1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{ColorF, FontInstanceFlags, GlyphInstance, RasterSpace, Shadow};
use api::units::{LayoutToWorldTransform, LayoutVector2D, RasterPixelScale, DevicePixelScale};
use crate::scene_building::{CreateShadow, IsVisible};
use crate::frame_builder::FrameBuildingState;
use glyph_rasterizer::{FontInstance, FontTransform, GlyphKey, FONT_SIZE_LIMIT};
use crate::gpu_cache::GpuCache;
use crate::intern;
use crate::internal_types::LayoutPrimitiveInfo;
use crate::picture::SurfaceInfo;
use crate::prim_store::{PrimitiveOpacity, PrimitiveScratchBuffer};
use crate::prim_store::{PrimitiveStore, PrimKeyCommonData, PrimTemplateCommonData};
use crate::renderer::{MAX_VERTEX_TEXTURE_WIDTH};
use crate::resource_cache::{ResourceCache};
use crate::util::{MatrixHelpers};
use crate::prim_store::{InternablePrimitive, PrimitiveInstanceKind};
use crate::spatial_tree::{SpatialTree, SpatialNodeIndex};
use crate::space::SpaceSnapper;
use crate::util::PrimaryArc;
use std::ops;
use std::sync::Arc;
use super::{storage, VectorKey};
/// A run of glyphs, with associated font information.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Clone, Eq, MallocSizeOf, PartialEq, Hash)]
pub struct TextRunKey {
pub common: PrimKeyCommonData,
pub font: FontInstance,
pub glyphs: PrimaryArc<Vec<GlyphInstance>>,
pub shadow: bool,
pub requested_raster_space: RasterSpace,
pub reference_frame_offset: VectorKey,
}
impl TextRunKey {
pub fn new(
info: &LayoutPrimitiveInfo,
text_run: TextRun,
) -> Self {
TextRunKey {
common: info.into(),
font: text_run.font,
glyphs: PrimaryArc(text_run.glyphs),
shadow: text_run.shadow,
requested_raster_space: text_run.requested_raster_space,
reference_frame_offset: text_run.reference_frame_offset.into(),
}
}
}
impl intern::InternDebug for TextRunKey {}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct TextRunTemplate {
pub common: PrimTemplateCommonData,
pub font: FontInstance,
#[ignore_malloc_size_of = "Measured via PrimaryArc"]
pub glyphs: Arc<Vec<GlyphInstance>>,
}
impl ops::Deref for TextRunTemplate {
type Target = PrimTemplateCommonData;
fn deref(&self) -> &Self::Target {
&self.common
}
}
impl ops::DerefMut for TextRunTemplate {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.common
}
}
impl From<TextRunKey> for TextRunTemplate {
fn from(item: TextRunKey) -> Self {
let common = PrimTemplateCommonData::with_key_common(item.common);
TextRunTemplate {
common,
font: item.font,
glyphs: item.glyphs.0,
}
}
}
impl TextRunTemplate {
/// Update the GPU cache for a given primitive template. This may be called multiple
/// times per frame, by each primitive reference that refers to this interned
/// template. The initial request call to the GPU cache ensures that work is only
/// done if the cache entry is invalid (due to first use or eviction).
pub fn update(
&mut self,
frame_state: &mut FrameBuildingState,
) {
self.write_prim_gpu_blocks(frame_state);
self.opacity = PrimitiveOpacity::translucent();
}
fn write_prim_gpu_blocks(
&mut self,
frame_state: &mut FrameBuildingState,
) {
// corresponds to `fetch_glyph` in the shaders
if let Some(mut request) = frame_state.gpu_cache.request(&mut self.common.gpu_cache_handle) {
request.push(ColorF::from(self.font.color).premultiplied());
let mut gpu_block = [0.0; 4];
for (i, src) in self.glyphs.iter().enumerate() {
// Two glyphs are packed per GPU block.
if (i & 1) == 0 {
gpu_block[0] = src.point.x;
gpu_block[1] = src.point.y;
} else {
gpu_block[2] = src.point.x;
gpu_block[3] = src.point.y;
request.push(gpu_block);
}
}
// Ensure the last block is added in the case
// of an odd number of glyphs.
