1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
use std::{
    fmt::{self, Debug, Formatter},
    io::{Cursor, Error, ErrorKind, Read, Result as IoResult, Seek, SeekFrom},
};

#[derive(Debug, Clone, Eq, PartialEq)]
struct Toc {
    toctype: u32,
    subtype: u32,
    pos: u32,
}

/// A struct representing an image.
/// Pixels are in ARGB format, with each byte representing a single channel.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct Image {
    /// The nominal size of the image.
    pub size: u32,

    /// The actual width of the image. Doesn't need to match `size`.
    pub width: u32,

    /// The actual height of the image. Doesn't need to match `size`.
    pub height: u32,

    /// The X coordinate of the hotspot pixel (the pixel where the tip of the arrow is situated)
    pub xhot: u32,

    /// The Y coordinate of the hotspot pixel (the pixel where the tip of the arrow is situated)
    pub yhot: u32,

    /// The amount of time (in milliseconds) that this image should be shown for, before switching to the next.
    pub delay: u32,

    /// A slice containing the pixels' bytes, in RGBA format (or, in the order of the file).
    pub pixels_rgba: Vec<u8>,

    /// A slice containing the pixels' bytes, in ARGB format.
    pub pixels_argb: Vec<u8>,
}

impl std::fmt::Display for Image {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("Image")
            .field("size", &self.size)
            .field("width", &self.width)
            .field("height", &self.height)
            .field("xhot", &self.xhot)
            .field("yhot", &self.yhot)
            .field("delay", &self.delay)
            .field("pixels", &"/* omitted */")
            .finish()
    }
}

fn parse_header(i: &mut impl Read) -> IoResult<(u32, u32)> {
    i.tag(*b"Xcur")?;
    let header = i.u32_le()?;
    let _version = i.u32_le()?;
    let ntoc = i.u32_le()?;

    Ok((header, ntoc))
}

fn parse_toc(i: &mut impl Read) -> IoResult<Toc> {
    let toctype = i.u32_le()?; // Type
    let subtype = i.u32_le()?; // Subtype
    let pos = i.u32_le()?; // Position

    Ok(Toc {
        toctype,
        subtype,
        pos,
    })
}

fn parse_img(i: &mut impl Read) -> IoResult<Image> {
    i.tag([0x24, 0x00, 0x00, 0x00])?; // Header size
    i.tag([0x02, 0x00, 0xfd, 0xff])?; // Type
    let size = i.u32_le()?;
    i.tag([0x01, 0x00, 0x00, 0x00])?; // Image version (1)
    let width = i.u32_le()?;
    let height = i.u32_le()?;
    let xhot = i.u32_le()?;
    let yhot = i.u32_le()?;
    let delay = i.u32_le()?;

    // Check image is well-formed. Taken from https://gitlab.freedesktop.org/xorg/lib/libxcursor/-/blob/09617bcc9a0f1b5072212da5f8fede92ab85d157/src/file.c#L456-463
    if width > 0x7fff || height > 0x7fff {
        return Err(Error::new(ErrorKind::Other, "Image too large"));
    }
    if width == 0 || height == 0 {
        return Err(Error::new(
            ErrorKind::Other,
            "Image with zero width or height",
        ));
    }
    if xhot > width || yhot > height {
        return Err(Error::new(ErrorKind::Other, "Hotspot outside image"));
    }

    let img_length: usize = (4 * width * height) as usize;
    let pixels_rgba = i.take_bytes(img_length)?;
    let pixels_argb = rgba_to_argb(&pixels_rgba);

    Ok(Image {
        size,
        width,
        height,
        xhot,
        yhot,
        delay,
        pixels_argb,
        pixels_rgba,
    })
}

/// Converts a RGBA slice into an ARGB vec
///
/// Note that, if the input length is not
/// a multiple of 4, the extra elements are ignored.
fn rgba_to_argb(i: &[u8]) -> Vec<u8> {
    let mut res = Vec::with_capacity(i.len());

    for rgba in i.chunks_exact(4) {
        res.push(rgba[3]);
        res.push(rgba[0]);
        res.push(rgba[1]);
        res.push(rgba[2]);
    }

    res
}

/// Parse an XCursor file into its images.
pub fn parse_xcursor(content: &[u8]) -> Option<Vec<Image>> {
    parse_xcursor_stream(&mut Cursor::new(content)).ok()
}

/// Parse an XCursor file into its images.
pub fn parse_xcursor_stream<R: Read + Seek>(input: &mut R) -> IoResult<Vec<Image>> {
    let (header, ntoc) = parse_header(input)?;
    input.seek(SeekFrom::Start(header as u64))?;

    let mut img_indices = Vec::new();
    for _ in 0..ntoc {
        let toc = parse_toc(input)?;

        if toc.toctype == 0xfffd_0002 {
            img_indices.push(toc.pos);
        }
    }

    let mut imgs = Vec::with_capacity(ntoc as usize);
    for index in img_indices {
        input.seek(SeekFrom::Start(index.into()))?;
        imgs.push(parse_img(input)?);
    }

    Ok(imgs)
}

trait StreamExt {
    /// Parse a series of bytes, returning `None` if it doesn't exist.
    fn tag(&mut self, tag: [u8; 4]) -> IoResult<()>;

    /// Take a slice of bytes.
    fn take_bytes(&mut self, len: usize) -> IoResult<Vec<u8>>;

