1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/*!
Bounds-checking for SPIR-V output.
*/
use super::{
helpers::{global_needs_wrapper, map_storage_class},
selection::Selection,
Block, BlockContext, Error, IdGenerator, Instruction, Word,
};
use crate::{
arena::Handle,
proc::{index::GuardedIndex, BoundsCheckPolicy},
};
/// The results of performing a bounds check.
///
/// On success, [`write_bounds_check`](BlockContext::write_bounds_check)
/// returns a value of this type. The caller can assume that the right
/// policy has been applied, and simply do what the variant says.
#[derive(Debug)]
pub(super) enum BoundsCheckResult {
/// The index is statically known and in bounds, with the given value.
KnownInBounds(u32),
/// The given instruction computes the index to be used.
///
/// When [`BoundsCheckPolicy::Restrict`] is in force, this is a
/// clamped version of the index the user supplied.
///
/// When [`BoundsCheckPolicy::Unchecked`] is in force, this is
/// simply the index the user supplied. This variant indicates
/// that we couldn't prove statically that the index was in
/// bounds; otherwise we would have returned [`KnownInBounds`].
///
/// [`KnownInBounds`]: BoundsCheckResult::KnownInBounds
Computed(Word),
/// The given instruction computes a boolean condition which is true
/// if the index is in bounds.
///
/// This is returned when [`BoundsCheckPolicy::ReadZeroSkipWrite`]
/// is in force.
Conditional {
/// The access should only be permitted if this value is true.
condition_id: Word,
/// The access should use this index value.
index_id: Word,
},
}
/// A value that we either know at translation time, or need to compute at runtime.
#[derive(Copy, Clone)]
pub(super) enum MaybeKnown<T> {
/// The value is known at shader translation time.
Known(T),
/// The value is computed by the instruction with the given id.
Computed(Word),
}
impl<'w> BlockContext<'w> {
/// Emit code to compute the length of a run-time array.
///
/// Given `array`, an expression referring a runtime-sized array, return the
/// instruction id for the array's length.
///
/// Runtime-sized arrays may only appear in the values of global
/// variables, which must have one of the following Naga types:
///
/// 1. A runtime-sized array.
/// 2. A struct whose last member is a runtime-sized array.
/// 3. A binding array of 2.
///
/// Thus, the expression `array` has the form of:
///
/// - An optional [`AccessIndex`], for case 2, applied to...
/// - An optional [`Access`] or [`AccessIndex`], for case 3, applied to...
/// - A [`GlobalVariable`].
///
/// The generated SPIR-V takes into account wrapped globals; see
/// [`back::spv::GlobalVariable`] for details.
///
/// [`GlobalVariable`]: crate::Expression::GlobalVariable
/// [`AccessIndex`]: crate::Expression::AccessIndex
/// [`Access`]: crate::Expression::Access
/// [`base`]: crate::Expression::Access::base
/// [`back::spv::GlobalVariable`]: super::GlobalVariable
pub(super) fn write_runtime_array_length(
&mut self,
array: Handle<crate::Expression>,
block: &mut Block,
) -> Result<Word, Error> {
// The index into the binding array, if any.
let binding_array_index_id: Option<Word>;
// The handle to the Naga IR global we're referring to.
let global_handle: Handle<crate::GlobalVariable>;
// At the Naga type level, if the runtime-sized array is the final member of a
// struct, this is that member's index.
