jiff/civil/time.rs
1use core::time::Duration as UnsignedDuration;
2
3use crate::{
4 civil::{Date, DateTime},
5 duration::{Duration, SDuration},
6 error::{err, Error, ErrorContext},
7 fmt::{
8 self,
9 temporal::{self, DEFAULT_DATETIME_PARSER},
10 },
11 shared::util::itime::{ITime, ITimeNanosecond, ITimeSecond},
12 util::{
13 rangeint::{self, Composite, RFrom, RInto, TryRFrom},
14 round::increment,
15 t::{
16 self, CivilDayNanosecond, CivilDaySecond, Hour, Microsecond,
17 Millisecond, Minute, Nanosecond, Second, SubsecNanosecond, C,
18 },
19 },
20 RoundMode, SignedDuration, Span, SpanRound, Unit, Zoned,
21};
22
23/// A representation of civil "wall clock" time.
24///
25/// Conceptually, a `Time` value corresponds to the typical hours and minutes
26/// that you might see on a clock. This type also contains the second and
27/// fractional subsecond (to nanosecond precision) associated with a time.
28///
29/// # Civil time
30///
31/// A `Time` value behaves as if it corresponds precisely to a single
32/// nanosecond within a day, where all days have `86,400` seconds. That is,
33/// any given `Time` value corresponds to a nanosecond in the inclusive range
34/// `[0, 86399999999999]`, where `0` corresponds to `00:00:00.000000000`
35/// ([`Time::MIN`]) and `86399999999999` corresponds to `23:59:59.999999999`
36/// ([`Time::MAX`]). Moreover, in civil time, all hours have the same number of
37/// minutes, all minutes have the same number of seconds and all seconds have
38/// the same number of nanoseconds.
39///
40/// # Parsing and printing
41///
42/// The `Time` type provides convenient trait implementations of
43/// [`std::str::FromStr`] and [`std::fmt::Display`]:
44///
45/// ```
46/// use jiff::civil::Time;
47///
48/// let t: Time = "15:22:45".parse()?;
49/// assert_eq!(t.to_string(), "15:22:45");
50///
51/// # Ok::<(), Box<dyn std::error::Error>>(())
52/// ```
53///
54/// A civil `Time` can also be parsed from something that _contains_ a
55/// time, but with perhaps other data (such as an offset or time zone):
56///
57/// ```
58/// use jiff::civil::Time;
59///
60/// let t: Time = "2024-06-19T15:22:45-04[America/New_York]".parse()?;
61/// assert_eq!(t.to_string(), "15:22:45");
62///
63/// # Ok::<(), Box<dyn std::error::Error>>(())
64/// ```
65///
66/// For more information on the specific format supported, see the
67/// [`fmt::temporal`](crate::fmt::temporal) module documentation.
68///
69/// # Default value
70///
71/// For convenience, this type implements the `Default` trait. Its default
72/// value is midnight. i.e., `00:00:00.000000000`.
73///
74/// # Leap seconds
75///
76/// Jiff does not support leap seconds. Jiff behaves as if they don't exist.
77/// The only exception is that if one parses a time with a second component
78/// of `60`, then it is automatically constrained to `59`:
79///
80/// ```
81/// use jiff::civil::{Time, time};
82///
83/// let t: Time = "23:59:60".parse()?;
84/// assert_eq!(t, time(23, 59, 59, 0));
85///
86/// # Ok::<(), Box<dyn std::error::Error>>(())
87/// ```
88///
89/// # Comparisons
90///
91/// The `Time` type provides both `Eq` and `Ord` trait implementations to
92/// facilitate easy comparisons. When a time `t1` occurs before a time `t2`,
93/// then `t1 < t2`. For example:
94///
95/// ```
96/// use jiff::civil::time;
97///
98/// let t1 = time(7, 30, 1, 0);
99/// let t2 = time(8, 10, 0, 0);
100/// assert!(t1 < t2);
101/// ```
102///
103/// As mentioned above, `Time` values are not associated with timezones, and
104/// thus transitions such as DST are not taken into account when comparing
105/// `Time` values.
106///
107/// # Arithmetic
108///
109/// This type provides routines for adding and subtracting spans of time, as
110/// well as computing the span of time between two `Time` values.
111///
112/// For adding or subtracting spans of time, one can use any of the following
113/// routines:
114///
115/// * [`Time::wrapping_add`] or [`Time::wrapping_sub`] for wrapping arithmetic.
116/// * [`Time::checked_add`] or [`Time::checked_sub`] for checked arithmetic.
117/// * [`Time::saturating_add`] or [`Time::saturating_sub`] for saturating
118/// arithmetic.
