rustls/crypto/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
use alloc::boxed::Box;
use alloc::sync::Arc;
use alloc::vec::Vec;
use core::fmt::Debug;

use pki_types::PrivateKeyDer;
use zeroize::Zeroize;

use crate::msgs::ffdhe_groups::FfdheGroup;
use crate::sign::SigningKey;
pub use crate::webpki::{
    verify_tls12_signature, verify_tls13_signature, verify_tls13_signature_with_raw_key,
    WebPkiSupportedAlgorithms,
};
#[cfg(all(doc, feature = "tls12"))]
use crate::Tls12CipherSuite;
#[cfg(doc)]
use crate::{
    client, crypto, server, sign, ClientConfig, ConfigBuilder, ServerConfig, SupportedCipherSuite,
    Tls13CipherSuite,
};
use crate::{suites, Error, NamedGroup, ProtocolVersion, SupportedProtocolVersion};

/// *ring* based CryptoProvider.
#[cfg(feature = "ring")]
pub mod ring;

/// aws-lc-rs-based CryptoProvider.
#[cfg(feature = "aws_lc_rs")]
pub mod aws_lc_rs;

/// TLS message encryption/decryption interfaces.
pub mod cipher;

/// Hashing interfaces.
pub mod hash;

/// HMAC interfaces.
pub mod hmac;

#[cfg(feature = "tls12")]
/// Cryptography specific to TLS1.2.
pub mod tls12;

/// Cryptography specific to TLS1.3.
pub mod tls13;

/// Hybrid public key encryption (RFC 9180).
pub mod hpke;

// Message signing interfaces. Re-exported under rustls::sign. Kept crate-internal here to
// avoid having two import paths to the same types.
pub(crate) mod signer;

pub use crate::msgs::handshake::KeyExchangeAlgorithm;
pub use crate::rand::GetRandomFailed;
pub use crate::suites::CipherSuiteCommon;

