webpki/signed_data.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use crate::der::{self, FromDer};
use crate::error::{DerTypeId, Error};
use crate::verify_cert::Budget;
use pki_types::SignatureVerificationAlgorithm;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// X.509 certificates and related items that are signed are almost always
/// encoded in the format "tbs||signatureAlgorithm||signature". This structure
/// captures this pattern as an owned data type.
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
pub(crate) struct OwnedSignedData {
/// The signed data. This would be `tbsCertificate` in the case of an X.509
/// certificate, `tbsResponseData` in the case of an OCSP response, `tbsCertList`
/// in the case of a CRL, and the data nested in the `digitally-signed` construct for
/// TLS 1.2 signed data.
pub(crate) data: Vec<u8>,
/// The value of the `AlgorithmIdentifier`. This would be
/// `signatureAlgorithm` in the case of an X.509 certificate, OCSP
/// response or CRL. This would have to be synthesized in the case of TLS 1.2
/// signed data, since TLS does not identify algorithms by ASN.1 OIDs.
pub(crate) algorithm: Vec<u8>,
/// The value of the signature. This would be `signature` in an X.509
/// certificate, OCSP response or CRL. This would be the value of
/// `DigitallySigned.signature` for TLS 1.2 signed data.
pub(crate) signature: Vec<u8>,
}
#[cfg(feature = "alloc")]
impl OwnedSignedData {
/// Return a borrowed [`SignedData`] from the owned representation.
pub(crate) fn borrow(&self) -> SignedData<'_> {
SignedData {
data: untrusted::Input::from(&self.data),
algorithm: untrusted::Input::from(&self.algorithm),
signature: untrusted::Input::from(&self.signature),
}
}
}
/// X.509 certificates and related items that are signed are almost always
/// encoded in the format "tbs||signatureAlgorithm||signature". This structure
/// captures this pattern.
#[derive(Debug)]
pub(crate) struct SignedData<'a> {
/// The signed data. This would be `tbsCertificate` in the case of an X.509
/// certificate, `tbsResponseData` in the case of an OCSP response, `tbsCertList`
/// in the case of a CRL, and the data nested in the `digitally-signed` construct for
/// TLS 1.2 signed data.
pub(crate) data: untrusted::Input<'a>,
/// The value of the `AlgorithmIdentifier`. This would be
/// `signatureAlgorithm` in the case of an X.509 certificate, OCSP
/// response or CRL. This would have to be synthesized in the case of TLS 1.2
/// signed data, since TLS does not identify algorithms by ASN.1 OIDs.
pub(crate) algorithm: untrusted::Input<'a>,
/// The value of the signature. This would be `signature` in an X.509
/// certificate, OCSP response or CRL. This would be the value of
/// `DigitallySigned.signature` for TLS 1.2 signed data.
pub(crate) signature: untrusted::Input<'a>,
}
impl<'a> SignedData<'a> {
/// Parses the concatenation of "tbs||signatureAlgorithm||signature" that
/// is common in the X.509 certificate and OCSP response syntaxes.
///
/// X.509 Certificates (RFC 5280) look like this:
///
/// ```ASN.1
/// Certificate (SEQUENCE) {
/// tbsCertificate TBSCertificate,
/// signatureAlgorithm AlgorithmIdentifier,
/// signatureValue BIT STRING
/// }
/// ```
///
/// OCSP responses (RFC 6960) look like this:
/// ```ASN.1
/// BasicOCSPResponse {
/// tbsResponseData ResponseData,
/// signatureAlgorithm AlgorithmIdentifier,
/// signature BIT STRING,
/// certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL
/// }
/// ```
///
/// Note that this function does NOT parse the outermost `SEQUENCE` or the
/// `certs` value.
///
/// The return value's first component is the contents of
/// `tbsCertificate`/`tbsResponseData`; the second component is a `SignedData`
/// structure that can be passed to `verify_signed_data`.
///
/// The provided size_limit will enforce the largest possible outermost `SEQUENCE` this
/// function will read.
pub(crate) fn from_der(
der: &mut untrusted::Reader<'a>,
size_limit: usize,
) -> Result<(untrusted::Input<'a>, Self), Error> {
let (data, tbs) = der.read_partial(|input| {
der::expect_tag_and_get_value_limited(input, der::Tag::Sequence, size_limit)
})?;
let algorithm = der::expect_tag(der, der::Tag::Sequence)?;
let signature = der::bit_string_with_no_unused_bits(der)?;
Ok((
tbs,
SignedData {
data,
algorithm,
signature,
},
))
}
/// Convert the borrowed signed data to an [`OwnedSignedData`].
