webrender/tile_cache.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{ColorF, DebugFlags, PrimitiveFlags, QualitySettings, RasterSpace, ClipId};
use api::units::*;
use crate::clip::{ClipNodeKind, ClipLeafId, ClipNodeId, ClipTreeBuilder};
use crate::frame_builder::FrameBuilderConfig;
use crate::internal_types::{FastHashMap};
use crate::picture::{PrimitiveList, PictureCompositeMode, PicturePrimitive, SliceId};
use crate::picture::{Picture3DContext, TileCacheParams, TileOffset, PictureFlags};
use crate::prim_store::{PrimitiveInstance, PrimitiveStore, PictureIndex};
use crate::scene_building::SliceFlags;
use crate::scene_builder_thread::Interners;
use crate::spatial_tree::{SpatialNodeIndex, SceneSpatialTree};
use crate::util::VecHelper;
use std::mem;
/*
Types and functionality related to picture caching. In future, we'll
move more and more of the existing functionality out of picture.rs
and into here.
*/
// If the page would create too many slices (an arbitrary definition where
// it's assumed the GPU memory + compositing overhead would be too high)
// then create a single picture cache for the remaining content. This at
// least means that we can cache small content changes efficiently when
// scrolling isn't occurring. Scrolling regions will be handled reasonably
// efficiently by the dirty rect tracking (since it's likely that if the
// page has so many slices there isn't a single major scroll region).
const MAX_CACHE_SLICES: usize = 12;
struct SliceDescriptor {
prim_list: PrimitiveList,
scroll_root: SpatialNodeIndex,
shared_clip_node_id: ClipNodeId,
}
enum SliceKind {
Default {
secondary_slices: Vec<SliceDescriptor>,
},
Atomic {
prim_list: PrimitiveList,
},
}
impl SliceKind {
fn default() -> Self {
SliceKind::Default {
secondary_slices: Vec::new(),
}
}
}
struct PrimarySlice {
/// Whether this slice is atomic or has secondary slice(s)
kind: SliceKind,
/// Optional background color of this slice
background_color: Option<ColorF>,
/// Optional root clip for the iframe
iframe_clip: Option<ClipId>,
/// Information about how to draw and composite this slice
slice_flags: SliceFlags,
}
impl PrimarySlice {
fn new(
slice_flags: SliceFlags,
iframe_clip: Option<ClipId>,
background_color: Option<ColorF>,
) -> Self {
PrimarySlice {
kind: SliceKind::default(),
background_color,
iframe_clip,
slice_flags,
}
}
fn has_too_many_slices(&self) -> bool {
match self.kind {
SliceKind::Atomic { .. } => false,
SliceKind::Default { ref secondary_slices } => secondary_slices.len() > MAX_CACHE_SLICES,
}
}
fn merge(&mut self) {
self.slice_flags |= SliceFlags::IS_ATOMIC;
let old = mem::replace(
&mut self.kind,
SliceKind::Default { secondary_slices: Vec::new() },
);
self.kind = match old {
SliceKind::Default { mut secondary_slices } => {
let mut prim_list = PrimitiveList::empty();
for descriptor in secondary_slices.drain(..) {
prim_list.merge(descriptor.prim_list);
}
SliceKind::Atomic {
prim_list,
}
}
atomic => atomic,
}
}
}
/// Used during scene building to construct the list of pending tile caches.
pub struct TileCacheBuilder {
/// List of tile caches that have been created so far (last in the list is currently active).
primary_slices: Vec<PrimarySlice>,
/// Cache the previous scroll root search for a spatial node, since they are often the same.
prev_scroll_root_cache: (SpatialNodeIndex, SpatialNodeIndex),
/// Handle to the root reference frame
root_spatial_node_index: SpatialNodeIndex,
/// Debug flags to provide to our TileCacheInstances.
debug_flags: DebugFlags,
}
/// The output of a tile cache builder, containing all details needed to construct the
/// tile cache(s) for the next scene, and retain tiles from the previous frame when sent
/// send to the frame builder.
pub struct TileCacheConfig {
/// Mapping of slice id to the parameters needed to construct this tile cache.
pub tile_caches: FastHashMap<SliceId, TileCacheParams>,
/// Number of picture cache slices that were created (for profiler)
pub picture_cache_slice_count: usize,
}
impl TileCacheConfig {
pub fn new(picture_cache_slice_count: usize) -> Self {
TileCacheConfig {
tile_caches: FastHashMap::default(),
picture_cache_slice_count,
}
}
}
impl TileCacheBuilder {
/// Construct a new tile cache builder.