119///
120/// Additionally, wrapping arithmetic is available via the `Add` and `Sub`
121/// trait implementations:
122///
123/// ```
124/// use jiff::{civil::time, ToSpan};
125///
126/// let t = time(20, 10, 1, 0);
127/// let span = 1.hours().minutes(49).seconds(59);
128/// assert_eq!(t + span, time(22, 0, 0, 0));
129///
130/// // Overflow will result in wrap-around unless using checked
131/// // arithmetic explicitly.
132/// let t = time(23, 59, 59, 999_999_999);
133/// assert_eq!(time(0, 0, 0, 0), t + 1.nanoseconds());
134/// ```
135///
136/// Wrapping arithmetic is used by default because it corresponds to how clocks
137/// showing the time of day behave in practice.
138///
139/// One can compute the span of time between two times using either
140/// [`Time::until`] or [`Time::since`]. It's also possible to subtract two
141/// `Time` values directly via a `Sub` trait implementation:
142///
143/// ```
144/// use jiff::{civil::time, ToSpan};
145///
146/// let time1 = time(22, 0, 0, 0);
147/// let time2 = time(20, 10, 1, 0);
148/// assert_eq!(
149/// time1 - time2,
150/// 1.hours().minutes(49).seconds(59).fieldwise(),
151/// );
152/// ```
153///
154/// The `until` and `since` APIs are polymorphic and allow re-balancing and
155/// rounding the span returned. For example, the default largest unit is hours
156/// (as exemplified above), but we can ask for smaller units:
157///
158/// ```
159/// use jiff::{civil::time, ToSpan, Unit};
160///
161/// let time1 = time(23, 30, 0, 0);
162/// let time2 = time(7, 0, 0, 0);
163/// assert_eq!(
164/// time1.since((Unit::Minute, time2))?,
165/// 990.minutes().fieldwise(),
166/// );
167///
168/// # Ok::<(), Box<dyn std::error::Error>>(())
169/// ```
170///
171/// Or even round the span returned:
172///
173/// ```
174/// use jiff::{civil::{TimeDifference, time}, RoundMode, ToSpan, Unit};
175///
176/// let time1 = time(23, 30, 0, 0);
177/// let time2 = time(23, 35, 59, 0);
178/// assert_eq!(
179/// time1.until(
180/// TimeDifference::new(time2).smallest(Unit::Minute),
181/// )?,
182/// 5.minutes().fieldwise(),
183/// );
184/// // `TimeDifference` uses truncation as a rounding mode by default,
185/// // but you can set the rounding mode to break ties away from zero:
186/// assert_eq!(
187/// time1.until(
188/// TimeDifference::new(time2)
189/// .smallest(Unit::Minute)
190/// .mode(RoundMode::HalfExpand),
191/// )?,
192/// // Rounds up to 6 minutes.
193/// 6.minutes().fieldwise(),
194/// );
195///
196/// # Ok::<(), Box<dyn std::error::Error>>(())
197/// ```
198///
199/// # Rounding
200///
201/// A `Time` can be rounded based on a [`TimeRound`] configuration of smallest
202/// units, rounding increment and rounding mode. Here's an example showing how
203/// to round to the nearest third hour:
204///
205/// ```
206/// use jiff::{civil::{TimeRound, time}, Unit};
207///
208/// let t = time(16, 27, 29, 999_999_999);
209/// assert_eq!(
210/// t.round(TimeRound::new().smallest(Unit::Hour).increment(3))?,
211/// time(15, 0, 0, 0),
212/// );
213/// // Or alternatively, make use of the `From<(Unit, i64)> for TimeRound`
214/// // trait implementation:
215/// assert_eq!(t.round((Unit::Hour, 3))?, time(15, 0, 0, 0));
216///
217/// # Ok::<(), Box<dyn std::error::Error>>(())
218/// ```
219///
220/// See [`Time::round`] for more details.
221#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
222pub struct Time {
223 hour: Hour,
224 minute: Minute,
225 second: Second,
226 subsec_nanosecond: SubsecNanosecond,
227}
228
229impl Time {
230 /// The minimum representable time value.
231 ///
232 /// This corresponds to `00:00:00.000000000`.
233 pub const MIN: Time = Time::midnight();
234
235 /// The maximum representable time value.
236 ///
237 /// This corresponds to `23:59:59.999999999`.
238 pub const MAX: Time = Time::constant(23, 59, 59, 999_999_999);
239
240 /// Creates a new `Time` value from its component hour, minute, second and
241 /// fractional subsecond (up to nanosecond precision) values.
242 ///
243 /// To set the component values of a time after creating it, use
244 /// [`TimeWith`] via [`Time::with`] to build a new [`Time`] from the fields
245 /// of an existing time.