//
// This does not cover wrappers: if this backend wrapped the Naga global's
// type in a synthetic SPIR-V struct (see `global_needs_wrapper`), this is
// `None`.
let opt_last_member_index: Option<u32>;
// Inspect `array` and decide whether we have a binding array and/or an
// enclosing struct.
match self.ir_function.expressions[array] {
crate::Expression::AccessIndex { base, index } => {
match self.ir_function.expressions[base] {
crate::Expression::AccessIndex {
base: base_outer,
index: index_outer,
} => match self.ir_function.expressions[base_outer] {
// An `AccessIndex` of an `AccessIndex` must be a
// binding array holding structs whose last members are
// runtime-sized arrays.
crate::Expression::GlobalVariable(handle) => {
let index_id = self.get_index_constant(index_outer);
binding_array_index_id = Some(index_id);
global_handle = handle;
opt_last_member_index = Some(index);
}
_ => {
return Err(Error::Validation(
"array length expression: AccessIndex(AccessIndex(Global))",
))
}
},
crate::Expression::Access {
base: base_outer,
index: index_outer,
} => match self.ir_function.expressions[base_outer] {
// Similarly, an `AccessIndex` of an `Access` must be a
// binding array holding structs whose last members are
// runtime-sized arrays.
crate::Expression::GlobalVariable(handle) => {
let index_id = self.cached[index_outer];
binding_array_index_id = Some(index_id);
global_handle = handle;
opt_last_member_index = Some(index);
}
_ => {
return Err(Error::Validation(
"array length expression: AccessIndex(Access(Global))",
))
}
},
crate::Expression::GlobalVariable(handle) => {
// An outer `AccessIndex` applied directly to a
// `GlobalVariable`. Since binding arrays can only contain
// structs, this must be referring to the last member of a
// struct that is a runtime-sized array.
binding_array_index_id = None;
global_handle = handle;
opt_last_member_index = Some(index);
}
_ => {
return Err(Error::Validation(
"array length expression: AccessIndex(<unexpected>)",
))
}
}
}
crate::Expression::GlobalVariable(handle) => {
// A direct reference to a global variable. This must hold the
// runtime-sized array directly.
binding_array_index_id = None;
global_handle = handle;
opt_last_member_index = None;
}
_ => return Err(Error::Validation("array length expression case-4")),
};
// The verifier should have checked this, but make sure the inspection above
// agrees with the type about whether a binding array is involved.
//
// Eventually we do want to support `binding_array<array<T>>`. This check
// ensures that whoever relaxes the validator will get an error message from
// us, not just bogus SPIR-V.
let global = &self.ir_module.global_variables[global_handle];
match (
&self.ir_module.types[global.ty].inner,
binding_array_index_id,
) {
(&crate::TypeInner::BindingArray { .. }, Some(_)) => {}
(_, None) => {}
_ => {
return Err(Error::Validation(
"array length expression: bad binding array inference",
))
}
}
// SPIR-V allows runtime-sized arrays to appear only as the last member of a
// struct. Determine this member's index.
let gvar = self.writer.global_variables[global_handle].clone();
let global = &self.ir_module.global_variables[global_handle];
let needs_wrapper = global_needs_wrapper(self.ir_module, global);
let (last_member_index, gvar_id) = match (opt_last_member_index, needs_wrapper) {
(Some(index), false) => {
// At the Naga type level, the runtime-sized array appears as the
// final member of a struct, whose index is `index`. We didn't need to
// wrap this, since the Naga type meets SPIR-V's requirements already.
(index, gvar.access_id)
}
(None, true) => {
// At the Naga type level, the runtime-sized array does not appear
// within a struct. We wrapped this in an OpTypeStruct with nothing
// else in it, so the index is zero. OpArrayLength wants the pointer
// to the wrapper struct, so use `gvar.var_id`.
(0, gvar.var_id)
}
_ => {
return Err(Error::Validation(
"array length expression: bad SPIR-V wrapper struct inference",
));
}
};
let structure_id = match binding_array_index_id {
// We are indexing inside a binding array, generate the access op.
Some(index_id) => {
let element_type_id = match self.ir_module.types[global.ty].inner {
crate::TypeInner::BindingArray { base, size: _ } => {
let class = map_storage_class(global.space);
self.get_pointer_id(base, class)
}
_ => return Err(Error::Validation("array length expression case-5")),
};
let structure_id = self.gen_id();
block.body.push(Instruction::access_chain(
element_type_id,
structure_id,
gvar_id,
&[index_id],
));
structure_id
}
None => gvar_id,
};
let length_id = self.gen_id();
block.body.push(Instruction::array_length(
self.writer.get_uint_type_id(),
length_id,
structure_id,
last_member_index,
));
Ok(length_id)
}
/// Compute the length of a subscriptable value.