    /// Parse a 32-bit little endian number.
    fn u32_le(&mut self) -> IoResult<u32>;
}

impl<R: Read> StreamExt for R {
    fn tag(&mut self, tag: [u8; 4]) -> IoResult<()> {
        let mut data = [0u8; 4];
        self.read_exact(&mut data)?;
        if data != tag {
            Err(Error::new(ErrorKind::Other, "Tag mismatch"))
        } else {
            Ok(())
        }
    }

    fn take_bytes(&mut self, len: usize) -> IoResult<Vec<u8>> {
        let mut data = vec![0; len];
        self.read_exact(&mut data)?;
        Ok(data)
    }

    fn u32_le(&mut self) -> IoResult<u32> {
        let mut data = [0u8; 4];
        self.read_exact(&mut data)?;
        Ok(u32::from_le_bytes(data))
    }
}

#[cfg(test)]
mod tests {
    use super::{parse_header, parse_toc, parse_xcursor, rgba_to_argb, Image, Toc};
    use std::io::Cursor;

    // A sample (and simple) XCursor file generated with xcursorgen.
    // Contains a single 4x4 image.
    const FILE_CONTENTS: [u8; 128] = [
        0x58, 0x63, 0x75, 0x72, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00,
        0x00, 0x02, 0x00, 0xFD, 0xFF, 0x04, 0x00, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x24, 0x00,
        0x00, 0x00, 0x02, 0x00, 0xFD, 0xFF, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04,
        0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
        0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
        0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
        0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00,
        0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,
        0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80,
    ];

    #[test]
    fn test_parse_header() {
        let mut cursor = Cursor::new(&FILE_CONTENTS[..]);
        assert_eq!(parse_header(&mut cursor).unwrap(), (16, 1));
        assert_eq!(cursor.position(), 16);
    }

    #[test]
    fn test_parse_toc() {
        let toc = Toc {
            toctype: 0xfffd0002,
            subtype: 4,
            pos: 0x1c,
        };
        let mut cursor = Cursor::new(&FILE_CONTENTS[16..]);
        assert_eq!(parse_toc(&mut cursor).unwrap(), toc);
        assert_eq!(cursor.position(), 28 - 16);
    }

    #[test]
    fn test_parse_image() {
        // The image always repeats the same pixels across its 4 x 4 pixels
        let make_pixels = |pixel: [u8; 4]| {
            // This is just "pixels.repeat(4 * 4)", but working in Rust 1.34
            std::iter::repeat(pixel)
                .take(4 * 4)
                .flat_map(|p| p.iter().cloned().collect::<Vec<_>>())
                .collect()
        };
        let expected = Image {
            size: 4,
            width: 4,
            height: 4,
            xhot: 1,
            yhot: 1,
            delay: 1,
            pixels_rgba: make_pixels([0, 0, 0, 128]),
            pixels_argb: make_pixels([128, 0, 0, 0]),
        };
        assert_eq!(Some(vec![expected]), parse_xcursor(&FILE_CONTENTS));
    }

    #[test]
    fn test_one_image_three_times() {
        let data = [
            b'X', b'c', b'u', b'r', // magic
            0x10, 0x00, 0x00, 0x00, // header file offset (16)
            0x00, 0x00, 0x00, 0x00, // version
            0x03, 0x00, 0x00, 0x00, // num TOC entries, 3
            // TOC
            0x02, 0x00, 0xfd, 0xff, // IMAGE_TYPE
            0x04, 0x00, 0x00, 0x00, // size 4
            0x34, 0x00, 0x00, 0x00, // image offset (52)
            0x02, 0x00, 0xfd, 0xff, // IMAGE_TYPE
            0x03, 0x00, 0x00, 0x00, // size 3
            0x34, 0x00, 0x00, 0x00, // image offset (52)
            0x02, 0x00, 0xfd, 0xff, // IMAGE_TYPE
            0x04, 0x00, 0x00, 0x00, // size 4
            0x34, 0x00, 0x00, 0x00, // image offset (52)
            // image
            0x24, 0x00, 0x00, 0x00, // header
            0x02, 0x00, 0xfd, 0xff, // IMAGE_TYPE
            0x04, 0x00, 0x00, 0x00, // size 4
            0x01, 0x00, 0x00, 0x00, // version
            0x01, 0x00, 0x00, 0x00, // width 1
            0x01, 0x00, 0x00, 0x00, // height 1
            0x00, 0x00, 0x00, 0x00, // x_hot 0
            0x00, 0x00, 0x00, 0x00, // y_hot 0
            0x00, 0x00, 0x00, 0x00, // delay 0
            0x12, 0x34, 0x56, 0x78, // pixel
        ];
        let expected = Image {
            size: 4,
            width: 1,
            height: 1,
            xhot: 0,
            yhot: 0,
            delay: 0,
            pixels_rgba: vec![0x12, 0x34, 0x56, 0x78],
            pixels_argb: vec![0x78, 0x12, 0x34, 0x56],
        };
        assert_eq!(
            Some(vec![expected.clone(), expected.clone(), expected.clone()]),
            parse_xcursor(&data)
        );
    }

    #[test]
    fn test_rgba_to_argb() {
        let initial: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];

        assert_eq!(rgba_to_argb(&initial), [3u8, 0, 1, 2, 7, 4, 5, 6])
    }

    #[test]
    fn test_rgba_to_argb_extra_items() {
        let initial: [u8; 9] = [0, 1, 2, 3, 4, 5, 6, 7, 8];

        assert_eq!(rgba_to_argb(&initial), &[3u8, 0, 1, 2, 7, 4, 5, 6]);
    }

    #[test]
    fn test_rgba_to_argb_no_items() {
        let initial: &[u8] = &[];

        assert_eq!(initial, &rgba_to_argb(initial)[..]);
    }
}