1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use core::convert::TryFrom;
use core::ops::Range;
use crate::Stream;
// Limits according to the Adobe Technical Note #5176, chapter 4 DICT Data.
const TWO_BYTE_OPERATOR_MARK: u8 = 12;
const FLOAT_STACK_LEN: usize = 64;
const END_OF_FLOAT_FLAG: u8 = 0xf;
#[derive(Clone, Copy, Debug)]
pub struct Operator(pub u16);
impl Operator {
#[inline]
pub fn get(self) -> u16 {
self.0
}
}
pub struct DictionaryParser<'a> {
data: &'a [u8],
// The current offset.
offset: usize,
// Offset to the last operands start.
operands_offset: usize,
// Actual operands.
//
// While CFF can contain only i32 and f32 values, we have to store operands as f64
// since f32 cannot represent the whole i32 range.
// Meaning we have a choice of storing operands as f64 or as enum of i32/f32.
// In both cases the type size would be 8 bytes, so it's easier to simply use f64.
operands: &'a mut [f64],
// An amount of operands in the `operands` array.
operands_len: u16,
}
impl<'a> DictionaryParser<'a> {
#[inline]
pub fn new(data: &'a [u8], operands_buffer: &'a mut [f64]) -> Self {
DictionaryParser {
data,
offset: 0,
operands_offset: 0,
operands: operands_buffer,
operands_len: 0,
}
}
#[inline(never)]
pub fn parse_next(&mut self) -> Option<Operator> {
let mut s = Stream::new_at(self.data, self.offset)?;
self.operands_offset = self.offset;
while !s.at_end() {
let b = s.read::<u8>()?;
// 0..=21 bytes are operators.
if is_dict_one_byte_op(b) {
let mut operator = u16::from(b);
// Check that operator is two byte long.
if b == TWO_BYTE_OPERATOR_MARK {
// Use a 1200 'prefix' to make two byte operators more readable.
// 12 3 => 1203
operator = 1200 + u16::from(s.read::<u8>()?);
}
self.offset = s.offset();
return Some(Operator(operator));
} else {
skip_number(b, &mut s)?;
}
}
None
}
/// Parses operands of the current operator.
///
/// In the DICT structure, operands are defined before an operator.
/// So we are trying to find an operator first and the we can actually parse the operands.
///
/// Since this methods is pretty expensive and we do not care about most of the operators,
/// we can speed up parsing by parsing operands only for required operators.
///
/// We still have to "skip" operands during operators search (see `skip_number()`),
/// but it's still faster that a naive method.
pub fn parse_operands(&mut self) -> Option<()> {
let mut s = Stream::new_at(self.data, self.operands_offset)?;
self.operands_len = 0;
while !s.at_end() {
let b = s.read::<u8>()?;
// 0..=21 bytes are operators.
if is_dict_one_byte_op(b) {
break;
} else {
let op = parse_number(b, &mut s)?;
self.operands[usize::from(self.operands_len)] = op;
self.operands_len += 1;
if usize::from(self.operands_len) >= self.operands.len() {
break;
}
}
}
Some(())
}
#[inline]
pub fn operands(&self) -> &[f64] {
&self.operands[..usize::from(self.operands_len)]
}
#[inline]
pub fn parse_number(&mut self) -> Option<f64> {
self.parse_operands()?;
self.operands().get(0).cloned()
}
#[inline]
pub fn parse_offset(&mut self) -> Option<usize> {
self.parse_operands()?;
let operands = self.operands();
if operands.len() == 1 {
usize::try_from(operands[0] as i32).ok()
} else {
None
}
}
#[inline]
pub fn parse_range(&mut self) -> Option<Range<usize>> {
self.parse_operands()?;
let operands = self.operands();
if operands.len() == 2 {
let len = usize::try_from(operands[0] as i32).ok()?;
let start = usize::try_from(operands[1] as i32).ok()?;
let end = start.checked_add(len)?;
Some(start..end)
} else {
None
}
}
}
// One-byte CFF DICT Operators according to the
// Adobe Technical Note #5176, Appendix H CFF DICT Encoding.