///
/// Given `sequence`, an expression referring to some indexable type, return
/// its length. The result may either be computed by SPIR-V instructions, or
/// known at shader translation time.
///
/// `sequence` may be a `Vector`, `Matrix`, or `Array`, a `Pointer` to any
/// of those, or a `ValuePointer`. An array may be fixed-size, dynamically
/// sized, or use a specializable constant as its length.
fn write_sequence_length(
&mut self,
sequence: Handle<crate::Expression>,
block: &mut Block,
) -> Result<MaybeKnown<u32>, Error> {
let sequence_ty = self.fun_info[sequence].ty.inner_with(&self.ir_module.types);
match sequence_ty.indexable_length(self.ir_module) {
Ok(crate::proc::IndexableLength::Known(known_length)) => {
Ok(MaybeKnown::Known(known_length))
}
Ok(crate::proc::IndexableLength::Dynamic) => {
let length_id = self.write_runtime_array_length(sequence, block)?;
Ok(MaybeKnown::Computed(length_id))
}
Err(err) => {
log::error!("Sequence length for {:?} failed: {}", sequence, err);
Err(Error::Validation("indexable length"))
}
}
}
/// Compute the maximum valid index of a subscriptable value.
///
/// Given `sequence`, an expression referring to some indexable type, return
/// its maximum valid index - one less than its length. The result may
/// either be computed, or known at shader translation time.
///
/// `sequence` may be a `Vector`, `Matrix`, or `Array`, a `Pointer` to any
/// of those, or a `ValuePointer`. An array may be fixed-size, dynamically
/// sized, or use a specializable constant as its length.
fn write_sequence_max_index(
&mut self,
sequence: Handle<crate::Expression>,
block: &mut Block,
) -> Result<MaybeKnown<u32>, Error> {
match self.write_sequence_length(sequence, block)? {
MaybeKnown::Known(known_length) => {
// We should have thrown out all attempts to subscript zero-length
// sequences during validation, so the following subtraction should never
// underflow.
assert!(known_length > 0);
// Compute the max index from the length now.
Ok(MaybeKnown::Known(known_length - 1))
}
MaybeKnown::Computed(length_id) => {
// Emit code to compute the max index from the length.
let const_one_id = self.get_index_constant(1);
let max_index_id = self.gen_id();
block.body.push(Instruction::binary(
spirv::Op::ISub,
self.writer.get_uint_type_id(),
max_index_id,
length_id,
const_one_id,
));
Ok(MaybeKnown::Computed(max_index_id))
}
}
}
/// Restrict an index to be in range for a vector, matrix, or array.
///
/// This is used to implement `BoundsCheckPolicy::Restrict`. An in-bounds
/// index is left unchanged. An out-of-bounds index is replaced with some
/// arbitrary in-bounds index. Note,this is not necessarily clamping; for
/// example, negative indices might be changed to refer to the last element
/// of the sequence, not the first, as clamping would do.
///
/// Either return the restricted index value, if known, or add instructions
/// to `block` to compute it, and return the id of the result. See the
/// documentation for `BoundsCheckResult` for details.