246 ///
247 /// # Errors
248 ///
249 /// This returns an error unless *all* of the following conditions are
250 /// true:
251 ///
252 /// * `0 <= hour <= 23`
253 /// * `0 <= minute <= 59`
254 /// * `0 <= second <= 59`
255 /// * `0 <= subsec_nanosecond <= 999,999,999`
256 ///
257 /// # Example
258 ///
259 /// This shows an example of a valid time:
260 ///
261 /// ```
262 /// use jiff::civil::Time;
263 ///
264 /// let t = Time::new(21, 30, 5, 123_456_789).unwrap();
265 /// assert_eq!(t.hour(), 21);
266 /// assert_eq!(t.minute(), 30);
267 /// assert_eq!(t.second(), 5);
268 /// assert_eq!(t.millisecond(), 123);
269 /// assert_eq!(t.microsecond(), 456);
270 /// assert_eq!(t.nanosecond(), 789);
271 /// ```
272 ///
273 /// This shows an example of an invalid time:
274 ///
275 /// ```
276 /// use jiff::civil::Time;
277 ///
278 /// assert!(Time::new(21, 30, 60, 0).is_err());
279 /// ```
280 #[inline]
281 pub fn new(
282 hour: i8,
283 minute: i8,
284 second: i8,
285 subsec_nanosecond: i32,
286 ) -> Result<Time, Error> {
287 let hour = Hour::try_new("hour", hour)?;
288 let minute = Minute::try_new("minute", minute)?;
289 let second = Second::try_new("second", second)?;
290 let subsec_nanosecond =
291 SubsecNanosecond::try_new("subsec_nanosecond", subsec_nanosecond)?;
292 Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond))
293 }
294
295 /// Creates a new `Time` value in a `const` context.
296 ///
297 /// # Panics
298 ///
299 /// This panics if the given values do not correspond to a valid `Time`.
300 /// All of the following conditions must be true:
301 ///
302 /// * `0 <= hour <= 23`
303 /// * `0 <= minute <= 59`
304 /// * `0 <= second <= 59`
305 /// * `0 <= subsec_nanosecond <= 999,999,999`
306 ///
307 /// Similarly, when used in a const context, invalid parameters will
308 /// prevent your Rust program from compiling.
309 ///
310 /// # Example
311 ///
312 /// This shows an example of a valid time in a `const` context:
313 ///
314 /// ```
315 /// use jiff::civil::Time;
316 ///
317 /// const BEDTIME: Time = Time::constant(21, 30, 5, 123_456_789);
318 /// assert_eq!(BEDTIME.hour(), 21);
319 /// assert_eq!(BEDTIME.minute(), 30);
320 /// assert_eq!(BEDTIME.second(), 5);
321 /// assert_eq!(BEDTIME.millisecond(), 123);
322 /// assert_eq!(BEDTIME.microsecond(), 456);
323 /// assert_eq!(BEDTIME.nanosecond(), 789);
324 /// assert_eq!(BEDTIME.subsec_nanosecond(), 123_456_789);
325 /// ```
326 #[inline]
327 pub const fn constant(
328 hour: i8,
329 minute: i8,
330 second: i8,
331 subsec_nanosecond: i32,
332 ) -> Time {
333 if !Hour::contains(hour) {
334 panic!("invalid hour");
335 }
336 if !Minute::contains(minute) {
337 panic!("invalid minute");
338 }
339 if !Second::contains(second) {
340 panic!("invalid second");
341 }
342 if !SubsecNanosecond::contains(subsec_nanosecond) {
343 panic!("invalid nanosecond");
344 }
345 let hour = Hour::new_unchecked(hour);
346 let minute = Minute::new_unchecked(minute);
347 let second = Second::new_unchecked(second);
348 let subsec_nanosecond =
349 SubsecNanosecond::new_unchecked(subsec_nanosecond);
350 Time { hour, minute, second, subsec_nanosecond }
351 }
352
353 /// Returns the first moment of time in a day.
354 ///
355 /// Specifically, this has the `hour`, `minute`, `second`, `millisecond`,
356 /// `microsecond` and `nanosecond` fields all set to `0`.
357 ///
358 /// # Example
359 ///
360 /// ```
361 /// use jiff::civil::Time;
362 ///
363 /// let t = Time::midnight();
364 /// assert_eq!(t.hour(), 0);
365 /// assert_eq!(t.minute(), 0);
366 /// assert_eq!(t.second(), 0);
367 /// assert_eq!(t.millisecond(), 0);
368 /// assert_eq!(t.microsecond(), 0);
369 /// assert_eq!(t.nanosecond(), 0);
370 /// ```
371 #[inline]
372 pub const fn midnight() -> Time {
373 Time::constant(0, 0, 0, 0)
374 }
375
376 /// Create a builder for constructing a `Time` from the fields of this
377 /// time.
378 ///
379 /// See the methods on [`TimeWith`] for the different ways one can set the
380 /// fields of a new `Time`.