pub fn new(
root_spatial_node_index: SpatialNodeIndex,
background_color: Option<ColorF>,
debug_flags: DebugFlags,
) -> Self {
TileCacheBuilder {
primary_slices: vec![PrimarySlice::new(SliceFlags::empty(), None, background_color)],
prev_scroll_root_cache: (SpatialNodeIndex::INVALID, SpatialNodeIndex::INVALID),
root_spatial_node_index,
debug_flags,
}
}
pub fn make_current_slice_atomic(&mut self) {
self.primary_slices
.last_mut()
.unwrap()
.merge();
}
/// Returns true if the current slice has no primitives added yet
pub fn is_current_slice_empty(&self) -> bool {
match self.primary_slices.last() {
Some(slice) => {
match slice.kind {
SliceKind::Default { ref secondary_slices } => {
secondary_slices.is_empty()
}
SliceKind::Atomic { ref prim_list } => {
prim_list.is_empty()
}
}
}
None => {
true
}
}
}
/// Set a barrier that forces a new tile cache next time a prim is added.
pub fn add_tile_cache_barrier(
&mut self,
slice_flags: SliceFlags,
iframe_clip: Option<ClipId>,
) {
let new_slice = PrimarySlice::new(
slice_flags,
iframe_clip,
None,
);
self.primary_slices.push(new_slice);
}
/// Create a new tile cache for an existing prim_list
fn build_tile_cache(
&mut self,
prim_list: PrimitiveList,
spatial_tree: &SceneSpatialTree,
prim_instances: &[PrimitiveInstance],
clip_tree_builder: &ClipTreeBuilder,
) -> Option<SliceDescriptor> {
if prim_list.is_empty() {
return None;
}
// Iterate the clusters and determine which is the most commonly occurring
// scroll root. This is a reasonable heuristic to decide which spatial node
// should be considered the scroll root of this tile cache, in order to
// minimize the invalidations that occur due to scrolling. It's often the
// case that a blend container will have only a single scroll root.
let mut scroll_root_occurrences = FastHashMap::default();
for cluster in &prim_list.clusters {
// If we encounter a cluster which has an unknown spatial node,
// we don't include that in the set of spatial nodes that we
// are trying to find scroll roots for. Later on, in finalize_picture,
// the cluster spatial node will be updated to the selected scroll root.
if cluster.spatial_node_index == SpatialNodeIndex::UNKNOWN {
continue;
}
let scroll_root = find_scroll_root(
cluster.spatial_node_index,
&mut self.prev_scroll_root_cache,
spatial_tree,
true,
);
*scroll_root_occurrences.entry(scroll_root).or_insert(0) += 1;
}
// We can't just select the most commonly occurring scroll root in this
// primitive list. If that is a nested scroll root, there may be
// primitives in the list that are outside that scroll root, which
// can cause panics when calculating relative transforms. To ensure
// this doesn't happen, only retain scroll root candidates that are
// also ancestors of every other scroll root candidate.
let scroll_roots: Vec<SpatialNodeIndex> = scroll_root_occurrences
.keys()
.cloned()
.collect();
scroll_root_occurrences.retain(|parent_spatial_node_index, _| {
scroll_roots.iter().all(|child_spatial_node_index| {
parent_spatial_node_index == child_spatial_node_index ||
spatial_tree.is_ancestor(
*parent_spatial_node_index,
*child_spatial_node_index,
)
})
});
// Select the scroll root by finding the most commonly occurring one
let scroll_root = scroll_root_occurrences
.iter()
.max_by_key(|entry | entry.1)
.map(|(spatial_node_index, _)| *spatial_node_index)
.unwrap_or(self.root_spatial_node_index);
// Work out which clips are shared by all prim instances and can thus be applied
// at the tile cache level. In future, we aim to remove this limitation by knowing
// during initial scene build which are the relevant compositor clips, but for now
// this is unlikely to be a significant cost.
let mut shared_clip_node_id = None;
for cluster in &prim_list.clusters {
for prim_instance in &prim_instances[cluster.prim_range()] {
let leaf = clip_tree_builder.get_leaf(prim_instance.clip_leaf_id);
// TODO(gw): Need to cache last clip-node id here?
shared_clip_node_id = match shared_clip_node_id {
Some(current) => {
Some(clip_tree_builder.find_lowest_common_ancestor(current, leaf.node_id))
}
None => {
Some(leaf.node_id)
}
}
}
}
let shared_clip_node_id = shared_clip_node_id.expect("bug: no shared clip root");
Some(SliceDescriptor {
scroll_root,
shared_clip_node_id,
prim_list,
})
}
/// Add a primitive, either to the current tile cache, or a new one, depending on various conditions.