/// Controls core cryptography used by rustls.
///
/// This crate comes with two built-in options, provided as
/// `CryptoProvider` structures:
///
/// - [`crypto::aws_lc_rs::default_provider`]: (behind the `aws_lc_rs` feature,
///   which is enabled by default).  This provider uses the [aws-lc-rs](https://github.com/aws/aws-lc-rs)
///   crate.  The `fips` crate feature makes this option use FIPS140-3-approved cryptography.
/// - [`crypto::ring::default_provider`]: (behind the `ring` crate feature, which
///   is optional).  This provider uses the [*ring*](https://github.com/briansmith/ring)
///   crate.
///
/// This structure provides defaults. Everything in it can be overridden at
/// runtime by replacing field values as needed.
///
/// # Using the per-process default `CryptoProvider`
///
/// There is the concept of an implicit default provider, configured at run-time once in
/// a given process.
///
/// It is used for functions like [`ClientConfig::builder()`] and [`ServerConfig::builder()`].
///
/// The intention is that an application can specify the [`CryptoProvider`] they wish to use
/// once, and have that apply to the variety of places where their application does TLS
/// (which may be wrapped inside other libraries).
/// They should do this by calling [`CryptoProvider::install_default()`] early on.
///
/// To achieve this goal:
///
/// - _libraries_ should use [`ClientConfig::builder()`]/[`ServerConfig::builder()`]
///   or otherwise rely on the [`CryptoProvider::get_default()`] provider.
/// - _applications_ should call [`CryptoProvider::install_default()`] early
///   in their `fn main()`. If _applications_ uses a custom provider based on the one built-in,
///   they can activate the `custom-provider` feature to ensure its usage.
///
/// # Using a specific `CryptoProvider`
///
/// Supply the provider when constructing your [`ClientConfig`] or [`ServerConfig`]:
///
/// - [`ClientConfig::builder_with_provider()`]
/// - [`ServerConfig::builder_with_provider()`]
///
/// When creating and configuring a webpki-backed client or server certificate verifier, a choice of
/// provider is also needed to start the configuration process:
///
/// - [`client::WebPkiServerVerifier::builder_with_provider()`]
/// - [`server::WebPkiClientVerifier::builder_with_provider()`]
///
/// If you install a custom provider and want to avoid any accidental use of a built-in provider, the feature
/// `custom-provider` can be activated to ensure your custom provider is used everywhere
/// and not a built-in one. This will disable any implicit use of a built-in provider.
///
/// # Making a custom `CryptoProvider`
///
/// Your goal will be to populate a [`crypto::CryptoProvider`] struct instance.
///
/// ## Which elements are required?
///
/// There is no requirement that the individual elements (`SupportedCipherSuite`, `SupportedKxGroup`,
/// `SigningKey`, etc.) come from the same crate.  It is allowed and expected that uninteresting
/// elements would be delegated back to one of the default providers (statically) or a parent
/// provider (dynamically).
///
/// For example, if we want to make a provider that just overrides key loading in the config builder
/// API ([`ConfigBuilder::with_single_cert`] etc.), it might look like this:
///
/// ```
/// # #[cfg(feature = "aws_lc_rs")] {
/// # use std::sync::Arc;
/// # mod fictious_hsm_api { pub fn load_private_key(key_der: pki_types::PrivateKeyDer<'static>) -> ! { unreachable!(); } }
/// use rustls::crypto::aws_lc_rs;
///
/// pub fn provider() -> rustls::crypto::CryptoProvider {
///   rustls::crypto::CryptoProvider{
///     key_provider: &HsmKeyLoader,
///     ..aws_lc_rs::default_provider()
///   }
/// }
///
/// #[derive(Debug)]
/// struct HsmKeyLoader;
///
/// impl rustls::crypto::KeyProvider for HsmKeyLoader {
///     fn load_private_key(&self, key_der: pki_types::PrivateKeyDer<'static>) -> Result<Arc<dyn rustls::sign::SigningKey>, rustls::Error> {
///          fictious_hsm_api::load_private_key(key_der)
///     }
/// }
/// # }
/// ```
///
/// ## References to the individual elements
///
/// The elements are documented separately:
///
/// - **Random** - see [`crypto::SecureRandom::fill()`].
/// - **Cipher suites** - see [`SupportedCipherSuite`], [`Tls12CipherSuite`], and
///   [`Tls13CipherSuite`].
/// - **Key exchange groups** - see [`crypto::SupportedKxGroup`].
/// - **Signature verification algorithms** - see [`crypto::WebPkiSupportedAlgorithms`].
/// - **Authentication key loading** - see [`crypto::KeyProvider::load_private_key()`] and
///   [`sign::SigningKey`].
///
/// # Example code
///
/// See [provider-example/] for a full client and server example that uses
/// cryptography from the [rust-crypto] and [dalek-cryptography] projects.
///
/// ```shell
/// $ cargo run --example client | head -3
/// Current ciphersuite: TLS13_CHACHA20_POLY1305_SHA256
/// HTTP/1.1 200 OK
/// Content-Type: text/html; charset=utf-8
/// Content-Length: 19899
/// ```
///
/// [provider-example/]: https://github.com/rustls/rustls/tree/main/provider-example/
/// [rust-crypto]: https://github.com/rustcrypto
/// [dalek-cryptography]: https://github.com/dalek-cryptography
///
/// # FIPS-approved cryptography
/// The `fips` crate feature enables use of the `aws-lc-rs` crate in FIPS mode.
///
/// You can verify the configuration at runtime by checking
/// [`ServerConfig::fips()`]/[`ClientConfig::fips()`] return `true`.
#[derive(Debug, Clone)]
pub struct CryptoProvider {
    /// List of supported ciphersuites, in preference order -- the first element
    /// is the highest priority.
    ///
    /// The `SupportedCipherSuite` type carries both configuration and implementation.
    ///
    /// A valid `CryptoProvider` must ensure that all cipher suites are accompanied by at least
    /// one matching key exchange group in [`CryptoProvider::kx_groups`].
    pub cipher_suites: Vec<suites::SupportedCipherSuite>,

    /// List of supported key exchange groups, in preference order -- the
    /// first element is the highest priority.
    ///
    /// The first element in this list is the _default key share algorithm_,
    /// and in TLS1.3 a key share for it is sent in the client hello.
    ///
    /// The `SupportedKxGroup` type carries both configuration and implementation.
    pub kx_groups: Vec<&'static dyn SupportedKxGroup>,

