1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! A piecewise linear function, following CSS linear easing
use crate::values::computed::Percentage;
use core::slice::Iter;
/// draft as in https://github.com/w3c/csswg-drafts/pull/6533.
use euclid::approxeq::ApproxEq;
use itertools::Itertools;
use std::fmt::{self, Write};
use style_traits::{CssWriter, ToCss};
use crate::values::CSSFloat;
type ValueType = CSSFloat;
/// a single entry in a piecewise linear function.
#[allow(missing_docs)]
#[derive(
Clone,
Copy,
Debug,
MallocSizeOf,
PartialEq,
SpecifiedValueInfo,
ToResolvedValue,
ToShmem,
Serialize,
Deserialize,
)]
#[repr(C)]
pub struct PiecewiseLinearFunctionEntry {
pub x: ValueType,
pub y: ValueType,
}
impl ToCss for PiecewiseLinearFunctionEntry {
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
where
W: fmt::Write,
{
self.y.to_css(dest)?;
dest.write_char(' ')?;
Percentage(self.x).to_css(dest)
}
}
/// Representation of a piecewise linear function, a series of linear functions.
#[derive(
Default,
Clone,
Debug,
MallocSizeOf,
PartialEq,
SpecifiedValueInfo,
ToResolvedValue,
ToCss,
ToShmem,
Serialize,
Deserialize,
)]
#[repr(C)]
#[css(comma)]
pub struct PiecewiseLinearFunction {
#[css(iterable)]
#[ignore_malloc_size_of = "Arc"]
#[shmem(field_bound)]
entries: crate::ArcSlice<PiecewiseLinearFunctionEntry>,
}
/// Parameters to define one linear stop.
pub type PiecewiseLinearFunctionBuildParameters = (CSSFloat, Option<CSSFloat>);
impl PiecewiseLinearFunction {
/// Interpolate y value given x and two points. The linear function will be rooted at the asymptote.
fn interpolate(
x: ValueType,
prev: PiecewiseLinearFunctionEntry,
next: PiecewiseLinearFunctionEntry,
asymptote: &PiecewiseLinearFunctionEntry,
) -> ValueType {
// Short circuit if the x is on prev or next.
// `next` point is preferred as per spec.
if x.approx_eq(&next.x) {
return next.y;
}
if x.approx_eq(&prev.x) {
return prev.y;
}
// Avoid division by zero.
if prev.x.approx_eq(&next.x) {
return next.y;
}
let slope = (next.y - prev.y) / (next.x - prev.x);
return slope * (x - asymptote.x) + asymptote.y;
}
/// Get the y value of the piecewise linear function given the x value, as per
/// https://drafts.csswg.org/css-easing-2/#linear-easing-function-output
pub fn at(&self, x: ValueType) -> ValueType {
if !x.is_finite() {
return if x > 0.0 { 1.0 } else { 0.0 };
}
if self.entries.is_empty() {
// Implied y = x, as per spec.
return x;
}
if self.entries.len() == 1 {
// Implied y = <constant>, as per spec.
return self.entries[0].y;
}
// Spec dictates the valid input domain is [0, 1]. Outside of this range, the output
// should be calculated as if the slopes at start and end extend to infinity. However, if the
// start/end have two points of the same position, the line should extend along the x-axis.
// The function doesn't have to cover the input domain, in which case the extension logic
// applies even if the input falls in the input domain.
// Also, we're guaranteed to have at least two elements at this point.
if x < self.entries[0].x {
return Self::interpolate(x, self.entries[0], self.entries[1], &self.entries[0]);
}
let mut rev_iter = self.entries.iter().rev();
let last = rev_iter.next().unwrap();
if x >= last.x {
let second_last = rev_iter.next().unwrap();
return Self::interpolate(x, *second_last, *last, last);
}
// Now we know the input sits within the domain explicitly defined by our function.
for (point_b, point_a) in self.entries.iter().rev().tuple_windows() {
// Need to let point A be the _last_ point where its x is less than the input x,
// hence the reverse traversal.
if x < point_a.x {
continue;
}
return Self::interpolate(x, *point_a, *point_b, point_a);
}
unreachable!("Input is supposed to be within the entries' min & max!");
}
#[allow(missing_docs)]
pub fn iter(&self) -> Iter<PiecewiseLinearFunctionEntry> {
self.entries.iter()
}
}
/// Entry of a piecewise linear function while building, where the calculation of x value can be deferred.
