rustls/crypto/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
use alloc::boxed::Box;
use alloc::sync::Arc;
use alloc::vec::Vec;
use core::fmt::Debug;
use pki_types::PrivateKeyDer;
use zeroize::Zeroize;
use crate::msgs::ffdhe_groups::FfdheGroup;
use crate::sign::SigningKey;
pub use crate::webpki::{
verify_tls12_signature, verify_tls13_signature, verify_tls13_signature_with_raw_key,
WebPkiSupportedAlgorithms,
};
#[cfg(all(doc, feature = "tls12"))]
use crate::Tls12CipherSuite;
#[cfg(doc)]
use crate::{
client, crypto, server, sign, ClientConfig, ConfigBuilder, ServerConfig, SupportedCipherSuite,
Tls13CipherSuite,
};
use crate::{suites, Error, NamedGroup, ProtocolVersion, SupportedProtocolVersion};
/// *ring* based CryptoProvider.
#[cfg(feature = "ring")]
pub mod ring;
/// aws-lc-rs-based CryptoProvider.
#[cfg(feature = "aws_lc_rs")]
pub mod aws_lc_rs;
/// TLS message encryption/decryption interfaces.
pub mod cipher;
/// Hashing interfaces.
pub mod hash;
/// HMAC interfaces.
pub mod hmac;
#[cfg(feature = "tls12")]
/// Cryptography specific to TLS1.2.
pub mod tls12;
/// Cryptography specific to TLS1.3.
pub mod tls13;
/// Hybrid public key encryption (RFC 9180).
pub mod hpke;
// Message signing interfaces. Re-exported under rustls::sign. Kept crate-internal here to
// avoid having two import paths to the same types.
pub(crate) mod signer;
pub use crate::msgs::handshake::KeyExchangeAlgorithm;
pub use crate::rand::GetRandomFailed;
pub use crate::suites::CipherSuiteCommon;
/// Controls core cryptography used by rustls.
///
/// This crate comes with two built-in options, provided as
/// `CryptoProvider` structures:
///
/// - [`crypto::aws_lc_rs::default_provider`]: (behind the `aws_lc_rs` feature,
/// which is enabled by default). This provider uses the [aws-lc-rs](https://github.com/aws/aws-lc-rs)
/// crate. The `fips` crate feature makes this option use FIPS140-3-approved cryptography.
/// - [`crypto::ring::default_provider`]: (behind the `ring` crate feature, which
/// is optional). This provider uses the [*ring*](https://github.com/briansmith/ring)
/// crate.
///
/// This structure provides defaults. Everything in it can be overridden at
/// runtime by replacing field values as needed.
///
/// # Using the per-process default `CryptoProvider`
///
/// There is the concept of an implicit default provider, configured at run-time once in
/// a given process.
///
/// It is used for functions like [`ClientConfig::builder()`] and [`ServerConfig::builder()`].
///
/// The intention is that an application can specify the [`CryptoProvider`] they wish to use
/// once, and have that apply to the variety of places where their application does TLS
/// (which may be wrapped inside other libraries).
/// They should do this by calling [`CryptoProvider::install_default()`] early on.
///
/// To achieve this goal:
///
/// - _libraries_ should use [`ClientConfig::builder()`]/[`ServerConfig::builder()`]
/// or otherwise rely on the [`CryptoProvider::get_default()`] provider.
/// - _applications_ should call [`CryptoProvider::install_default()`] early
/// in their `fn main()`. If _applications_ uses a custom provider based on the one built-in,
/// they can activate the `custom-provider` feature to ensure its usage.
///
/// # Using a specific `CryptoProvider`
///
/// Supply the provider when constructing your [`ClientConfig`] or [`ServerConfig`]:
///
/// - [`ClientConfig::builder_with_provider()`]
/// - [`ServerConfig::builder_with_provider()`]
///
/// When creating and configuring a webpki-backed client or server certificate verifier, a choice of
/// provider is also needed to start the configuration process:
///
/// - [`client::WebPkiServerVerifier::builder_with_provider()`]
/// - [`server::WebPkiClientVerifier::builder_with_provider()`]
///
/// If you install a custom provider and want to avoid any accidental use of a built-in provider, the feature
/// `custom-provider` can be activated to ensure your custom provider is used everywhere
/// and not a built-in one. This will disable any implicit use of a built-in provider.