    /// List of signature verification algorithms for use with webpki.
    ///
    /// These are used for both certificate chain verification and handshake signature verification.
    ///
    /// This is called by [`ConfigBuilder::with_root_certificates()`],
    /// [`server::WebPkiClientVerifier::builder_with_provider()`] and
    /// [`client::WebPkiServerVerifier::builder_with_provider()`].
    pub signature_verification_algorithms: WebPkiSupportedAlgorithms,

    /// Source of cryptographically secure random numbers.
    pub secure_random: &'static dyn SecureRandom,

    /// Provider for loading private [SigningKey]s from [PrivateKeyDer].
    pub key_provider: &'static dyn KeyProvider,
}

impl CryptoProvider {
    /// Sets this `CryptoProvider` as the default for this process.
    ///
    /// This can be called successfully at most once in any process execution.
    ///
    /// Call this early in your process to configure which provider is used for
    /// the provider.  The configuration should happen before any use of
    /// [`ClientConfig::builder()`] or [`ServerConfig::builder()`].
    pub fn install_default(self) -> Result<(), Arc<Self>> {
        static_default::install_default(self)
    }

    /// Returns the default `CryptoProvider` for this process.
    ///
    /// This will be `None` if no default has been set yet.
    pub fn get_default() -> Option<&'static Arc<Self>> {
        static_default::get_default()
    }

    /// An internal function that:
    ///
    /// - gets the pre-installed default, or
    /// - installs one `from_crate_features()`, or else
    /// - panics about the need to call [`CryptoProvider::install_default()`]
    pub(crate) fn get_default_or_install_from_crate_features() -> &'static Arc<Self> {
        if let Some(provider) = Self::get_default() {
            return provider;
        }

        let provider = Self::from_crate_features()
            .expect("no process-level CryptoProvider available -- call CryptoProvider::install_default() before this point");
        // Ignore the error resulting from us losing a race, and accept the outcome.
        let _ = provider.install_default();
        Self::get_default().unwrap()
    }

    /// Returns a provider named unambiguously by rustls crate features.
    ///
    /// This function returns `None` if the crate features are ambiguous (ie, specify two
    /// providers), or specify no providers, or the feature `custom-provider` is activated.
    /// In all cases the application should explicitly specify the provider to use
    /// with [`CryptoProvider::install_default`].
    fn from_crate_features() -> Option<Self> {
        #[cfg(all(
            feature = "ring",
            not(feature = "aws_lc_rs"),
            not(feature = "custom-provider")
        ))]
        {
            return Some(ring::default_provider());
        }

        #[cfg(all(
            feature = "aws_lc_rs",
            not(feature = "ring"),
            not(feature = "custom-provider")
        ))]
        {
            return Some(aws_lc_rs::default_provider());
        }

        #[allow(unreachable_code)]
        None
    }

    /// Returns `true` if this `CryptoProvider` is operating in FIPS mode.
    ///
    /// This covers only the cryptographic parts of FIPS approval.  There are
    /// also TLS protocol-level recommendations made by NIST.  You should
    /// prefer to call [`ClientConfig::fips()`] or [`ServerConfig::fips()`]
    /// which take these into account.
    pub fn fips(&self) -> bool {
        let Self {
            cipher_suites,
            kx_groups,
            signature_verification_algorithms,
            secure_random,
            key_provider,
        } = self;
        cipher_suites.iter().all(|cs| cs.fips())
            && kx_groups.iter().all(|kx| kx.fips())
            && signature_verification_algorithms.fips()
            && secure_random.fips()
            && key_provider.fips()
    }
}

/// A source of cryptographically secure randomness.
pub trait SecureRandom: Send + Sync + Debug {
    /// Fill the given buffer with random bytes.
    ///
    /// The bytes must be sourced from a cryptographically secure random number
    /// generator seeded with good quality, secret entropy.
    ///
    /// This is used for all randomness required by rustls, but not necessarily
    /// randomness required by the underlying cryptography library.  For example:
    /// [`SupportedKxGroup::start()`] requires random material to generate
    /// an ephemeral key exchange key, but this is not included in the interface with
    /// rustls: it is assumed that the cryptography library provides for this itself.
    fn fill(&self, buf: &mut [u8]) -> Result<(), GetRandomFailed>;