pub fn add_prim(
&mut self,
prim_instance: PrimitiveInstance,
prim_rect: LayoutRect,
spatial_node_index: SpatialNodeIndex,
prim_flags: PrimitiveFlags,
spatial_tree: &SceneSpatialTree,
interners: &Interners,
quality_settings: &QualitySettings,
prim_instances: &mut Vec<PrimitiveInstance>,
clip_tree_builder: &ClipTreeBuilder,
) {
let primary_slice = self.primary_slices.last_mut().unwrap();
match primary_slice.kind {
SliceKind::Atomic { ref mut prim_list } => {
prim_list.add_prim(
prim_instance,
prim_rect,
spatial_node_index,
prim_flags,
prim_instances,
clip_tree_builder,
);
}
SliceKind::Default { ref mut secondary_slices } => {
assert_ne!(spatial_node_index, SpatialNodeIndex::UNKNOWN);
// Check if we want to create a new slice based on the current / next scroll root
let scroll_root = find_scroll_root(
spatial_node_index,
&mut self.prev_scroll_root_cache,
spatial_tree,
// Allow sticky frames as scroll roots, unless our quality settings prefer
// subpixel AA over performance.
!quality_settings.force_subpixel_aa_where_possible,
);
let current_scroll_root = secondary_slices
.last()
.map(|p| p.scroll_root);
let mut want_new_tile_cache = secondary_slices.is_empty();
if let Some(current_scroll_root) = current_scroll_root {
want_new_tile_cache |= match (current_scroll_root, scroll_root) {
(_, _) if current_scroll_root == self.root_spatial_node_index && scroll_root == self.root_spatial_node_index => {
// Both current slice and this cluster are fixed position, no need to cut
false
}
(_, _) if current_scroll_root == self.root_spatial_node_index => {
// A real scroll root is being established, so create a cache slice
true
}
(_, _) if scroll_root == self.root_spatial_node_index => {
// If quality settings force subpixel AA over performance, skip creating
// a slice for the fixed position element(s) here.
if quality_settings.force_subpixel_aa_where_possible {
false
} else {
// A fixed position slice is encountered within a scroll root. Only create
// a slice in this case if all the clips referenced by this cluster are also
// fixed position. There's no real point in creating slices for these cases,
// since we'll have to rasterize them as the scrolling clip moves anyway. It
// also allows us to retain subpixel AA in these cases. For these types of
// slices, the intra-slice dirty rect handling typically works quite well
// (a common case is parallax scrolling effects).
let mut create_slice = true;
let leaf = clip_tree_builder.get_leaf(prim_instance.clip_leaf_id);
let mut current_node_id = leaf.node_id;
while current_node_id != ClipNodeId::NONE {
let node = clip_tree_builder.get_node(current_node_id);
let clip_node_data = &interners.clip[node.handle];
let spatial_root = find_scroll_root(
clip_node_data.key.spatial_node_index,
&mut self.prev_scroll_root_cache,
spatial_tree,
true,
);
if spatial_root != self.root_spatial_node_index {
create_slice = false;
break;
}
current_node_id = node.parent;
}
create_slice
}
}
(curr_scroll_root, scroll_root) => {
// Two scrolling roots - only need a new slice if they differ
curr_scroll_root != scroll_root
}
};
// Update the list of clips that apply to this primitive instance, to track which are the
// shared clips for this tile cache that can be applied during compositing.
let shared_clip_node_id = find_shared_clip_root(
current_scroll_root,
prim_instance.clip_leaf_id,
spatial_tree,
clip_tree_builder,
interners,
);
let current_shared_clip_node_id = secondary_slices.last().unwrap().shared_clip_node_id;
// If the shared clips are not compatible, create a new slice.