///
/// # Making a custom `CryptoProvider`
///
/// Your goal will be to populate a [`crypto::CryptoProvider`] struct instance.
///
/// ## Which elements are required?
///
/// There is no requirement that the individual elements (`SupportedCipherSuite`, `SupportedKxGroup`,
/// `SigningKey`, etc.) come from the same crate. It is allowed and expected that uninteresting
/// elements would be delegated back to one of the default providers (statically) or a parent
/// provider (dynamically).
///
/// For example, if we want to make a provider that just overrides key loading in the config builder
/// API ([`ConfigBuilder::with_single_cert`] etc.), it might look like this:
///
/// ```
/// # #[cfg(feature = "aws_lc_rs")] {
/// # use std::sync::Arc;
/// # mod fictious_hsm_api { pub fn load_private_key(key_der: pki_types::PrivateKeyDer<'static>) -> ! { unreachable!(); } }
/// use rustls::crypto::aws_lc_rs;
///
/// pub fn provider() -> rustls::crypto::CryptoProvider {
/// rustls::crypto::CryptoProvider{
/// key_provider: &HsmKeyLoader,
/// ..aws_lc_rs::default_provider()
/// }
/// }
///
/// #[derive(Debug)]
/// struct HsmKeyLoader;
///
/// impl rustls::crypto::KeyProvider for HsmKeyLoader {
/// fn load_private_key(&self, key_der: pki_types::PrivateKeyDer<'static>) -> Result<Arc<dyn rustls::sign::SigningKey>, rustls::Error> {
/// fictious_hsm_api::load_private_key(key_der)
/// }
/// }
/// # }
/// ```
///
/// ## References to the individual elements
///
/// The elements are documented separately:
///
/// - **Random** - see [`crypto::SecureRandom::fill()`].
/// - **Cipher suites** - see [`SupportedCipherSuite`], [`Tls12CipherSuite`], and
/// [`Tls13CipherSuite`].
/// - **Key exchange groups** - see [`crypto::SupportedKxGroup`].
/// - **Signature verification algorithms** - see [`crypto::WebPkiSupportedAlgorithms`].
/// - **Authentication key loading** - see [`crypto::KeyProvider::load_private_key()`] and
/// [`sign::SigningKey`].
///
/// # Example code
///
/// See [provider-example/] for a full client and server example that uses
/// cryptography from the [rust-crypto] and [dalek-cryptography] projects.
///
/// ```shell
/// $ cargo run --example client | head -3
/// Current ciphersuite: TLS13_CHACHA20_POLY1305_SHA256
/// HTTP/1.1 200 OK
/// Content-Type: text/html; charset=utf-8
/// Content-Length: 19899
/// ```
///
/// [provider-example/]: https://github.com/rustls/rustls/tree/main/provider-example/
/// [rust-crypto]: https://github.com/rustcrypto
/// [dalek-cryptography]: https://github.com/dalek-cryptography
///
/// # FIPS-approved cryptography
/// The `fips` crate feature enables use of the `aws-lc-rs` crate in FIPS mode.
///
/// You can verify the configuration at runtime by checking
/// [`ServerConfig::fips()`]/[`ClientConfig::fips()`] return `true`.
#[derive(Debug, Clone)]
pub struct CryptoProvider {
/// List of supported ciphersuites, in preference order -- the first element
/// is the highest priority.
///
/// The `SupportedCipherSuite` type carries both configuration and implementation.
///
/// A valid `CryptoProvider` must ensure that all cipher suites are accompanied by at least
/// one matching key exchange group in [`CryptoProvider::kx_groups`].
pub cipher_suites: Vec<suites::SupportedCipherSuite>,
/// List of supported key exchange groups, in preference order -- the
/// first element is the highest priority.