    /// Return `true` if this is backed by a FIPS-approved implementation.
    fn fips(&self) -> bool {
        false
    }
}

/// A mechanism for loading private [SigningKey]s from [PrivateKeyDer].
///
/// This trait is intended to be used with private key material that is sourced from DER,
/// such as a private-key that may be present on-disk. It is not intended to be used with
/// keys held in hardware security modules (HSMs) or physical tokens. For these use-cases
/// see the Rustls manual section on [customizing private key usage].
///
/// [customizing private key usage]: <https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#customising-private-key-usage>
pub trait KeyProvider: Send + Sync + Debug {
    /// Decode and validate a private signing key from `key_der`.
    ///
    /// This is used by [`ConfigBuilder::with_client_auth_cert()`], [`ConfigBuilder::with_single_cert()`],
    /// and [`ConfigBuilder::with_single_cert_with_ocsp()`].  The key types and formats supported by this
    /// function directly defines the key types and formats supported in those APIs.
    ///
    /// Return an error if the key type encoding is not supported, or if the key fails validation.
    fn load_private_key(
        &self,
        key_der: PrivateKeyDer<'static>,
    ) -> Result<Arc<dyn SigningKey>, Error>;

    /// Return `true` if this is backed by a FIPS-approved implementation.
    ///
    /// If this returns `true`, that must be the case for all possible key types
    /// supported by [`KeyProvider::load_private_key()`].
    fn fips(&self) -> bool {
        false
    }
}

/// A supported key exchange group.
///
/// This type carries both configuration and implementation. Specifically,
/// it has a TLS-level name expressed using the [`NamedGroup`] enum, and
/// a function which produces a [`ActiveKeyExchange`].
///
/// Compare with [`NamedGroup`], which carries solely a protocol identifier.
pub trait SupportedKxGroup: Send + Sync + Debug {
    /// Start a key exchange.
    ///
    /// This will prepare an ephemeral secret key in the supported group, and a corresponding
    /// public key. The key exchange can be completed by calling [ActiveKeyExchange#complete]
    /// or discarded.
    ///
    /// # Errors
    ///
    /// This can fail if the random source fails during ephemeral key generation.
    fn start(&self) -> Result<Box<dyn ActiveKeyExchange>, Error>;

    /// Start and complete a key exchange, in one operation.
    ///
    /// The default implementation for this calls `start()` and then calls
    /// `complete()` on the result.  This is suitable for Diffie-Hellman-like
    /// key exchange algorithms, where there is not a data dependency between
    /// our key share (named "pub_key" in this API) and the peer's (`peer_pub_key`).
    ///
    /// If there is such a data dependency (like key encapsulation mechanisms), this
    /// function should be implemented.
    fn start_and_complete(&self, peer_pub_key: &[u8]) -> Result<CompletedKeyExchange, Error> {
        let kx = self.start()?;

        Ok(CompletedKeyExchange {
            group: kx.group(),
            pub_key: kx.pub_key().to_vec(),
            secret: kx.complete(peer_pub_key)?,
        })
    }

    /// FFDHE group the `SupportedKxGroup` operates in.
    ///
    /// Return `None` if this group is not a FFDHE one.
    ///
    /// The default implementation calls `FfdheGroup::from_named_group`: this function
    /// is extremely linker-unfriendly so it is recommended all key exchange implementers
    /// provide this function.
    ///
    /// `rustls::ffdhe_groups` contains suitable values to return from this,
    /// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048].
    fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> {
        #[allow(deprecated)]
        FfdheGroup::from_named_group(self.name())
    }

    /// Named group the SupportedKxGroup operates in.
    ///
    /// If the `NamedGroup` enum does not have a name for the algorithm you are implementing,
    /// you can use [`NamedGroup::Unknown`].
    fn name(&self) -> NamedGroup;

    /// Return `true` if this is backed by a FIPS-approved implementation.
    fn fips(&self) -> bool {
        false
    }

    /// Return `true` if this should be offered/selected with the given version.
    ///
    /// The default implementation returns true for all versions.
    fn usable_for_version(&self, _version: ProtocolVersion) -> bool {
        true
    }
}