381 ///
382 /// # Example
383 ///
384 /// Unlike [`Date`], a [`Time`] is valid for all possible valid values
385 /// of its fields. That is, there is no way for two valid field values
386 /// to combine into an invalid `Time`. So, for `Time`, this builder does
387 /// have as much of a benefit versus an API design with methods like
388 /// `Time::with_hour` and `Time::with_minute`. Nevertheless, this builder
389 /// permits settings multiple fields at the same time and performing only
390 /// one validity check. Moreover, this provides a consistent API with other
391 /// date and time types in this crate.
392 ///
393 /// ```
394 /// use jiff::civil::time;
395 ///
396 /// let t1 = time(0, 0, 24, 0);
397 /// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?;
398 /// assert_eq!(t2, time(15, 30, 24, 10_000_000));
399 ///
400 /// # Ok::<(), Box<dyn std::error::Error>>(())
401 /// ```
402 #[inline]
403 pub fn with(self) -> TimeWith {
404 TimeWith::new(self)
405 }
406
407 /// Returns the "hour" component of this time.
408 ///
409 /// The value returned is guaranteed to be in the range `0..=23`.
410 ///
411 /// # Example
412 ///
413 /// ```
414 /// use jiff::civil::time;
415 ///
416 /// let t = time(13, 35, 56, 123_456_789);
417 /// assert_eq!(t.hour(), 13);
418 /// ```
419 #[inline]
420 pub fn hour(self) -> i8 {
421 self.hour_ranged().get()
422 }
423
424 /// Returns the "minute" component of this time.
425 ///
426 /// The value returned is guaranteed to be in the range `0..=59`.
427 ///
428 /// # Example
429 ///
430 /// ```
431 /// use jiff::civil::time;
432 ///
433 /// let t = time(13, 35, 56, 123_456_789);
434 /// assert_eq!(t.minute(), 35);
435 /// ```
436 #[inline]
437 pub fn minute(self) -> i8 {
438 self.minute_ranged().get()
439 }
440
441 /// Returns the "second" component of this time.
442 ///
443 /// The value returned is guaranteed to be in the range `0..=59`.
444 ///
445 /// # Example
446 ///
447 /// ```
448 /// use jiff::civil::time;
449 ///
450 /// let t = time(13, 35, 56, 123_456_789);
451 /// assert_eq!(t.second(), 56);
452 /// ```
453 #[inline]
454 pub fn second(self) -> i8 {
455 self.second_ranged().get()
456 }
457
458 /// Returns the "millisecond" component of this time.
459 ///
460 /// The value returned is guaranteed to be in the range `0..=999`.
461 ///
462 /// # Example
463 ///
464 /// ```
465 /// use jiff::civil::time;
466 ///
467 /// let t = time(13, 35, 56, 123_456_789);
468 /// assert_eq!(t.millisecond(), 123);
469 /// ```
470 #[inline]
471 pub fn millisecond(self) -> i16 {
472 self.millisecond_ranged().get()
473 }
474
475 /// Returns the "microsecond" component of this time.
476 ///
477 /// The value returned is guaranteed to be in the range `0..=999`.
478 ///
479 /// # Example
480 ///
481 /// ```
482 /// use jiff::civil::time;
483 ///
484 /// let t = time(13, 35, 56, 123_456_789);
485 /// assert_eq!(t.microsecond(), 456);
486 /// ```
487 #[inline]
488 pub fn microsecond(self) -> i16 {
489 self.microsecond_ranged().get()
490 }
491
492 /// Returns the "nanosecond" component of this time.
493 ///
494 /// The value returned is guaranteed to be in the range `0..=999`.
495 ///
496 /// # Example
497 ///
498 /// ```
499 /// use jiff::civil::time;
500 ///
501 /// let t = time(13, 35, 56, 123_456_789);
502 /// assert_eq!(t.nanosecond(), 789);
503 /// ```
504 #[inline]
505 pub fn nanosecond(self) -> i16 {
506 self.nanosecond_ranged().get()
507 }
508
509 /// Returns the fractional nanosecond for this `Time` value.
510 ///
511 /// If you want to set this value on `Time`, then use
512 /// [`TimeWith::subsec_nanosecond`] via [`Time::with`].
513 ///
514 /// The value returned is guaranteed to be in the range `0..=999_999_999`.
515 ///
516 /// # Example
517 ///
518 /// This shows the relationship between constructing a `Time` value
519 /// with routines like `with().millisecond()` and accessing the entire
520 /// fractional part as a nanosecond:
521 ///
522 /// ```
523 /// use jiff::civil::time;
524 ///
525 /// let t = time(15, 21, 35, 0).with().millisecond(987).build()?;
526 /// assert_eq!(t.subsec_nanosecond(), 987_000_000);
527 ///
528 /// # Ok::<(), Box<dyn std::error::Error>>(())
529 /// ```
530 ///
531 /// # Example: nanoseconds from a timestamp
532 ///
533 /// This shows how the fractional nanosecond part of a `Time` value
534 /// manifests from a specific timestamp.