if (self.glyphs.len() & 1) != 0 {
request.push(gpu_block);
}
assert!(request.current_used_block_num() <= MAX_VERTEX_TEXTURE_WIDTH);
}
}
}
pub type TextRunDataHandle = intern::Handle<TextRun>;
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextRun {
pub font: FontInstance,
#[ignore_malloc_size_of = "Measured via PrimaryArc"]
pub glyphs: Arc<Vec<GlyphInstance>>,
pub shadow: bool,
pub requested_raster_space: RasterSpace,
pub reference_frame_offset: LayoutVector2D,
}
impl intern::Internable for TextRun {
type Key = TextRunKey;
type StoreData = TextRunTemplate;
type InternData = ();
const PROFILE_COUNTER: usize = crate::profiler::INTERNED_TEXT_RUNS;
}
impl InternablePrimitive for TextRun {
fn into_key(
self,
info: &LayoutPrimitiveInfo,
) -> TextRunKey {
TextRunKey::new(
info,
self,
)
}
fn make_instance_kind(
key: TextRunKey,
data_handle: TextRunDataHandle,
prim_store: &mut PrimitiveStore,
) -> PrimitiveInstanceKind {
let reference_frame_offset = key.reference_frame_offset.into();
let run_index = prim_store.text_runs.push(TextRunPrimitive {
used_font: key.font.clone(),
glyph_keys_range: storage::Range::empty(),
reference_frame_relative_offset: reference_frame_offset,
snapped_reference_frame_relative_offset: reference_frame_offset,
shadow: key.shadow,
raster_scale: 1.0,
requested_raster_space: key.requested_raster_space,
});
PrimitiveInstanceKind::TextRun{ data_handle, run_index }
}
}
impl CreateShadow for TextRun {
fn create_shadow(
&self,
shadow: &Shadow,
blur_is_noop: bool,
current_raster_space: RasterSpace,
) -> Self {
let mut font = FontInstance {
color: shadow.color.into(),
..self.font.clone()
};
if shadow.blur_radius > 0.0 {
font.disable_subpixel_aa();
}
let requested_raster_space = if blur_is_noop {
current_raster_space
} else {
RasterSpace::Local(1.0)
};
TextRun {
font,
glyphs: self.glyphs.clone(),
shadow: true,
requested_raster_space,
reference_frame_offset: self.reference_frame_offset,
}
}
}
impl IsVisible for TextRun {
fn is_visible(&self) -> bool {
self.font.color.a > 0
}
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct TextRunPrimitive {
pub used_font: FontInstance,
pub glyph_keys_range: storage::Range<GlyphKey>,
pub reference_frame_relative_offset: LayoutVector2D,
pub snapped_reference_frame_relative_offset: LayoutVector2D,
pub shadow: bool,
pub raster_scale: f32,
pub requested_raster_space: RasterSpace,
}
impl TextRunPrimitive {
pub fn update_font_instance(
&mut self,
specified_font: &FontInstance,
surface: &SurfaceInfo,
spatial_node_index: SpatialNodeIndex,
transform: &LayoutToWorldTransform,
allow_subpixel: bool,
raster_space: RasterSpace,
spatial_tree: &SpatialTree,
) -> bool {
// If local raster space is specified, include that in the scale
// of the glyphs that get rasterized.
// TODO(gw): Once we support proper local space raster modes, this
// will implicitly be part of the device pixel ratio for
// the (cached) local space surface, and so this code
// will no longer be required.
let raster_scale = raster_space.local_scale().unwrap_or(1.0).max(0.001);
let dps = surface.device_pixel_scale.0;
let font_size = specified_font.size.to_f32_px();
// Small floating point error can accumulate in the raster * device_pixel scale.
// Round that to the nearest 100th of a scale factor to remove this error while
// still allowing reasonably accurate scale factors when a pinch-zoom is stopped
// at a fractional amount.
let quantized_scale = (dps * raster_scale * 100.0).round() / 100.0;
let mut device_font_size = font_size * quantized_scale;
// Check there is a valid transform that doesn't exceed the font size limit.
// Ensure the font is supposed to be rasterized in screen-space.
// Only support transforms that can be coerced to simple 2D transforms.