/// An in-progress key exchange originating from a [`SupportedKxGroup`].
pub trait ActiveKeyExchange: Send + Sync {
    /// Completes the key exchange, given the peer's public key.
    ///
    /// This method must return an error if `peer_pub_key` is invalid: either
    /// mis-encoded, or an invalid public key (such as, but not limited to, being
    /// in a small order subgroup).
    ///
    /// If the key exchange algorithm is FFDHE, the result must be left-padded with zeros,
    /// as required by [RFC 8446](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1)
    /// (see [`complete_for_tls_version()`](Self::complete_for_tls_version) for more details).
    ///
    /// The shared secret is returned as a [`SharedSecret`] which can be constructed
    /// from a `&[u8]`.
    ///
    /// This consumes and so terminates the [`ActiveKeyExchange`].
    fn complete(self: Box<Self>, peer_pub_key: &[u8]) -> Result<SharedSecret, Error>;

    /// Completes the key exchange for the given TLS version, given the peer's public key.
    ///
    /// Note that finite-field Diffie–Hellman key exchange has different requirements for the derived
    /// shared secret in TLS 1.2 and TLS 1.3 (ECDHE key exchange is the same in TLS 1.2 and TLS 1.3):
    ///
    /// In TLS 1.2, the calculated secret is required to be stripped of leading zeros
    /// [(RFC 5246)](https://www.rfc-editor.org/rfc/rfc5246#section-8.1.2).
    ///
    /// In TLS 1.3, the calculated secret is required to be padded with leading zeros to be the same
    /// byte-length as the group modulus [(RFC 8446)](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1).
    ///
    /// The default implementation of this method delegates to [`complete()`](Self::complete) assuming it is
    /// implemented for TLS 1.3 (i.e., for FFDHE KX, removes padding as needed). Implementers of this trait
    /// are encouraged to just implement [`complete()`](Self::complete) assuming TLS 1.3, and let the default
    /// implementation of this method handle TLS 1.2-specific requirements.
    ///
    /// This method must return an error if `peer_pub_key` is invalid: either
    /// mis-encoded, or an invalid public key (such as, but not limited to, being
    /// in a small order subgroup).
    ///
    /// The shared secret is returned as a [`SharedSecret`] which can be constructed
    /// from a `&[u8]`.
    ///
    /// This consumes and so terminates the [`ActiveKeyExchange`].
    fn complete_for_tls_version(
        self: Box<Self>,
        peer_pub_key: &[u8],
        tls_version: &SupportedProtocolVersion,
    ) -> Result<SharedSecret, Error> {
        if tls_version.version != ProtocolVersion::TLSv1_2 {
            return self.complete(peer_pub_key);
        }

        let group = self.group();
        let mut complete_res = self.complete(peer_pub_key)?;
        if group.key_exchange_algorithm() == KeyExchangeAlgorithm::DHE {
            complete_res.strip_leading_zeros();
        }
        Ok(complete_res)
    }

