webpki/
signed_data.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use crate::der::{self, FromDer};
use crate::error::{DerTypeId, Error};
use crate::verify_cert::Budget;

use pki_types::SignatureVerificationAlgorithm;

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

/// X.509 certificates and related items that are signed are almost always
/// encoded in the format "tbs||signatureAlgorithm||signature". This structure
/// captures this pattern as an owned data type.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub(crate) struct OwnedSignedData {
    /// The signed data. This would be `tbsCertificate` in the case of an X.509
    /// certificate, `tbsResponseData` in the case of an OCSP response, `tbsCertList`
    /// in the case of a CRL, and the data nested in the `digitally-signed` construct for
    /// TLS 1.2 signed data.
    pub(crate) data: Vec<u8>,

    /// The value of the `AlgorithmIdentifier`. This would be
    /// `signatureAlgorithm` in the case of an X.509 certificate, OCSP
    /// response or CRL. This would have to be synthesized in the case of TLS 1.2
    /// signed data, since TLS does not identify algorithms by ASN.1 OIDs.
    pub(crate) algorithm: Vec<u8>,

    /// The value of the signature. This would be `signature` in an X.509
    /// certificate, OCSP response or CRL. This would be the value of
    /// `DigitallySigned.signature` for TLS 1.2 signed data.
    pub(crate) signature: Vec<u8>,
}

#[cfg(feature = "alloc")]
impl OwnedSignedData {
    /// Return a borrowed [`SignedData`] from the owned representation.
    pub(crate) fn borrow(&self) -> SignedData<'_> {
        SignedData {
            data: untrusted::Input::from(&self.data),
            algorithm: untrusted::Input::from(&self.algorithm),
            signature: untrusted::Input::from(&self.signature),
        }
    }
}

/// X.509 certificates and related items that are signed are almost always
/// encoded in the format "tbs||signatureAlgorithm||signature". This structure
/// captures this pattern.
#[derive(Debug)]
pub(crate) struct SignedData<'a> {
    /// The signed data. This would be `tbsCertificate` in the case of an X.509
    /// certificate, `tbsResponseData` in the case of an OCSP response, `tbsCertList`
    /// in the case of a CRL, and the data nested in the `digitally-signed` construct for
    /// TLS 1.2 signed data.
    pub(crate) data: untrusted::Input<'a>,

    /// The value of the `AlgorithmIdentifier`. This would be
    /// `signatureAlgorithm` in the case of an X.509 certificate, OCSP
    /// response or CRL. This would have to be synthesized in the case of TLS 1.2
    /// signed data, since TLS does not identify algorithms by ASN.1 OIDs.
    pub(crate) algorithm: untrusted::Input<'a>,

    /// The value of the signature. This would be `signature` in an X.509
    /// certificate, OCSP response or CRL. This would be the value of
    /// `DigitallySigned.signature` for TLS 1.2 signed data.
    pub(crate) signature: untrusted::Input<'a>,
}

impl<'a> SignedData<'a> {
    /// Parses the concatenation of "tbs||signatureAlgorithm||signature" that
    /// is common in the X.509 certificate and OCSP response syntaxes.
    ///
    /// X.509 Certificates (RFC 5280) look like this:
    ///
    /// ```ASN.1
    /// Certificate (SEQUENCE) {
    ///     tbsCertificate TBSCertificate,
    ///     signatureAlgorithm AlgorithmIdentifier,
    ///     signatureValue BIT STRING
    /// }
    /// ```
    ///
    /// OCSP responses (RFC 6960) look like this:
    /// ```ASN.1
    /// BasicOCSPResponse {
    ///     tbsResponseData ResponseData,
    ///     signatureAlgorithm AlgorithmIdentifier,
    ///     signature BIT STRING,
    ///     certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL
    /// }
    /// ```
    ///
    /// Note that this function does NOT parse the outermost `SEQUENCE` or the
    /// `certs` value.
    ///
    /// The return value's first component is the contents of
    /// `tbsCertificate`/`tbsResponseData`; the second component is a `SignedData`
    /// structure that can be passed to `verify_signed_data`.
    ///
    /// The provided size_limit will enforce the largest possible outermost `SEQUENCE` this
    /// function will read.
    pub(crate) fn from_der(
        der: &mut untrusted::Reader<'a>,
        size_limit: usize,
    ) -> Result<(untrusted::Input<'a>, Self), Error> {
        let (data, tbs) = der.read_partial(|input| {
            der::expect_tag_and_get_value_limited(input, der::Tag::Sequence, size_limit)
        })?;
        let algorithm = der::expect_tag(der, der::Tag::Sequence)?;
        let signature = der::bit_string_with_no_unused_bits(der)?;