///
/// The first element in this list is the _default key share algorithm_,
/// and in TLS1.3 a key share for it is sent in the client hello.
///
/// The `SupportedKxGroup` type carries both configuration and implementation.
pub kx_groups: Vec<&'static dyn SupportedKxGroup>,
/// List of signature verification algorithms for use with webpki.
///
/// These are used for both certificate chain verification and handshake signature verification.
///
/// This is called by [`ConfigBuilder::with_root_certificates()`],
/// [`server::WebPkiClientVerifier::builder_with_provider()`] and
/// [`client::WebPkiServerVerifier::builder_with_provider()`].
pub signature_verification_algorithms: WebPkiSupportedAlgorithms,
/// Source of cryptographically secure random numbers.
pub secure_random: &'static dyn SecureRandom,
/// Provider for loading private [SigningKey]s from [PrivateKeyDer].
pub key_provider: &'static dyn KeyProvider,
}
impl CryptoProvider {
/// Sets this `CryptoProvider` as the default for this process.
///
/// This can be called successfully at most once in any process execution.
///
/// Call this early in your process to configure which provider is used for
/// the provider. The configuration should happen before any use of
/// [`ClientConfig::builder()`] or [`ServerConfig::builder()`].
pub fn install_default(self) -> Result<(), Arc<Self>> {
static_default::install_default(self)
}
/// Returns the default `CryptoProvider` for this process.
///
/// This will be `None` if no default has been set yet.
pub fn get_default() -> Option<&'static Arc<Self>> {
static_default::get_default()
}
/// An internal function that:
///
/// - gets the pre-installed default, or
/// - installs one `from_crate_features()`, or else
/// - panics about the need to call [`CryptoProvider::install_default()`]
pub(crate) fn get_default_or_install_from_crate_features() -> &'static Arc<Self> {
if let Some(provider) = Self::get_default() {
return provider;
}
let provider = Self::from_crate_features()
.expect("no process-level CryptoProvider available -- call CryptoProvider::install_default() before this point");
// Ignore the error resulting from us losing a race, and accept the outcome.
let _ = provider.install_default();
Self::get_default().unwrap()
}
/// Returns a provider named unambiguously by rustls crate features.
///
/// This function returns `None` if the crate features are ambiguous (ie, specify two
/// providers), or specify no providers, or the feature `custom-provider` is activated.
/// In all cases the application should explicitly specify the provider to use
/// with [`CryptoProvider::install_default`].
fn from_crate_features() -> Option<Self> {
#[cfg(all(
feature = "ring",
not(feature = "aws_lc_rs"),
not(feature = "custom-provider")
))]
{
return Some(ring::default_provider());
}
#[cfg(all(
feature = "aws_lc_rs",
not(feature = "ring"),
not(feature = "custom-provider")
))]
{
return Some(aws_lc_rs::default_provider());
}
#[allow(unreachable_code)]
None
}
/// Returns `true` if this `CryptoProvider` is operating in FIPS mode.
///
/// This covers only the cryptographic parts of FIPS approval. There are
/// also TLS protocol-level recommendations made by NIST. You should
/// prefer to call [`ClientConfig::fips()`] or [`ServerConfig::fips()`]
/// which take these into account.
pub fn fips(&self) -> bool {
let Self {
cipher_suites,
kx_groups,
signature_verification_algorithms,
secure_random,
key_provider,
} = self;
cipher_suites.iter().all(|cs| cs.fips())
&& kx_groups.iter().all(|kx| kx.fips())
&& signature_verification_algorithms.fips()
&& secure_random.fips()
&& key_provider.fips()
}
}
/// A source of cryptographically secure randomness.
pub trait SecureRandom: Send + Sync + Debug {
/// Fill the given buffer with random bytes.
///
/// The bytes must be sourced from a cryptographically secure random number
/// generator seeded with good quality, secret entropy.