535 ///
536 /// ```
537 /// use jiff::Timestamp;
538 ///
539 /// // 1,234 nanoseconds after the Unix epoch.
540 /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC")?;
541 /// let time = zdt.datetime().time();
542 /// assert_eq!(time.subsec_nanosecond(), 1_234);
543 ///
544 /// // 1,234 nanoseconds before the Unix epoch.
545 /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC")?;
546 /// let time = zdt.datetime().time();
547 /// // The nanosecond is equal to `1_000_000_000 - 1_234`.
548 /// assert_eq!(time.subsec_nanosecond(), 999998766);
549 /// // Looking at the other components of the time value might help.
550 /// assert_eq!(time.hour(), 23);
551 /// assert_eq!(time.minute(), 59);
552 /// assert_eq!(time.second(), 59);
553 ///
554 /// # Ok::<(), Box<dyn std::error::Error>>(())
555 /// ```
556 #[inline]
557 pub fn subsec_nanosecond(self) -> i32 {
558 self.subsec_nanosecond_ranged().get()
559 }
560
561 /// Given a [`Date`], this constructs a [`DateTime`] value with its time
562 /// component equal to this time.
563 ///
564 /// This is a convenience function for [`DateTime::from_parts`].
565 ///
566 /// # Example
567 ///
568 /// ```
569 /// use jiff::civil::{DateTime, date, time};
570 ///
571 /// let d = date(2010, 3, 14);
572 /// let t = time(2, 30, 0, 0);
573 /// assert_eq!(DateTime::from_parts(d, t), t.to_datetime(d));
574 /// ```
575 #[inline]
576 pub const fn to_datetime(self, date: Date) -> DateTime {
577 DateTime::from_parts(date, self)
578 }
579
580 /// A convenience function for constructing a [`DateTime`] from this time
581 /// on the date given by its components.
582 ///
583 /// # Example
584 ///
585 /// ```
586 /// use jiff::civil::time;
587 ///
588 /// assert_eq!(
589 /// time(2, 30, 0, 0).on(2010, 3, 14).to_string(),
590 /// "2010-03-14T02:30:00",
591 /// );
592 /// ```
593 ///
594 /// One can also flip the order by making use of [`Date::at`]:
595 ///
596 /// ```
597 /// use jiff::civil::date;
598 ///
599 /// assert_eq!(
600 /// date(2010, 3, 14).at(2, 30, 0, 0).to_string(),
601 /// "2010-03-14T02:30:00",
602 /// );
603 /// ```
604 #[inline]
605 pub const fn on(self, year: i16, month: i8, day: i8) -> DateTime {
606 DateTime::from_parts(Date::constant(year, month, day), self)
607 }
608
609 /// Add the given span to this time and wrap around on overflow.
610 ///
611 /// This operation accepts three different duration types: [`Span`],
612 /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
613 /// `From` trait implementations for the [`TimeArithmetic`] type.
614 ///
615 /// # Properties
616 ///
617 /// Given times `t1` and `t2`, and a span `s`, with `t2 = t1 + s`, it
618 /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum
619 /// to `t2`.
620 ///
621 /// In short, subtracting the given span from the sum returned by this
622 /// function is guaranteed to result in precisely the original time.
623 ///
624 /// # Example: available via addition operator
625 ///
626 /// This routine can be used via the `+` operator.