want_new_tile_cache |= shared_clip_node_id != current_shared_clip_node_id;
}
if want_new_tile_cache {
let shared_clip_node_id = find_shared_clip_root(
scroll_root,
prim_instance.clip_leaf_id,
spatial_tree,
clip_tree_builder,
interners,
);
secondary_slices.push(SliceDescriptor {
prim_list: PrimitiveList::empty(),
scroll_root,
shared_clip_node_id,
});
}
secondary_slices
.last_mut()
.unwrap()
.prim_list
.add_prim(
prim_instance,
prim_rect,
spatial_node_index,
prim_flags,
prim_instances,
clip_tree_builder,
);
}
}
}
/// Consume this object and build the list of tile cache primitives
pub fn build(
mut self,
config: &FrameBuilderConfig,
prim_store: &mut PrimitiveStore,
spatial_tree: &SceneSpatialTree,
prim_instances: &[PrimitiveInstance],
clip_tree_builder: &mut ClipTreeBuilder,
) -> (TileCacheConfig, Vec<PictureIndex>) {
let mut result = TileCacheConfig::new(self.primary_slices.len());
let mut tile_cache_pictures = Vec::new();
let primary_slices = std::mem::replace(&mut self.primary_slices, Vec::new());
for mut primary_slice in primary_slices {
if primary_slice.has_too_many_slices() {
primary_slice.merge();
}
match primary_slice.kind {
SliceKind::Atomic { prim_list } => {
if let Some(descriptor) = self.build_tile_cache(
prim_list,
spatial_tree,
prim_instances,
clip_tree_builder,
) {
create_tile_cache(
self.debug_flags,
primary_slice.slice_flags,
descriptor.scroll_root,
primary_slice.iframe_clip,
descriptor.prim_list,
primary_slice.background_color,
descriptor.shared_clip_node_id,
prim_store,
config,
&mut result.tile_caches,
&mut tile_cache_pictures,
clip_tree_builder,
);
}
}
SliceKind::Default { secondary_slices } => {
for descriptor in secondary_slices {
create_tile_cache(
self.debug_flags,
primary_slice.slice_flags,
descriptor.scroll_root,
primary_slice.iframe_clip,
descriptor.prim_list,
primary_slice.background_color,
descriptor.shared_clip_node_id,
prim_store,
config,
&mut result.tile_caches,
&mut tile_cache_pictures,
clip_tree_builder,
);
}
}
}
}
(result, tile_cache_pictures)
}
}
/// Find the scroll root for a given spatial node
fn find_scroll_root(
spatial_node_index: SpatialNodeIndex,
prev_scroll_root_cache: &mut (SpatialNodeIndex, SpatialNodeIndex),
spatial_tree: &SceneSpatialTree,
allow_sticky_frames: bool,
) -> SpatialNodeIndex {
if prev_scroll_root_cache.0 == spatial_node_index {
return prev_scroll_root_cache.1;
}
let scroll_root = spatial_tree.find_scroll_root(spatial_node_index, allow_sticky_frames);
*prev_scroll_root_cache = (spatial_node_index, scroll_root);
scroll_root
}
fn find_shared_clip_root(
scroll_root: SpatialNodeIndex,
clip_leaf_id: ClipLeafId,
spatial_tree: &SceneSpatialTree,
clip_tree_builder: &ClipTreeBuilder,
interners: &Interners,
) -> ClipNodeId {
let leaf = clip_tree_builder.get_leaf(clip_leaf_id);
let mut current_node_id = leaf.node_id;
while current_node_id != ClipNodeId::NONE {
let node = clip_tree_builder.get_node(current_node_id);
let clip_node_data = &interners.clip[node.handle];
if let ClipNodeKind::Rectangle = clip_node_data.key.kind.node_kind() {
let is_ancestor = spatial_tree.is_ancestor(
clip_node_data.key.spatial_node_index,
scroll_root,
);
let has_complex_clips = clip_tree_builder.clip_node_has_complex_clips(
current_node_id,
interners,
);
if is_ancestor && !has_complex_clips {
break;
}
}
current_node_id = node.parent;
}
current_node_id
}
/// Given a PrimitiveList and scroll root, construct a tile cache primitive instance
/// that wraps the primitive list.
fn create_tile_cache(
debug_flags: DebugFlags,
slice_flags: SliceFlags,
scroll_root: SpatialNodeIndex,
iframe_clip: Option<ClipId>,
prim_list: PrimitiveList,
background_color: Option<ColorF>,
shared_clip_node_id: ClipNodeId,
prim_store: &mut PrimitiveStore,
frame_builder_config: &FrameBuilderConfig,
tile_caches: &mut FastHashMap<SliceId, TileCacheParams>,
tile_cache_pictures: &mut Vec<PictureIndex>,
clip_tree_builder: &mut ClipTreeBuilder,
) {
// Accumulate any clip instances from the iframe_clip into the shared clips
// that will be applied by this tile cache during compositing.