///
/// This is used for all randomness required by rustls, but not necessarily
/// randomness required by the underlying cryptography library. For example:
/// [`SupportedKxGroup::start()`] requires random material to generate
/// an ephemeral key exchange key, but this is not included in the interface with
/// rustls: it is assumed that the cryptography library provides for this itself.
fn fill(&self, buf: &mut [u8]) -> Result<(), GetRandomFailed>;
/// Return `true` if this is backed by a FIPS-approved implementation.
fn fips(&self) -> bool {
false
}
}
/// A mechanism for loading private [SigningKey]s from [PrivateKeyDer].
///
/// This trait is intended to be used with private key material that is sourced from DER,
/// such as a private-key that may be present on-disk. It is not intended to be used with
/// keys held in hardware security modules (HSMs) or physical tokens. For these use-cases
/// see the Rustls manual section on [customizing private key usage].
///
/// [customizing private key usage]: <https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#customising-private-key-usage>
pub trait KeyProvider: Send + Sync + Debug {
/// Decode and validate a private signing key from `key_der`.
///
/// This is used by [`ConfigBuilder::with_client_auth_cert()`], [`ConfigBuilder::with_single_cert()`],
/// and [`ConfigBuilder::with_single_cert_with_ocsp()`]. The key types and formats supported by this
/// function directly defines the key types and formats supported in those APIs.
///
/// Return an error if the key type encoding is not supported, or if the key fails validation.
fn load_private_key(
&self,
key_der: PrivateKeyDer<'static>,
) -> Result<Arc<dyn SigningKey>, Error>;
/// Return `true` if this is backed by a FIPS-approved implementation.
///
/// If this returns `true`, that must be the case for all possible key types
/// supported by [`KeyProvider::load_private_key()`].
fn fips(&self) -> bool {
false
}
}
/// A supported key exchange group.
///
/// This type carries both configuration and implementation. Specifically,
/// it has a TLS-level name expressed using the [`NamedGroup`] enum, and
/// a function which produces a [`ActiveKeyExchange`].
///
/// Compare with [`NamedGroup`], which carries solely a protocol identifier.
pub trait SupportedKxGroup: Send + Sync + Debug {
/// Start a key exchange.
///
/// This will prepare an ephemeral secret key in the supported group, and a corresponding
/// public key. The key exchange can be completed by calling [ActiveKeyExchange#complete]
/// or discarded.
///
/// # Errors
///
/// This can fail if the random source fails during ephemeral key generation.
fn start(&self) -> Result<Box<dyn ActiveKeyExchange>, Error>;
/// Start and complete a key exchange, in one operation.
///
/// The default implementation for this calls `start()` and then calls
/// `complete()` on the result. This is suitable for Diffie-Hellman-like
/// key exchange algorithms, where there is not a data dependency between
/// our key share (named "pub_key" in this API) and the peer's (`peer_pub_key`).
///
/// If there is such a data dependency (like key encapsulation mechanisms), this
/// function should be implemented.
fn start_and_complete(&self, peer_pub_key: &[u8]) -> Result<CompletedKeyExchange, Error> {
let kx = self.start()?;
Ok(CompletedKeyExchange {
group: kx.group(),
pub_key: kx.pub_key().to_vec(),
secret: kx.complete(peer_pub_key)?,
})
}
/// FFDHE group the `SupportedKxGroup` operates in.
///
/// Return `None` if this group is not a FFDHE one.
///
/// The default implementation calls `FfdheGroup::from_named_group`: this function
/// is extremely linker-unfriendly so it is recommended all key exchange implementers
/// provide this function.
///
/// `rustls::ffdhe_groups` contains suitable values to return from this,
/// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048].
fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> {
#[allow(deprecated)]
FfdheGroup::from_named_group(self.name())
}
/// Named group the SupportedKxGroup operates in.
///
/// If the `NamedGroup` enum does not have a name for the algorithm you are implementing,
/// you can use [`NamedGroup::Unknown`].
fn name(&self) -> NamedGroup;
/// Return `true` if this is backed by a FIPS-approved implementation.
fn fips(&self) -> bool {
false
}
/// Return `true` if this should be offered/selected with the given version.