// Add texture padding to the rasterized glyph buffer when one anticipates
// the glyph will need to be scaled when rendered.
let (use_subpixel_aa, transform_glyphs, texture_padding, oversized) = if raster_space != RasterSpace::Screen ||
transform.has_perspective_component() || !transform.has_2d_inverse()
{
(false, false, true, device_font_size > FONT_SIZE_LIMIT)
} else if transform.exceeds_2d_scale((FONT_SIZE_LIMIT / device_font_size) as f64) {
(false, false, true, true)
} else {
(true, !transform.is_simple_2d_translation(), false, false)
};
let font_transform = if transform_glyphs {
// Get the font transform matrix (skew / scale) from the complete transform.
// Fold in the device pixel scale.
self.raster_scale = 1.0;
FontTransform::from(transform)
} else {
if oversized {
// Font sizes larger than the limit need to be scaled, thus can't use subpixels.
// In this case we adjust the font size and raster space to ensure
// we rasterize at the limit, to minimize the amount of scaling.
let limited_raster_scale = FONT_SIZE_LIMIT / (font_size * dps);
device_font_size = FONT_SIZE_LIMIT;
// Record the raster space the text needs to be snapped in. The original raster
// scale would have been too big.
self.raster_scale = limited_raster_scale;
} else {
// Record the raster space the text needs to be snapped in. We may have changed
// from RasterSpace::Screen due to a transform with perspective or without a 2d
// inverse, or it may have been RasterSpace::Local all along.
self.raster_scale = raster_scale;
}
// Rasterize the glyph without any transform
FontTransform::identity()
};
// TODO(aosmond): Snapping really ought to happen during scene building
// as much as possible. This will allow clips to be already adjusted
// based on the snapping requirements of the primitive. This may affect
// complex clips that create a different task, and when we rasterize
// glyphs without the transform (because the shader doesn't have the
// snap offsets to adjust its clip). These rects are fairly conservative
// to begin with and do not appear to be causing significant issues at
// this time.
self.snapped_reference_frame_relative_offset = if transform_glyphs {
// Don't touch the reference frame relative offset. We'll let the
// shader do the snapping in device pixels.
self.reference_frame_relative_offset
} else {
// TODO(dp): The SurfaceInfo struct needs to be updated to use RasterPixelScale
// rather than DevicePixelScale, however this is a large chunk of
// work that will be done as a follow up patch.
let raster_pixel_scale = RasterPixelScale::new(surface.device_pixel_scale.0);
// There may be an animation, so snap the reference frame relative
// offset such that it excludes the impact, if any.
let snap_to_device = SpaceSnapper::new_with_target(
surface.raster_spatial_node_index,
spatial_node_index,
raster_pixel_scale,
spatial_tree,
);
snap_to_device.snap_point(&self.reference_frame_relative_offset.to_point()).to_vector()
};
let mut flags = specified_font.flags;
if transform_glyphs {
flags |= FontInstanceFlags::TRANSFORM_GLYPHS;
}
if texture_padding {
flags |= FontInstanceFlags::TEXTURE_PADDING;
}
// If the transform or device size is different, then the caller of
// this method needs to know to rebuild the glyphs.
let cache_dirty =
self.used_font.transform != font_transform ||
self.used_font.size != device_font_size.into() ||
self.used_font.flags != flags;
// Construct used font instance from the specified font instance
self.used_font = FontInstance {
transform: font_transform,
size: device_font_size.into(),
flags,
..specified_font.clone()
};
// If using local space glyphs, we don't want subpixel AA.
if !allow_subpixel || !use_subpixel_aa {
self.used_font.disable_subpixel_aa();
// Disable subpixel positioning for oversized glyphs to avoid
// thrashing the glyph cache with many subpixel variations of
// big glyph textures. A possible subpixel positioning error
// is small relative to the maximum font size and thus should
// not be very noticeable.
if oversized {
self.used_font.disable_subpixel_position();
}
}
cache_dirty
}
/// Gets the raster space to use when rendering this primitive.
/// Usually this would be the requested raster space. However, if
/// the primitive's spatial node or one of its ancestors is being pinch zoomed
/// then we round it. This prevents us rasterizing glyphs for every minor
/// change in zoom level, as that would be too expensive.
fn get_raster_space_for_prim(
&self,
prim_spatial_node_index: SpatialNodeIndex,
low_quality_pinch_zoom: bool,
device_pixel_scale: DevicePixelScale,
spatial_tree: &SpatialTree,
) -> RasterSpace {
let prim_spatial_node = spatial_tree.get_spatial_node(prim_spatial_node_index);
if prim_spatial_node.is_ancestor_or_self_zooming {
if low_quality_pinch_zoom {
// In low-quality mode, we set the scale to be 1.0. However, the device-pixel
// scale selected for the zoom will be taken into account in the caller to this
// function when it's converted from local -> device pixels. Since in this mode
// the device-pixel scale is constant during the zoom, this gives the desired
// performance while also allowing the scale to be adjusted to a new factor at
// the end of a pinch-zoom.