627 ///
628 /// ```
629 /// use jiff::{civil::time, ToSpan};
630 ///
631 /// let t = time(20, 10, 1, 0);
632 /// assert_eq!(
633 /// t + 1.hours().minutes(49).seconds(59),
634 /// time(22, 0, 0, 0),
635 /// );
636 /// ```
637 ///
638 /// # Example: add nanoseconds to a `Time`
639 ///
640 /// ```
641 /// use jiff::{civil::time, ToSpan};
642 ///
643 /// let t = time(22, 35, 1, 0);
644 /// assert_eq!(
645 /// time(22, 35, 3, 500_000_000),
646 /// t.wrapping_add(2_500_000_000i64.nanoseconds()),
647 /// );
648 /// ```
649 ///
650 /// # Example: add span with multiple units
651 ///
652 /// ```
653 /// use jiff::{civil::time, ToSpan};
654 ///
655 /// let t = time(20, 10, 1, 0);
656 /// assert_eq!(
657 /// time(22, 0, 0, 0),
658 /// t.wrapping_add(1.hours().minutes(49).seconds(59)),
659 /// );
660 /// ```
661 ///
662 /// # Example: adding an empty span is a no-op
663 ///
664 /// ```
665 /// use jiff::{civil::time, Span};
666 ///
667 /// let t = time(20, 10, 1, 0);
668 /// assert_eq!(t, t.wrapping_add(Span::new()));
669 /// ```
670 ///
671 /// # Example: addition wraps on overflow
672 ///
673 /// ```
674 /// use jiff::{civil::time, SignedDuration, ToSpan};
675 ///
676 /// let t = time(23, 59, 59, 999_999_999);
677 /// assert_eq!(
678 /// t.wrapping_add(1.nanoseconds()),
679 /// time(0, 0, 0, 0),
680 /// );
681 /// assert_eq!(
682 /// t.wrapping_add(SignedDuration::from_nanos(1)),
683 /// time(0, 0, 0, 0),
684 /// );
685 /// assert_eq!(
686 /// t.wrapping_add(std::time::Duration::from_nanos(1)),
687 /// time(0, 0, 0, 0),
688 /// );
689 /// ```
690 ///
691 /// Similarly, if there are any non-zero units greater than hours in the
692 /// given span, then they also result in wrapping behavior (i.e., they are
693 /// ignored):
694 ///
695 /// ```
696 /// use jiff::{civil::time, ToSpan};
697 ///
698 /// // doesn't matter what our time value is in this example
699 /// let t = time(0, 0, 0, 0);
700 /// assert_eq!(t, t.wrapping_add(1.days()));
701 /// ```
702 #[inline]
703 pub fn wrapping_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
704 let duration: TimeArithmetic = duration.into();
705 duration.wrapping_add(self)
706 }
707
708 #[inline]
709 fn wrapping_add_span(self, span: Span) -> Time {
710 let mut sum = self.to_nanosecond().without_bounds();
711 sum = sum.wrapping_add(
712 span.get_hours_ranged()
713 .without_bounds()
714 .wrapping_mul(t::NANOS_PER_HOUR),
715 );
716 sum = sum.wrapping_add(
717 span.get_minutes_ranged()
718 .without_bounds()
719 .wrapping_mul(t::NANOS_PER_MINUTE),
720 );
721 sum = sum.wrapping_add(
722 span.get_seconds_ranged()
723 .without_bounds()
724 .wrapping_mul(t::NANOS_PER_SECOND),
725 );
726 sum = sum.wrapping_add(
727 span.get_milliseconds_ranged()
728 .without_bounds()
729 .wrapping_mul(t::NANOS_PER_MILLI),
730 );
731 sum = sum.wrapping_add(
732 span.get_microseconds_ranged()
733 .without_bounds()
734 .wrapping_mul(t::NANOS_PER_MICRO),
735 );
736 sum = sum.wrapping_add(span.get_nanoseconds_ranged().without_bounds());
737 let civil_day_nanosecond = sum % t::NANOS_PER_CIVIL_DAY;
738 Time::from_nanosecond(civil_day_nanosecond.rinto())
739 }
740
741 #[inline]
742 fn wrapping_add_signed_duration(self, duration: SignedDuration) -> Time {
743 let start = t::NoUnits128::rfrom(self.to_nanosecond());
744 let duration = t::NoUnits128::new_unchecked(duration.as_nanos());
745 let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY;
746 Time::from_nanosecond(end.rinto())
747 }
748
749 #[inline]
750 fn wrapping_add_unsigned_duration(
751 self,
752 duration: UnsignedDuration,
753 ) -> Time {
754 let start = t::NoUnits128::rfrom(self.to_nanosecond());
755 // OK because 96-bit unsigned integer can't overflow i128.
756 let duration = i128::try_from(duration.as_nanos()).unwrap();
757 let duration = t::NoUnits128::new_unchecked(duration);
758 let duration = duration % t::NANOS_PER_CIVIL_DAY;
759 let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY;
760 Time::from_nanosecond(end.rinto())
761 }
762
763 /// This routine is identical to [`Time::wrapping_add`] with the duration
764 /// negated.
765 ///
766 /// # Example
767 ///
768 /// ```
769 /// use jiff::{civil::time, SignedDuration, ToSpan};
770 ///
771 /// let t = time(0, 0, 0, 0);
772 /// assert_eq!(
773 /// t.wrapping_sub(1.nanoseconds()),
774 /// time(23, 59, 59, 999_999_999),
775 /// );
776 /// assert_eq!(
777 /// t.wrapping_sub(SignedDuration::from_nanos(1)),
778 /// time(23, 59, 59, 999_999_999),
779 /// );
780 /// assert_eq!(
781 /// t.wrapping_sub(std::time::Duration::from_nanos(1)),
782 /// time(23, 59, 59, 999_999_999),
783 /// );
784 ///
785 /// assert_eq!(
786 /// t.wrapping_sub(SignedDuration::MIN),
787 /// time(15, 30, 8, 999_999_999),
788 /// );
789 /// assert_eq!(
790 /// t.wrapping_sub(SignedDuration::MAX),
791 /// time(8, 29, 52, 1),
792 /// );
793 /// assert_eq!(
794 /// t.wrapping_sub(std::time::Duration::MAX),
795 /// time(16, 59, 44, 1),
796 /// );
797 /// ```
798 #[inline]
799 pub fn wrapping_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
800 let duration: TimeArithmetic = duration.into();
801 duration.wrapping_sub(self)
802 }
803
804 #[inline]
805 fn wrapping_sub_unsigned_duration(
806 self,
807 duration: UnsignedDuration,
808 ) -> Time {
809 let start = t::NoUnits128::rfrom(self.to_nanosecond());
810 // OK because 96-bit unsigned integer can't overflow i128.