pub fn is_dict_one_byte_op(b: u8) -> bool {
match b {
0..=27 => true,
28..=30 => false, // numbers
31 => true, // Reserved
32..=254 => false, // numbers
255 => true, // Reserved
}
}
// Adobe Technical Note #5177, Table 3 Operand Encoding
pub fn parse_number(b0: u8, s: &mut Stream) -> Option<f64> {
match b0 {
28 => {
let n = i32::from(s.read::<i16>()?);
Some(f64::from(n))
}
29 => {
let n = s.read::<i32>()?;
Some(f64::from(n))
}
30 => parse_float(s),
32..=246 => {
let n = i32::from(b0) - 139;
Some(f64::from(n))
}
247..=250 => {
let b1 = i32::from(s.read::<u8>()?);
let n = (i32::from(b0) - 247) * 256 + b1 + 108;
Some(f64::from(n))
}
251..=254 => {
let b1 = i32::from(s.read::<u8>()?);
let n = -(i32::from(b0) - 251) * 256 - b1 - 108;
Some(f64::from(n))
}
_ => None,
}
}
fn parse_float(s: &mut Stream) -> Option<f64> {
let mut data = [0u8; FLOAT_STACK_LEN];
let mut idx = 0;
loop {
let b1: u8 = s.read()?;
let nibble1 = b1 >> 4;
let nibble2 = b1 & 15;
if nibble1 == END_OF_FLOAT_FLAG {
break;
}
idx = parse_float_nibble(nibble1, idx, &mut data)?;
if nibble2 == END_OF_FLOAT_FLAG {
break;
}
idx = parse_float_nibble(nibble2, idx, &mut data)?;
}
let s = core::str::from_utf8(&data[..idx]).ok()?;
let n = s.parse().ok()?;
Some(n)
}
// Adobe Technical Note #5176, Table 5 Nibble Definitions
fn parse_float_nibble(nibble: u8, mut idx: usize, data: &mut [u8]) -> Option<usize> {
if idx == FLOAT_STACK_LEN {
return None;
}
match nibble {
0..=9 => {
data[idx] = b'0' + nibble;
}
10 => {
data[idx] = b'.';
}
11 => {
data[idx] = b'E';
}
12 => {
if idx + 1 == FLOAT_STACK_LEN {
return None;
}
data[idx] = b'E';
idx += 1;
data[idx] = b'-';
}
13 => {
return None;
}
14 => {
data[idx] = b'-';
}
_ => {
return None;
}
}
idx += 1;
Some(idx)
}
// Just like `parse_number`, but doesn't actually parses the data.
pub fn skip_number(b0: u8, s: &mut Stream) -> Option<()> {
match b0 {
28 => s.skip::<u16>(),
29 => s.skip::<u32>(),
30 => {
while !s.at_end() {
let b1 = s.read::<u8>()?;
let nibble1 = b1 >> 4;
let nibble2 = b1 & 15;
if nibble1 == END_OF_FLOAT_FLAG || nibble2 == END_OF_FLOAT_FLAG {
break;
}
}
}
32..=246 => {}
247..=250 => s.skip::<u8>(),
251..=254 => s.skip::<u8>(),
_ => return None,
}
Some(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn parse_dict_number() {
assert_eq!(
parse_number(0xFA, &mut Stream::new(&[0x7C])).unwrap(),
1000.0
);
assert_eq!(
parse_number(0xFE, &mut Stream::new(&[0x7C])).unwrap(),
-1000.0
);
assert_eq!(
parse_number(0x1C, &mut Stream::new(&[0x27, 0x10])).unwrap(),
10000.0
);
assert_eq!(
parse_number(0x1C, &mut Stream::new(&[0xD8, 0xF0])).unwrap(),
-10000.0
);
assert_eq!(
parse_number(0x1D, &mut Stream::new(&[0x00, 0x01, 0x86, 0xA0])).unwrap(),
100000.0
);
assert_eq!(
parse_number(0x1D, &mut Stream::new(&[0xFF, 0xFE, 0x79, 0x60])).unwrap(),
-100000.0
);
}
}