    /// For hybrid key exchanges, returns the [`NamedGroup`] and key share
    /// for the classical half of this key exchange.
    ///
    /// There is no requirement for a hybrid scheme (or any other!) to implement
    /// `hybrid_component()`. It only enables an optimization; described below.
    ///
    /// "Hybrid" means a key exchange algorithm which is constructed from two
    /// (or more) independent component algorithms. Usually one is post-quantum-secure,
    /// and the other is "classical".  See
    /// <https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/11/>
    ///
    /// # Background
    /// Rustls always sends a presumptive key share in its `ClientHello`, using
    /// (absent any other information) the first item in [`CryptoProvider::kx_groups`].
    /// If the server accepts the client's selection, it can complete the handshake
    /// using that key share.  If not, the server sends a `HelloRetryRequest` instructing
    /// the client to send a different key share instead.
    ///
    /// This request costs an extra round trip, and wastes the key exchange computation
    /// (in [`SupportedKxGroup::start()`]) the client already did.  We would
    /// like to avoid those wastes if possible.
    ///
    /// It is early days for post-quantum-secure hybrid key exchange deployment.
    /// This means (commonly) continuing to offer both the hybrid and classical
    /// key exchanges, so the handshake can be completed without a `HelloRetryRequest`
    /// for servers that support the offered hybrid or classical schemes.
    ///
    /// Implementing `hybrid_component()` enables two optimizations:
    ///
    /// 1. Sending both the hybrid and classical key shares in the `ClientHello`.
    ///
    /// 2. Performing the classical key exchange setup only once.  This is important
    ///    because the classical key exchange setup is relatively expensive.
    ///    This optimization is permitted and described in
    ///    <https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-11.html#section-3.2>
    ///
    /// Both of these only happen if the classical algorithm appears separately in
    /// the client's [`CryptoProvider::kx_groups`], and if the hybrid algorithm appears
    /// first in that list.
    ///
    /// # How it works
    /// This function is only called by rustls for clients.  It is called when
    /// constructing the initial `ClientHello`.  rustls follows these steps:
    ///
    /// 1. If the return value is `None`, nothing further happens.
    /// 2. If the given [`NamedGroup`] does not appear in
    ///    [`CryptoProvider::kx_groups`], nothing further happens.
    /// 3. The given key share is added to the `ClientHello`, after the hybrid entry.
    ///
    /// Then, one of three things may happen when the server replies to the `ClientHello`:
    ///
    /// 1. The server sends a `HelloRetryRequest`.  Everything is thrown away and
    ///    we start again.
    /// 2. The server agrees to our hybrid key exchange: rustls calls
    ///    [`ActiveKeyExchange::complete()`] consuming `self`.
    /// 3. The server agrees to our classical key exchange: rustls calls
    ///    [`ActiveKeyExchange::complete_hybrid_component()`] which
    ///    discards the hybrid key data, and completes just the classical key exchange.
    fn hybrid_component(&self) -> Option<(NamedGroup, &[u8])> {
        None
    }

    /// Completes the classical component of the key exchange, given the peer's public key.
    ///
    /// This is only called if `hybrid_component` returns `Some(_)`.
    ///
    /// This method must return an error if `peer_pub_key` is invalid: either
    /// mis-encoded, or an invalid public key (such as, but not limited to, being
    /// in a small order subgroup).
    ///
    /// The shared secret is returned as a [`SharedSecret`] which can be constructed
    /// from a `&[u8]`.
    ///
    /// See the documentation on [`Self::hybrid_component()`] for explanation.
    fn complete_hybrid_component(
        self: Box<Self>,
        _peer_pub_key: &[u8],
    ) -> Result<SharedSecret, Error> {
        unreachable!("only called if `hybrid_component()` implemented")
    }

    /// Return the public key being used.
    ///
    /// For ECDHE, the encoding required is defined in
    /// [RFC8446 section 4.2.8.2](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2).
    ///
    /// For FFDHE, the encoding required is defined in
    /// [RFC8446 section 4.2.8.1](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.1).
    fn pub_key(&self) -> &[u8];

    /// FFDHE group the `ActiveKeyExchange` is operating in.
    ///
    /// Return `None` if this group is not a FFDHE one.
    ///
    /// The default implementation calls `FfdheGroup::from_named_group`: this function
    /// is extremely linker-unfriendly so it is recommended all key exchange implementers
    /// provide this function.
    ///
    /// `rustls::ffdhe_groups` contains suitable values to return from this,
    /// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048].
    fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> {
        #[allow(deprecated)]
        FfdheGroup::from_named_group(self.group())
    }

    /// Return the group being used.
    fn group(&self) -> NamedGroup;
}

/// The result from [`SupportedKxGroup::start_and_complete()`].
pub struct CompletedKeyExchange {
    /// Which group was used.
    pub group: NamedGroup,

    /// Our key share (sometimes a public key).
    pub pub_key: Vec<u8>,

    /// The computed shared secret.
    pub secret: SharedSecret,
}

/// The result from [`ActiveKeyExchange::complete`] or [`ActiveKeyExchange::complete_hybrid_component`].
pub struct SharedSecret {
    buf: Vec<u8>,
    offset: usize,
}

impl SharedSecret {
    /// Returns the shared secret as a slice of bytes.
    pub fn secret_bytes(&self) -> &[u8] {
        &self.buf[self.offset..]
    }