811 let duration = i128::try_from(duration.as_nanos()).unwrap();
812 let duration = t::NoUnits128::new_unchecked(duration);
813 let end = start.wrapping_sub(duration) % t::NANOS_PER_CIVIL_DAY;
814 Time::from_nanosecond(end.rinto())
815 }
816
817 /// Add the given span to this time and return an error if the result would
818 /// otherwise overflow.
819 ///
820 /// This operation accepts three different duration types: [`Span`],
821 /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
822 /// `From` trait implementations for the [`TimeArithmetic`] type.
823 ///
824 /// # Properties
825 ///
826 /// Given a time `t1` and a span `s`, and assuming `t2 = t1 + s` exists, it
827 /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum
828 /// to a valid `t2`.
829 ///
830 /// In short, subtracting the given span from the sum returned by this
831 /// function is guaranteed to result in precisely the original time.
832 ///
833 /// # Errors
834 ///
835 /// If the sum would overflow the minimum or maximum timestamp values, then
836 /// an error is returned.
837 ///
838 /// If the given span has any non-zero units greater than hours, then an
839 /// error is returned.
840 ///
841 /// # Example: add nanoseconds to a `Time`
842 ///
843 /// ```
844 /// use jiff::{civil::time, ToSpan};
845 ///
846 /// let t = time(22, 35, 1, 0);
847 /// assert_eq!(
848 /// time(22, 35, 3, 500_000_000),
849 /// t.checked_add(2_500_000_000i64.nanoseconds())?,
850 /// );
851 /// # Ok::<(), Box<dyn std::error::Error>>(())
852 /// ```
853 ///
854 /// # Example: add span with multiple units
855 ///
856 /// ```
857 /// use jiff::{civil::time, ToSpan};
858 ///
859 /// let t = time(20, 10, 1, 0);
860 /// assert_eq!(
861 /// time(22, 0, 0, 0),
862 /// t.checked_add(1.hours().minutes(49).seconds(59))?,
863 /// );
864 /// # Ok::<(), Box<dyn std::error::Error>>(())
865 /// ```
866 ///
867 /// # Example: adding an empty span is a no-op
868 ///
869 /// ```
870 /// use jiff::{civil::time, Span};
871 ///
872 /// let t = time(20, 10, 1, 0);
873 /// assert_eq!(t, t.checked_add(Span::new())?);
874 ///
875 /// # Ok::<(), Box<dyn std::error::Error>>(())
876 /// ```
877 ///
878 /// # Example: error on overflow
879 ///
880 /// ```
881 /// use jiff::{civil::time, ToSpan};
882 ///
883 /// // okay
884 /// let t = time(23, 59, 59, 999_999_998);
885 /// assert_eq!(
886 /// t.with().nanosecond(999).build()?,
887 /// t.checked_add(1.nanoseconds())?,
888 /// );
889 ///
890 /// // not okay
891 /// let t = time(23, 59, 59, 999_999_999);
892 /// assert!(t.checked_add(1.nanoseconds()).is_err());
893 ///
894 /// # Ok::<(), Box<dyn std::error::Error>>(())
895 /// ```
896 ///
897 /// Similarly, if there are any non-zero units greater than hours in the
898 /// given span, then they also result in overflow (and thus an error):
899 ///
900 /// ```
901 /// use jiff::{civil::time, ToSpan};
902 ///
903 /// // doesn't matter what our time value is in this example
904 /// let t = time(0, 0, 0, 0);
905 /// assert!(t.checked_add(1.days()).is_err());
906 /// ```
907 ///
908 /// # Example: adding absolute durations
909 ///
910 /// This shows how to add signed and unsigned absolute durations to a
911 /// `Time`. As with adding a `Span`, any overflow that occurs results in
912 /// an error.