RasterSpace::Local(1.0)
} else {
let root_spatial_node_index = spatial_tree.root_reference_frame_index();
// For high-quality mode, we quantize the exact scale factor as before. However,
// we want to _undo_ the effect of the device-pixel scale on the picture cache
// tiles (which changes now that they are raster roots). Divide the rounded value
// by the device-pixel scale so that the local -> device conversion has no effect.
let scale_factors = spatial_tree
.get_relative_transform(prim_spatial_node_index, root_spatial_node_index)
.scale_factors();
// Round the scale up to the nearest power of 2, but don't exceed 8.
let scale = scale_factors.0.max(scale_factors.1).min(8.0).max(1.0);
let rounded_up = 2.0f32.powf(scale.log2().ceil());
RasterSpace::Local(rounded_up / device_pixel_scale.0)
}
} else {
// Assume that if we have a RasterSpace::Local, it is frequently changing, in which
// case we want to undo the device-pixel scale, as we do above.
match self.requested_raster_space {
RasterSpace::Local(scale) => RasterSpace::Local(scale / device_pixel_scale.0),
RasterSpace::Screen => RasterSpace::Screen,
}
}
}
pub fn request_resources(
&mut self,
prim_offset: LayoutVector2D,
specified_font: &FontInstance,
glyphs: &[GlyphInstance],
transform: &LayoutToWorldTransform,
surface: &SurfaceInfo,
spatial_node_index: SpatialNodeIndex,
allow_subpixel: bool,
low_quality_pinch_zoom: bool,
resource_cache: &mut ResourceCache,
gpu_cache: &mut GpuCache,
spatial_tree: &SpatialTree,
scratch: &mut PrimitiveScratchBuffer,
) {
let raster_space = self.get_raster_space_for_prim(
spatial_node_index,
low_quality_pinch_zoom,
surface.device_pixel_scale,
spatial_tree,
);
let cache_dirty = self.update_font_instance(
specified_font,
surface,
spatial_node_index,
transform,
allow_subpixel,
raster_space,
spatial_tree,
);
if self.glyph_keys_range.is_empty() || cache_dirty {
let subpx_dir = self.used_font.get_subpx_dir();
let dps = surface.device_pixel_scale.0;
let transform = match raster_space {
RasterSpace::Local(scale) => FontTransform::new(scale * dps, 0.0, 0.0, scale * dps),
RasterSpace::Screen => self.used_font.transform.scale(dps),
};
self.glyph_keys_range = scratch.glyph_keys.extend(
glyphs.iter().map(|src| {
let src_point = src.point + prim_offset;
let device_offset = transform.transform(&src_point);
GlyphKey::new(src.index, device_offset, subpx_dir)
}));
}
resource_cache.request_glyphs(
self.used_font.clone(),
&scratch.glyph_keys[self.glyph_keys_range],
gpu_cache,
);
}
}
/// These are linux only because FontInstancePlatformOptions varies in size by platform.
#[test]
#[cfg(target_os = "linux")]
fn test_struct_sizes() {
use std::mem;
// The sizes of these structures are critical for performance on a number of
// talos stress tests. If you get a failure here on CI, there's two possibilities:
// (a) You made a structure smaller than it currently is. Great work! Update the
// test expectations and move on.
// (b) You made a structure larger. This is not necessarily a problem, but should only
// be done with care, and after checking if talos performance regresses badly.
assert_eq!(mem::size_of::<TextRun>(), 72, "TextRun size changed");
assert_eq!(mem::size_of::<TextRunTemplate>(), 80, "TextRunTemplate size changed");
assert_eq!(mem::size_of::<TextRunKey>(), 88, "TextRunKey size changed");
assert_eq!(mem::size_of::<TextRunPrimitive>(), 80, "TextRunPrimitive size changed");
}