        Ok((
            tbs,
            SignedData {
                data,
                algorithm,
                signature,
            },
        ))
    }

    /// Convert the borrowed signed data to an [`OwnedSignedData`].
    #[cfg(feature = "alloc")]
    pub(crate) fn to_owned(&self) -> OwnedSignedData {
        OwnedSignedData {
            data: self.data.as_slice_less_safe().to_vec(),
            algorithm: self.algorithm.as_slice_less_safe().to_vec(),
            signature: self.signature.as_slice_less_safe().to_vec(),
        }
    }
}

/// Verify `signed_data` using the public key in the DER-encoded
/// SubjectPublicKeyInfo `spki` using one of the algorithms in
/// `supported_algorithms`.
///
/// The algorithm is chosen based on the algorithm information encoded in the
/// algorithm identifiers in `public_key` and `signed_data.algorithm`. The
/// ordering of the algorithms in `supported_algorithms` does not really matter,
/// but generally more common algorithms should go first, as it is scanned
/// linearly for matches.
pub(crate) fn verify_signed_data(
    supported_algorithms: &[&dyn SignatureVerificationAlgorithm],
    spki_value: untrusted::Input<'_>,
    signed_data: &SignedData<'_>,
    budget: &mut Budget,
) -> Result<(), Error> {
    budget.consume_signature()?;

    // We need to verify the signature in `signed_data` using the public key
    // in `public_key`. In order to know which *ring* signature verification
    // algorithm to use, we need to know the public key algorithm (ECDSA,
    // RSA PKCS#1, etc.), the curve (if applicable), and the digest algorithm.
    // `signed_data` identifies only the public key algorithm and the digest
    // algorithm, and `public_key` identifies only the public key algorithm and
    // the curve (if any). Thus, we have to combine information from both
    // inputs to figure out which `ring::signature::VerificationAlgorithm` to
    // use to verify the signature.
    //
    // This is all further complicated by the fact that we don't have any
    // implicit knowledge about any algorithms or identifiers, since all of
    // that information is encoded in `supported_algorithms.` In particular, we
    // avoid hard-coding any of that information so that (link-time) dead code
    // elimination will work effectively in eliminating code for unused
    // algorithms.

    // Parse the signature.
    //
    let mut found_signature_alg_match = false;
    for supported_alg in supported_algorithms
        .iter()
        .filter(|alg| alg.signature_alg_id().as_ref() == signed_data.algorithm.as_slice_less_safe())
    {
        match verify_signature(
            *supported_alg,
            spki_value,
            signed_data.data,
            signed_data.signature,
        ) {
            Err(Error::UnsupportedSignatureAlgorithmForPublicKey) => {
                found_signature_alg_match = true;
                continue;
            }
            result => {
                return result;
            }
        }
    }

    if found_signature_alg_match {
        Err(Error::UnsupportedSignatureAlgorithmForPublicKey)
    } else {
        Err(Error::UnsupportedSignatureAlgorithm)
    }
}

pub(crate) fn verify_signature(
    signature_alg: &dyn SignatureVerificationAlgorithm,
    spki_value: untrusted::Input<'_>,
    msg: untrusted::Input<'_>,
    signature: untrusted::Input<'_>,
) -> Result<(), Error> {
    let spki = der::read_all::<SubjectPublicKeyInfo<'_>>(spki_value)?;
    if signature_alg.public_key_alg_id().as_ref() != spki.algorithm_id_value.as_slice_less_safe() {
        return Err(Error::UnsupportedSignatureAlgorithmForPublicKey);
    }

    signature_alg
        .verify_signature(
            spki.key_value.as_slice_less_safe(),
            msg.as_slice_less_safe(),
            signature.as_slice_less_safe(),
        )
        .map_err(|_| Error::InvalidSignatureForPublicKey)
}

pub(crate) struct SubjectPublicKeyInfo<'a> {
    algorithm_id_value: untrusted::Input<'a>,
    key_value: untrusted::Input<'a>,
}

impl<'a> FromDer<'a> for SubjectPublicKeyInfo<'a> {
    // Parse the public key into an algorithm OID, an optional curve OID, and the
    // key value. The caller needs to check whether these match the
    // `PublicKeyAlgorithm` for the `SignatureVerificationAlgorithm` that is matched when
    // parsing the signature.
    fn from_der(reader: &mut untrusted::Reader<'a>) -> Result<Self, Error> {
        let algorithm_id_value = der::expect_tag(reader, der::Tag::Sequence)?;
        let key_value = der::bit_string_with_no_unused_bits(reader)?;
        Ok(SubjectPublicKeyInfo {
            algorithm_id_value,
            key_value,
        })
    }

    const TYPE_ID: DerTypeId = DerTypeId::SubjectPublicKeyInfo;
}