    /// Removes leading zeros from `secret_bytes()` by adjusting the `offset`.
    ///
    /// This function does not re-allocate.
    fn strip_leading_zeros(&mut self) {
        let start = self
            .secret_bytes()
            .iter()
            .enumerate()
            .find(|(_i, x)| **x != 0)
            .map(|(i, _x)| i)
            .unwrap_or(self.secret_bytes().len());
        self.offset += start;
    }
}

impl Drop for SharedSecret {
    fn drop(&mut self) {
        self.buf.zeroize();
    }
}

impl From<&[u8]> for SharedSecret {
    fn from(source: &[u8]) -> Self {
        Self {
            buf: source.to_vec(),
            offset: 0,
        }
    }
}

impl From<Vec<u8>> for SharedSecret {
    fn from(buf: Vec<u8>) -> Self {
        Self { buf, offset: 0 }
    }
}

/// This function returns a [`CryptoProvider`] that uses
/// FIPS140-3-approved cryptography.
///
/// Using this function expresses in your code that you require
/// FIPS-approved cryptography, and will not compile if you make
/// a mistake with cargo features.
///
/// See our [FIPS documentation](crate::manual::_06_fips) for
/// more detail.
///
/// Install this as the process-default provider, like:
///
/// ```rust
/// # #[cfg(feature = "fips")] {
/// rustls::crypto::default_fips_provider().install_default()
///     .expect("default provider already set elsewhere");
/// # }
/// ```
///
/// You can also use this explicitly, like:
///
/// ```rust
/// # #[cfg(feature = "fips")] {
/// # let root_store = rustls::RootCertStore::empty();
/// let config = rustls::ClientConfig::builder_with_provider(
///         rustls::crypto::default_fips_provider().into()
///     )
///     .with_safe_default_protocol_versions()
///     .unwrap()
///     .with_root_certificates(root_store)
///     .with_no_client_auth();
/// # }
/// ```
#[cfg(all(feature = "aws_lc_rs", any(feature = "fips", docsrs)))]
#[cfg_attr(docsrs, doc(cfg(feature = "fips")))]
pub fn default_fips_provider() -> CryptoProvider {
    aws_lc_rs::default_provider()
}

mod static_default {
    #[cfg(not(feature = "std"))]
    use alloc::boxed::Box;
    use alloc::sync::Arc;
    #[cfg(feature = "std")]
    use std::sync::OnceLock;

    #[cfg(not(feature = "std"))]
    use once_cell::race::OnceBox;

    use super::CryptoProvider;

    #[cfg(feature = "std")]
    pub(crate) fn install_default(
        default_provider: CryptoProvider,
    ) -> Result<(), Arc<CryptoProvider>> {
        PROCESS_DEFAULT_PROVIDER.set(Arc::new(default_provider))
    }

    #[cfg(not(feature = "std"))]
    pub(crate) fn install_default(
        default_provider: CryptoProvider,
    ) -> Result<(), Arc<CryptoProvider>> {
        PROCESS_DEFAULT_PROVIDER
            .set(Box::new(Arc::new(default_provider)))
            .map_err(|e| *e)
    }

    pub(crate) fn get_default() -> Option<&'static Arc<CryptoProvider>> {
        PROCESS_DEFAULT_PROVIDER.get()
    }

    #[cfg(feature = "std")]
    static PROCESS_DEFAULT_PROVIDER: OnceLock<Arc<CryptoProvider>> = OnceLock::new();
    #[cfg(not(feature = "std"))]
    static PROCESS_DEFAULT_PROVIDER: OnceBox<Arc<CryptoProvider>> = OnceBox::new();
}

#[cfg(test)]
mod tests {
    use std::vec;

    use super::SharedSecret;

    #[test]
    fn test_shared_secret_strip_leading_zeros() {
        let test_cases = [
            (vec![0, 1], vec![1]),
            (vec![1], vec![1]),
            (vec![1, 0, 2], vec![1, 0, 2]),
            (vec![0, 0, 1, 2], vec![1, 2]),
            (vec![0, 0, 0], vec![]),
            (vec![], vec![]),
        ];
        for (buf, expected) in test_cases {
            let mut secret = SharedSecret::from(&buf[..]);
            assert_eq!(secret.secret_bytes(), buf);
            secret.strip_leading_zeros();
            assert_eq!(secret.secret_bytes(), expected);
        }
    }
}