#[cfg(feature = "alloc")]
pub(crate) fn to_owned(&self) -> OwnedSignedData {
OwnedSignedData {
data: self.data.as_slice_less_safe().to_vec(),
algorithm: self.algorithm.as_slice_less_safe().to_vec(),
signature: self.signature.as_slice_less_safe().to_vec(),
}
}
}
/// Verify `signed_data` using the public key in the DER-encoded
/// SubjectPublicKeyInfo `spki` using one of the algorithms in
/// `supported_algorithms`.
///
/// The algorithm is chosen based on the algorithm information encoded in the
/// algorithm identifiers in `public_key` and `signed_data.algorithm`. The
/// ordering of the algorithms in `supported_algorithms` does not really matter,
/// but generally more common algorithms should go first, as it is scanned
/// linearly for matches.
pub(crate) fn verify_signed_data(
supported_algorithms: &[&dyn SignatureVerificationAlgorithm],
spki_value: untrusted::Input<'_>,
signed_data: &SignedData<'_>,
budget: &mut Budget,
) -> Result<(), Error> {
budget.consume_signature()?;
// We need to verify the signature in `signed_data` using the public key
// in `public_key`. In order to know which *ring* signature verification
// algorithm to use, we need to know the public key algorithm (ECDSA,
// RSA PKCS#1, etc.), the curve (if applicable), and the digest algorithm.
// `signed_data` identifies only the public key algorithm and the digest
// algorithm, and `public_key` identifies only the public key algorithm and
// the curve (if any). Thus, we have to combine information from both
// inputs to figure out which `ring::signature::VerificationAlgorithm` to
// use to verify the signature.
//
// This is all further complicated by the fact that we don't have any
// implicit knowledge about any algorithms or identifiers, since all of
// that information is encoded in `supported_algorithms.` In particular, we
// avoid hard-coding any of that information so that (link-time) dead code
// elimination will work effectively in eliminating code for unused
// algorithms.
// Parse the signature.
//
let mut found_signature_alg_match = false;
for supported_alg in supported_algorithms
.iter()
.filter(|alg| alg.signature_alg_id().as_ref() == signed_data.algorithm.as_slice_less_safe())
{
match verify_signature(
*supported_alg,
spki_value,
signed_data.data,
signed_data.signature,
) {
Err(Error::UnsupportedSignatureAlgorithmForPublicKey) => {
found_signature_alg_match = true;
continue;
}
result => {
return result;
}
}
}
if found_signature_alg_match {
Err(Error::UnsupportedSignatureAlgorithmForPublicKey)
} else {
Err(Error::UnsupportedSignatureAlgorithm)
}
}
pub(crate) fn verify_signature(
signature_alg: &dyn SignatureVerificationAlgorithm,
spki_value: untrusted::Input<'_>,
msg: untrusted::Input<'_>,
signature: untrusted::Input<'_>,
) -> Result<(), Error> {
let spki = der::read_all::<SubjectPublicKeyInfo<'_>>(spki_value)?;
if signature_alg.public_key_alg_id().as_ref() != spki.algorithm_id_value.as_slice_less_safe() {
return Err(Error::UnsupportedSignatureAlgorithmForPublicKey);
}
signature_alg
.verify_signature(
spki.key_value.as_slice_less_safe(),
msg.as_slice_less_safe(),
signature.as_slice_less_safe(),
)
.map_err(|_| Error::InvalidSignatureForPublicKey)
}
pub(crate) struct SubjectPublicKeyInfo<'a> {
algorithm_id_value: untrusted::Input<'a>,
key_value: untrusted::Input<'a>,
}
impl<'a> FromDer<'a> for SubjectPublicKeyInfo<'a> {
// Parse the public key into an algorithm OID, an optional curve OID, and the
// key value. The caller needs to check whether these match the
// `PublicKeyAlgorithm` for the `SignatureVerificationAlgorithm` that is matched when
// parsing the signature.
fn from_der(reader: &mut untrusted::Reader<'a>) -> Result<Self, Error> {
let algorithm_id_value = der::expect_tag(reader, der::Tag::Sequence)?;
let key_value = der::bit_string_with_no_unused_bits(reader)?;
Ok(SubjectPublicKeyInfo {
algorithm_id_value,
key_value,
})
}
const TYPE_ID: DerTypeId = DerTypeId::SubjectPublicKeyInfo;
}