let mut additional_clips = Vec::new();
if let Some(clip_id) = iframe_clip {
additional_clips.push(clip_id);
}
let shared_clip_leaf_id = Some(clip_tree_builder.build_for_tile_cache(
shared_clip_node_id,
&additional_clips,
));
// Build a clip-chain for the tile cache, that contains any of the shared clips
// we will apply when drawing the tiles. In all cases provided by Gecko, these
// are rectangle clips with a scale/offset transform only, and get handled as
// a simple local clip rect in the vertex shader. However, this should in theory
// also work with any complex clips, such as rounded rects and image masks, by
// producing a clip mask that is applied to the picture cache tiles.
let slice = tile_cache_pictures.len();
let background_color = if slice == 0 {
background_color
} else {
None
};
let slice_id = SliceId::new(slice);
// Store some information about the picture cache slice. This is used when we swap the
// new scene into the frame builder to either reuse existing slices, or create new ones.
tile_caches.insert(slice_id, TileCacheParams {
debug_flags,
slice,
slice_flags,
spatial_node_index: scroll_root,
background_color,
shared_clip_node_id,
shared_clip_leaf_id,
virtual_surface_size: frame_builder_config.compositor_kind.get_virtual_surface_size(),
image_surface_count: prim_list.image_surface_count,
yuv_image_surface_count: prim_list.yuv_image_surface_count,
});
let pic_index = prim_store.pictures.alloc().init(PicturePrimitive::new_image(
Some(PictureCompositeMode::TileCache { slice_id }),
Picture3DContext::Out,
PrimitiveFlags::IS_BACKFACE_VISIBLE,
prim_list,
scroll_root,
RasterSpace::Screen,
PictureFlags::empty(),
));
tile_cache_pictures.push(PictureIndex(pic_index));
}
/// Debug information about a set of picture cache slices, exposed via RenderResults
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PictureCacheDebugInfo {
pub slices: FastHashMap<usize, SliceDebugInfo>,
}
impl PictureCacheDebugInfo {
pub fn new() -> Self {
PictureCacheDebugInfo {
slices: FastHashMap::default(),
}
}
/// Convenience method to retrieve a given slice. Deliberately panics
/// if the slice isn't present.
pub fn slice(&self, slice: usize) -> &SliceDebugInfo {
&self.slices[&slice]
}
}
impl Default for PictureCacheDebugInfo {
fn default() -> PictureCacheDebugInfo {
PictureCacheDebugInfo::new()
}
}
/// Debug information about a set of picture cache tiles, exposed via RenderResults
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SliceDebugInfo {
pub tiles: FastHashMap<TileOffset, TileDebugInfo>,
}
impl SliceDebugInfo {
pub fn new() -> Self {
SliceDebugInfo {
tiles: FastHashMap::default(),
}
}
/// Convenience method to retrieve a given tile. Deliberately panics
/// if the tile isn't present.
pub fn tile(&self, x: i32, y: i32) -> &TileDebugInfo {
&self.tiles[&TileOffset::new(x, y)]
}
}
/// Debug information about a tile that was dirty and was rasterized
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct DirtyTileDebugInfo {
pub local_valid_rect: PictureRect,
pub local_dirty_rect: PictureRect,
}
/// Debug information about the state of a tile
#[derive(Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TileDebugInfo {
/// Tile was occluded by a tile in front of it
Occluded,
/// Tile was culled (not visible in current display port)
Culled,
/// Tile was valid (no rasterization was done) and visible
Valid,
/// Tile was dirty, and was updated
Dirty(DirtyTileDebugInfo),
}
impl TileDebugInfo {
pub fn is_occluded(&self) -> bool {
match self {
TileDebugInfo::Occluded => true,
TileDebugInfo::Culled |
TileDebugInfo::Valid |
TileDebugInfo::Dirty(..) => false,
}
}
pub fn is_valid(&self) -> bool {
match self {
TileDebugInfo::Valid => true,
TileDebugInfo::Culled |
TileDebugInfo::Occluded |
TileDebugInfo::Dirty(..) => false,
}
}
pub fn is_culled(&self) -> bool {
match self {
TileDebugInfo::Culled => true,
TileDebugInfo::Valid |
TileDebugInfo::Occluded |
TileDebugInfo::Dirty(..) => false,
}
}
pub fn as_dirty(&self) -> &DirtyTileDebugInfo {
match self {
TileDebugInfo::Occluded |
TileDebugInfo::Culled |
TileDebugInfo::Valid => {
panic!("not a dirty tile!");
}
TileDebugInfo::Dirty(ref info) => {
info
}
}
}
}