///
/// The default implementation returns true for all versions.
fn usable_for_version(&self, _version: ProtocolVersion) -> bool {
true
}
}
/// An in-progress key exchange originating from a [`SupportedKxGroup`].
pub trait ActiveKeyExchange: Send + Sync {
/// Completes the key exchange, given the peer's public key.
///
/// This method must return an error if `peer_pub_key` is invalid: either
/// mis-encoded, or an invalid public key (such as, but not limited to, being
/// in a small order subgroup).
///
/// If the key exchange algorithm is FFDHE, the result must be left-padded with zeros,
/// as required by [RFC 8446](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1)
/// (see [`complete_for_tls_version()`](Self::complete_for_tls_version) for more details).
///
/// The shared secret is returned as a [`SharedSecret`] which can be constructed
/// from a `&[u8]`.
///
/// This consumes and so terminates the [`ActiveKeyExchange`].
fn complete(self: Box<Self>, peer_pub_key: &[u8]) -> Result<SharedSecret, Error>;
/// Completes the key exchange for the given TLS version, given the peer's public key.
///
/// Note that finite-field Diffie–Hellman key exchange has different requirements for the derived
/// shared secret in TLS 1.2 and TLS 1.3 (ECDHE key exchange is the same in TLS 1.2 and TLS 1.3):
///
/// In TLS 1.2, the calculated secret is required to be stripped of leading zeros
/// [(RFC 5246)](https://www.rfc-editor.org/rfc/rfc5246#section-8.1.2).
///
/// In TLS 1.3, the calculated secret is required to be padded with leading zeros to be the same
/// byte-length as the group modulus [(RFC 8446)](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1).
///
/// The default implementation of this method delegates to [`complete()`](Self::complete) assuming it is
/// implemented for TLS 1.3 (i.e., for FFDHE KX, removes padding as needed). Implementers of this trait
/// are encouraged to just implement [`complete()`](Self::complete) assuming TLS 1.3, and let the default
/// implementation of this method handle TLS 1.2-specific requirements.
///
/// This method must return an error if `peer_pub_key` is invalid: either
/// mis-encoded, or an invalid public key (such as, but not limited to, being
/// in a small order subgroup).
///
/// The shared secret is returned as a [`SharedSecret`] which can be constructed
/// from a `&[u8]`.
///
/// This consumes and so terminates the [`ActiveKeyExchange`].
fn complete_for_tls_version(
self: Box<Self>,
peer_pub_key: &[u8],
tls_version: &SupportedProtocolVersion,
) -> Result<SharedSecret, Error> {
if tls_version.version != ProtocolVersion::TLSv1_2 {
return self.complete(peer_pub_key);
}
let group = self.group();
let mut complete_res = self.complete(peer_pub_key)?;
if group.key_exchange_algorithm() == KeyExchangeAlgorithm::DHE {
complete_res.strip_leading_zeros();
}
Ok(complete_res)
}
/// For hybrid key exchanges, returns the [`NamedGroup`] and key share
/// for the classical half of this key exchange.
///
/// There is no requirement for a hybrid scheme (or any other!) to implement
/// `hybrid_component()`. It only enables an optimization; described below.
///
/// "Hybrid" means a key exchange algorithm which is constructed from two
/// (or more) independent component algorithms. Usually one is post-quantum-secure,
/// and the other is "classical". See
/// <https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/11/>
///
/// # Background
/// Rustls always sends a presumptive key share in its `ClientHello`, using
/// (absent any other information) the first item in [`CryptoProvider::kx_groups`].
/// If the server accepts the client's selection, it can complete the handshake
/// using that key share. If not, the server sends a `HelloRetryRequest` instructing
/// the client to send a different key share instead.
///
/// This request costs an extra round trip, and wastes the key exchange computation
/// (in [`SupportedKxGroup::start()`]) the client already did. We would
/// like to avoid those wastes if possible.
///
/// It is early days for post-quantum-secure hybrid key exchange deployment.