///
/// The `sequence` expression may be a `Vector`, `Matrix`, or `Array`, a
/// `Pointer` to any of those, or a `ValuePointer`. An array may be
/// fixed-size, dynamically sized, or use a specializable constant as its
/// length.
pub(super) fn write_restricted_index(
&mut self,
sequence: Handle<crate::Expression>,
index: GuardedIndex,
block: &mut Block,
) -> Result<BoundsCheckResult, Error> {
let max_index = self.write_sequence_max_index(sequence, block)?;
// If both are known, we can compute the index to be used
// right now.
if let (GuardedIndex::Known(index), MaybeKnown::Known(max_index)) = (index, max_index) {
let restricted = std::cmp::min(index, max_index);
return Ok(BoundsCheckResult::KnownInBounds(restricted));
}
let index_id = match index {
GuardedIndex::Known(value) => self.get_index_constant(value),
GuardedIndex::Expression(expr) => self.cached[expr],
};
let max_index_id = match max_index {
MaybeKnown::Known(value) => self.get_index_constant(value),
MaybeKnown::Computed(id) => id,
};
// One or the other of the index or length is dynamic, so emit code for
// BoundsCheckPolicy::Restrict.
let restricted_index_id = self.gen_id();
block.body.push(Instruction::ext_inst(
self.writer.gl450_ext_inst_id,
spirv::GLOp::UMin,
self.writer.get_uint_type_id(),
restricted_index_id,
&[index_id, max_index_id],
));
Ok(BoundsCheckResult::Computed(restricted_index_id))
}
/// Write an index bounds comparison to `block`, if needed.
///
/// This is used to implement [`BoundsCheckPolicy::ReadZeroSkipWrite`].
///
/// If we're able to determine statically that `index` is in bounds for
/// `sequence`, return `KnownInBounds(value)`, where `value` is the actual
/// value of the index. (In principle, one could know that the index is in
/// bounds without knowing its specific value, but in our simple-minded
/// situation, we always know it.)
///
/// If instead we must generate code to perform the comparison at run time,
/// return `Conditional(comparison_id)`, where `comparison_id` is an
/// instruction producing a boolean value that is true if `index` is in
/// bounds for `sequence`.
///
/// The `sequence` expression may be a `Vector`, `Matrix`, or `Array`, a
/// `Pointer` to any of those, or a `ValuePointer`. An array may be
/// fixed-size, dynamically sized, or use a specializable constant as its
/// length.
fn write_index_comparison(
&mut self,
sequence: Handle<crate::Expression>,
index: GuardedIndex,
block: &mut Block,
) -> Result<BoundsCheckResult, Error> {
let length = self.write_sequence_length(sequence, block)?;
// If both are known, we can decide whether the index is in
// bounds right now.
if let (GuardedIndex::Known(index), MaybeKnown::Known(length)) = (index, length) {
if index < length {
return Ok(BoundsCheckResult::KnownInBounds(index));
}
// In theory, when `index` is bad, we could return a new
// `KnownOutOfBounds` variant here. But it's simpler just to fall
// through and let the bounds check take place. The shader is broken
// anyway, so it doesn't make sense to invest in emitting the ideal
// code for it.
}
let index_id = match index {
GuardedIndex::Known(value) => self.get_index_constant(value),
GuardedIndex::Expression(expr) => self.cached[expr],
};
let length_id = match length {
MaybeKnown::Known(value) => self.get_index_constant(value),
MaybeKnown::Computed(id) => id,
};
// Compare the index against the length.
let condition_id = self.gen_id();
block.body.push(Instruction::binary(
spirv::Op::ULessThan,
self.writer.get_bool_type_id(),
condition_id,
index_id,
length_id,
));
// Indicate that we did generate the check.
Ok(BoundsCheckResult::Conditional {
condition_id,
index_id,
})
}
/// Emit a conditional load for `BoundsCheckPolicy::ReadZeroSkipWrite`.
