1.0, 0.0, 0.0),
offset: -(i as f64),
},
anchor: 0,
}));
polys.extend((0..count).map(|i| Polygon {
points: [
Point3D::new(0.0, 0.0, i as f64),
Point3D::new(len, 0.0, i as f64),
Point3D::new(len, len, i as f64),
Point3D::new(0.0, len, i as f64),
],
plane: Plane {
normal: Vector3D::new(0.0, 0.0, 1.0),
offset: -(i as f64),
},
anchor: 0,
}));
polys
}