/// This means (commonly) continuing to offer both the hybrid and classical
/// key exchanges, so the handshake can be completed without a `HelloRetryRequest`
/// for servers that support the offered hybrid or classical schemes.
///
/// Implementing `hybrid_component()` enables two optimizations:
///
/// 1. Sending both the hybrid and classical key shares in the `ClientHello`.
///
/// 2. Performing the classical key exchange setup only once. This is important
/// because the classical key exchange setup is relatively expensive.
/// This optimization is permitted and described in
/// <https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-11.html#section-3.2>
///
/// Both of these only happen if the classical algorithm appears separately in
/// the client's [`CryptoProvider::kx_groups`], and if the hybrid algorithm appears
/// first in that list.
///
/// # How it works
/// This function is only called by rustls for clients. It is called when
/// constructing the initial `ClientHello`. rustls follows these steps:
///
/// 1. If the return value is `None`, nothing further happens.
/// 2. If the given [`NamedGroup`] does not appear in
/// [`CryptoProvider::kx_groups`], nothing further happens.
/// 3. The given key share is added to the `ClientHello`, after the hybrid entry.
///
/// Then, one of three things may happen when the server replies to the `ClientHello`:
///
/// 1. The server sends a `HelloRetryRequest`. Everything is thrown away and
/// we start again.
/// 2. The server agrees to our hybrid key exchange: rustls calls
/// [`ActiveKeyExchange::complete()`] consuming `self`.
/// 3. The server agrees to our classical key exchange: rustls calls
/// [`ActiveKeyExchange::complete_hybrid_component()`] which
/// discards the hybrid key data, and completes just the classical key exchange.
fn hybrid_component(&self) -> Option<(NamedGroup, &[u8])> {
None
}
/// Completes the classical component of the key exchange, given the peer's public key.
///
/// This is only called if `hybrid_component` returns `Some(_)`.
///
/// This method must return an error if `peer_pub_key` is invalid: either
/// mis-encoded, or an invalid public key (such as, but not limited to, being
/// in a small order subgroup).
///
/// The shared secret is returned as a [`SharedSecret`] which can be constructed
/// from a `&[u8]`.
///
/// See the documentation on [`Self::hybrid_component()`] for explanation.
fn complete_hybrid_component(
self: Box<Self>,
_peer_pub_key: &[u8],
) -> Result<SharedSecret, Error> {
unreachable!("only called if `hybrid_component()` implemented")
}
/// Return the public key being used.
///
/// For ECDHE, the encoding required is defined in
/// [RFC8446 section 4.2.8.2](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2).
///
/// For FFDHE, the encoding required is defined in
/// [RFC8446 section 4.2.8.1](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.1).
fn pub_key(&self) -> &[u8];
/// FFDHE group the `ActiveKeyExchange` is operating in.
///
/// Return `None` if this group is not a FFDHE one.
///
/// The default implementation calls `FfdheGroup::from_named_group`: this function
/// is extremely linker-unfriendly so it is recommended all key exchange implementers
/// provide this function.
///
/// `rustls::ffdhe_groups` contains suitable values to return from this,
/// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048].
fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> {
#[allow(deprecated)]
FfdheGroup::from_named_group(self.group())
}
/// Return the group being used.
fn group(&self) -> NamedGroup;
}
/// The result from [`SupportedKxGroup::start_and_complete()`].
pub struct CompletedKeyExchange {
/// Which group was used.
pub group: NamedGroup,
/// Our key share (sometimes a public key).
pub pub_key: Vec<u8>,
/// The computed shared secret.
pub secret: SharedSecret,
}
/// The result from [`ActiveKeyExchange::complete`] or [`ActiveKeyExchange::complete_hybrid_component`].
pub struct SharedSecret {
buf: Vec<u8>,
offset: usize,
}
impl SharedSecret {
/// Returns the shared secret as a slice of bytes.
pub fn secret_bytes(&self) -> &[u8] {
&self.buf[self.offset..]
}
/// Removes leading zeros from `secret_bytes()` by adjusting the `offset`.