///
/// Generate code to load a value of `result_type` if `condition` is true,
/// and generate a null value of that type if it is false. Call `emit_load`
/// to emit the instructions to perform the load. Return the id of the
/// merged value of the two branches.
pub(super) fn write_conditional_indexed_load<F>(
&mut self,
result_type: Word,
condition: Word,
block: &mut Block,
emit_load: F,
) -> Word
where
F: FnOnce(&mut IdGenerator, &mut Block) -> Word,
{
// For the out-of-bounds case, we produce a zero value.
let null_id = self.writer.get_constant_null(result_type);
let mut selection = Selection::start(block, result_type);
// As it turns out, we don't actually need a full 'if-then-else'
// structure for this: SPIR-V constants are declared up front, so the
// 'else' block would have no instructions. Instead we emit something
// like this:
//
// result = zero;
// if in_bounds {
// result = do the load;
// }
// use result;
// Continue only if the index was in bounds. Otherwise, branch to the
// merge block.
selection.if_true(self, condition, null_id);
// The in-bounds path. Perform the access and the load.
let loaded_value = emit_load(&mut self.writer.id_gen, selection.block());
selection.finish(self, loaded_value)
}
/// Emit code for bounds checks for an array, vector, or matrix access.
///
/// This tries to handle all the critical steps for bounds checks:
///
/// - First, select the appropriate bounds check policy for `base`,
/// depending on its address space.
///
/// - Next, analyze `index` to see if its value is known at
/// compile time, in which case we can decide statically whether
/// the index is in bounds.
///
/// - If the index's value is not known at compile time, emit code to:
///
/// - restrict its value (for [`BoundsCheckPolicy::Restrict`]), or
///
/// - check whether it's in bounds (for
/// [`BoundsCheckPolicy::ReadZeroSkipWrite`]).
///
/// Return a [`BoundsCheckResult`] indicating how the index should be
/// consumed. See that type's documentation for details.
pub(super) fn write_bounds_check(
&mut self,
base: Handle<crate::Expression>,
mut index: GuardedIndex,
block: &mut Block,
) -> Result<BoundsCheckResult, Error> {
// If the value of `index` is known at compile time, find it now.
index.try_resolve_to_constant(&self.ir_function.expressions, self.ir_module);
let policy = self.writer.bounds_check_policies.choose_policy(
base,
&self.ir_module.types,
self.fun_info,
);
Ok(match policy {
BoundsCheckPolicy::Restrict => self.write_restricted_index(base, index, block)?,
BoundsCheckPolicy::ReadZeroSkipWrite => {
self.write_index_comparison(base, index, block)?
}
BoundsCheckPolicy::Unchecked => match index {
GuardedIndex::Known(value) => BoundsCheckResult::KnownInBounds(value),
GuardedIndex::Expression(expr) => BoundsCheckResult::Computed(self.cached[expr]),
},
})
}
/// Emit code to subscript a vector by value with a computed index.
///
/// Return the id of the element value.
pub(super) fn write_vector_access(
&mut self,
expr_handle: Handle<crate::Expression>,
base: Handle<crate::Expression>,
index: Handle<crate::Expression>,
block: &mut Block,
) -> Result<Word, Error> {
let result_type_id = self.get_expression_type_id(&self.fun_info[expr_handle].ty);
let base_id = self.cached[base];
let index = GuardedIndex::Expression(index);
let result_id = match self.write_bounds_check(base, index, block)? {
BoundsCheckResult::KnownInBounds(known_index) => {
let result_id = self.gen_id();
block.body.push(Instruction::composite_extract(
result_type_id,
result_id,
base_id,
&[known_index],
));
result_id
}
BoundsCheckResult::Computed(computed_index_id) => {
let result_id = self.gen_id();
block.body.push(Instruction::vector_extract_dynamic(
result_type_id,
result_id,
base_id,
computed_index_id,
));
result_id
}
BoundsCheckResult::Conditional {
condition_id,
index_id,
} => {
// Run-time bounds checks were required. Emit
// conditional load.
self.write_conditional_indexed_load(
result_type_id,
condition_id,
block,
|id_gen, block| {
// The in-bounds path. Generate the access.
let element_id = id_gen.next();
block.body.push(Instruction::vector_extract_dynamic(
result_type_id,
element_id,
base_id,
index_id,
));
element_id
},
)
}
};
Ok(result_id)
}
}