#[derive(Clone, Copy)]
struct BuildEntry {
x: Option<ValueType>,
y: ValueType,
}
/// Builder object to generate a linear function.
#[derive(Default)]
pub struct PiecewiseLinearFunctionBuilder {
largest_x: Option<ValueType>,
smallest_x: Option<ValueType>,
entries: Vec<BuildEntry>,
}
impl PiecewiseLinearFunctionBuilder {
/// Create a builder for a known amount of linear stop entries.
pub fn with_capacity(len: usize) -> Self {
PiecewiseLinearFunctionBuilder {
largest_x: None,
smallest_x: None,
entries: Vec::with_capacity(len),
}
}
fn create_entry(&mut self, y: ValueType, x: Option<ValueType>) {
let x = match x {
Some(x) if x.is_finite() => x,
_ if self.entries.is_empty() => 0.0, // First x is 0 if not specified (Or not finite)
_ => {
self.entries.push(BuildEntry { x: None, y });
return;
},
};
// Specified x value cannot regress, as per spec.
let x = match self.largest_x {
Some(largest_x) => x.max(largest_x),
None => x,
};
self.largest_x = Some(x);
// Whatever we see the earliest is the smallest value.
if self.smallest_x.is_none() {
self.smallest_x = Some(x);
}
self.entries.push(BuildEntry { x: Some(x), y });
}
/// Add a new entry into the piecewise linear function with specified y value.
/// If the start x value is given, that is where the x value will be. Otherwise,
/// the x value is calculated later. If the end x value is specified, a flat segment
/// is generated. If start x value is not specified but end x is, it is treated as
/// start x.
pub fn push(&mut self, y: CSSFloat, x_start: Option<CSSFloat>) {
self.create_entry(y, x_start)
}
/// Finish building the piecewise linear function by resolving all undefined x values,
/// then return the result.
pub fn build(mut self) -> PiecewiseLinearFunction {
if self.entries.is_empty() {
return PiecewiseLinearFunction::default();
}
if self.entries.len() == 1 {
// Don't bother resolving anything.
return PiecewiseLinearFunction {
entries: crate::ArcSlice::from_iter(std::iter::once(
PiecewiseLinearFunctionEntry {
x: 0.,
y: self.entries[0].y,
},
)),
};
}
// Guaranteed at least two elements.
// Start element's x value should've been assigned when the first value was pushed.
debug_assert!(
self.entries[0].x.is_some(),
"Expected an entry with x defined!"
);
// Spec asserts that if the last entry does not have an x value, it is assigned the largest seen x value.
self.entries
.last_mut()
.unwrap()
.x
.get_or_insert(self.largest_x.filter(|x| x > &1.0).unwrap_or(1.0));
// Now we have at least two elements with x values, with start & end x values guaranteed.
let mut result = Vec::with_capacity(self.entries.len());
result.push(PiecewiseLinearFunctionEntry {
x: self.entries[0].x.unwrap(),
y: self.entries[0].y,
});
for (i, e) in self.entries.iter().enumerate().skip(1) {
if e.x.is_none() {
// Need to calculate x values by first finding an entry with the first
// defined x value (Guaranteed to exist as the list end has it defined).
continue;
}
// x is defined for this element.
let divisor = i - result.len() + 1;
// Any element(s) with undefined x to assign?
if divisor != 1 {
// Have at least one element in result at all times.
let start_x = result.last().unwrap().x;
let increment = (e.x.unwrap() - start_x) / divisor as ValueType;
// Grab every element with undefined x to this point, which starts at the end of the result
// array, and ending right before the current index. Then, assigned the evenly divided
// x values.
result.extend(
self.entries[result.len()..i]
.iter()
.enumerate()
.map(|(j, e)| {
debug_assert!(e.x.is_none(), "Expected an entry with x undefined!");
PiecewiseLinearFunctionEntry {
x: increment * (j + 1) as ValueType + start_x,
y: e.y,
}
}),
);
}
result.push(PiecewiseLinearFunctionEntry {
x: e.x.unwrap(),
y: e.y,
});
}
debug_assert_eq!(
result.len(),
self.entries.len(),
"Should've mapped one-to-one!"
);
PiecewiseLinearFunction {
entries: crate::ArcSlice::from_iter(result.into_iter()),
}
}
}