///
/// This function does not re-allocate.
fn strip_leading_zeros(&mut self) {
let start = self
.secret_bytes()
.iter()
.enumerate()
.find(|(_i, x)| **x != 0)
.map(|(i, _x)| i)
.unwrap_or(self.secret_bytes().len());
self.offset += start;
}
}
impl Drop for SharedSecret {
fn drop(&mut self) {
self.buf.zeroize();
}
}
impl From<&[u8]> for SharedSecret {
fn from(source: &[u8]) -> Self {
Self {
buf: source.to_vec(),
offset: 0,
}
}
}
impl From<Vec<u8>> for SharedSecret {
fn from(buf: Vec<u8>) -> Self {
Self { buf, offset: 0 }
}
}
/// This function returns a [`CryptoProvider`] that uses
/// FIPS140-3-approved cryptography.
///
/// Using this function expresses in your code that you require
/// FIPS-approved cryptography, and will not compile if you make
/// a mistake with cargo features.
///
/// See our [FIPS documentation](crate::manual::_06_fips) for
/// more detail.
///
/// Install this as the process-default provider, like:
///
/// ```rust
/// # #[cfg(feature = "fips")] {
/// rustls::crypto::default_fips_provider().install_default()
/// .expect("default provider already set elsewhere");
/// # }
/// ```
///
/// You can also use this explicitly, like:
///
/// ```rust
/// # #[cfg(feature = "fips")] {
/// # let root_store = rustls::RootCertStore::empty();
/// let config = rustls::ClientConfig::builder_with_provider(
/// rustls::crypto::default_fips_provider().into()
/// )
/// .with_safe_default_protocol_versions()
/// .unwrap()
/// .with_root_certificates(root_store)
/// .with_no_client_auth();
/// # }
/// ```
#[cfg(all(feature = "aws_lc_rs", any(feature = "fips", docsrs)))]
#[cfg_attr(docsrs, doc(cfg(feature = "fips")))]
pub fn default_fips_provider() -> CryptoProvider {
aws_lc_rs::default_provider()
}
mod static_default {
#[cfg(not(feature = "std"))]
use alloc::boxed::Box;
use alloc::sync::Arc;
#[cfg(feature = "std")]
use std::sync::OnceLock;
#[cfg(not(feature = "std"))]
use once_cell::race::OnceBox;
use super::CryptoProvider;
#[cfg(feature = "std")]
pub(crate) fn install_default(
default_provider: CryptoProvider,
) -> Result<(), Arc<CryptoProvider>> {
PROCESS_DEFAULT_PROVIDER.set(Arc::new(default_provider))
}
#[cfg(not(feature = "std"))]
pub(crate) fn install_default(
default_provider: CryptoProvider,
) -> Result<(), Arc<CryptoProvider>> {
PROCESS_DEFAULT_PROVIDER
.set(Box::new(Arc::new(default_provider)))
.map_err(|e| *e)
}
pub(crate) fn get_default() -> Option<&'static Arc<CryptoProvider>> {
PROCESS_DEFAULT_PROVIDER.get()
}
#[cfg(feature = "std")]
static PROCESS_DEFAULT_PROVIDER: OnceLock<Arc<CryptoProvider>> = OnceLock::new();
#[cfg(not(feature = "std"))]
static PROCESS_DEFAULT_PROVIDER: OnceBox<Arc<CryptoProvider>> = OnceBox::new();
}
#[cfg(test)]
mod tests {
use std::vec;
use super::SharedSecret;
#[test]
fn test_shared_secret_strip_leading_zeros() {
let test_cases = [
(vec![0, 1], vec![1]),
(vec![1], vec![1]),
(vec![1, 0, 2], vec![1, 0, 2]),
(vec![0, 0, 1, 2], vec![1, 2]),
(vec![0, 0, 0], vec![]),
(vec![], vec![]),
];
for (buf, expected) in test_cases {
let mut secret = SharedSecret::from(&buf[..]);
assert_eq!(secret.secret_bytes(), buf);
secret.strip_leading_zeros();
assert_eq!(secret.secret_bytes(), expected);
}
}
}