913 ///
914 /// ```
915 /// use std::time::Duration;
916 ///
917 /// use jiff::{civil::time, SignedDuration};
918 ///
919 /// let t = time(23, 0, 0, 0);
920 ///
921 /// let dur = SignedDuration::from_mins(30);
922 /// assert_eq!(t.checked_add(dur)?, time(23, 30, 0, 0));
923 /// assert_eq!(t.checked_add(-dur)?, time(22, 30, 0, 0));
924 ///
925 /// let dur = Duration::new(0, 1);
926 /// assert_eq!(t.checked_add(dur)?, time(23, 0, 0, 1));
927 ///
928 /// # Ok::<(), Box<dyn std::error::Error>>(())
929 /// ```
930 #[inline]
931 pub fn checked_add<A: Into<TimeArithmetic>>(
932 self,
933 duration: A,
934 ) -> Result<Time, Error> {
935 let duration: TimeArithmetic = duration.into();
936 duration.checked_add(self)
937 }
938
939 #[inline]
940 fn checked_add_span(self, span: Span) -> Result<Time, Error> {
941 let (time, span) = self.overflowing_add(span)?;
942 if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
943 return Err(err);
944 }
945 Ok(time)
946 }
947
948 #[inline]
949 fn checked_add_duration(
950 self,
951 duration: SignedDuration,
952 ) -> Result<Time, Error> {
953 let original = duration;
954 let start = t::NoUnits128::rfrom(self.to_nanosecond());
955 let duration = t::NoUnits128::new_unchecked(duration.as_nanos());
956 // This can never fail because the maximum duration fits into a
957 // 96-bit integer, and adding any 96-bit integer to any 64-bit
958 // integer can never overflow a 128-bit integer.
959 let end = start.try_checked_add("nanoseconds", duration).unwrap();
960 let end = CivilDayNanosecond::try_rfrom("nanoseconds", end)
961 .with_context(|| {
962 err!(
963 "adding signed duration {duration:?}, equal to
964 {nanos} nanoseconds, to {time} overflowed",
965 duration = original,
966 nanos = original.as_nanos(),
967 time = self,
968 )
969 })?;
970 Ok(Time::from_nanosecond(end))
971 }
972
973 /// This routine is identical to [`Time::checked_add`] with the duration
974 /// negated.
975 ///
976 /// # Errors
977 ///
978 /// This has the same error conditions as [`Time::checked_add`].
979 ///
980 /// # Example
981 ///
982 /// ```
983 /// use std::time::Duration;
984 ///
985 /// use jiff::{civil::time, SignedDuration, ToSpan};
986 ///
987 /// let t = time(22, 0, 0, 0);
988 /// assert_eq!(
989 /// t.checked_sub(1.hours().minutes(49).seconds(59))?,
990 /// time(20, 10, 1, 0),
991 /// );
992 /// assert_eq!(
993 /// t.checked_sub(SignedDuration::from_hours(1))?,
994 /// time(21, 0, 0, 0),
995 /// );
996 /// assert_eq!(
997 /// t.checked_sub(Duration::from_secs(60 * 60))?,
998 /// time(21, 0, 0, 0),
999 /// );
1000 /// # Ok::<(), Box<dyn std::error::Error>>(())
1001 /// ```
1002 #[inline]
1003 pub fn checked_sub<A: Into<TimeArithmetic>>(
1004 self,
1005 duration: A,
1006 ) -> Result<Time, Error> {
1007 let duration: TimeArithmetic = duration.into();
1008 duration.checked_neg().and_then(|ta| ta.checked_add(self))
1009 }
1010
1011 /// This routine is identical to [`Time::checked_add`], except the
1012 /// result saturates on overflow. That is, instead of overflow, either
1013 /// [`Time::MIN`] or [`Time::MAX`] is returned.
1014 ///
1015 /// # Example
1016 ///
1017 /// ```
1018 /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan};
1019 ///
1020 /// // no saturation
1021 /// let t = time(23, 59, 59, 999_999_998);
1022 /// assert_eq!(
1023 /// t.with().nanosecond(999).build()?,
1024 /// t.saturating_add(1.nanoseconds()),
1025 /// );
1026 ///
1027 /// // saturates
1028 /// let t = time(23, 59, 59, 999_999_999);
1029 /// assert_eq!(Time::MAX, t.saturating_add(1.nanoseconds()));
1030 /// assert_eq!(Time::MAX, t.saturating_add(SignedDuration::MAX));
1031 /// assert_eq!(Time::MIN, t.saturating_add(SignedDuration::MIN));
1032 /// assert_eq!(Time::MAX, t.saturating_add(std::time::Duration::MAX));
1033 ///
1034 /// # Ok::<(), Box<dyn std::error::Error>>(())
1035 /// ```
1036 ///
1037 /// Similarly, if there are any non-zero units greater than hours in the
1038 /// given span, then they also result in overflow (and thus saturation):
1039 ///
1040 /// ```
1041 /// use jiff::{civil::{Time, time}, ToSpan};
1042 ///
1043 /// // doesn't matter what our time value is in this example
1044 /// let t = time(0, 0, 0, 0);
1045 /// assert_eq!(Time::MAX, t.saturating_add(1.days()));
1046 /// ```
1047 #[inline]
1048 pub fn saturating_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
1049 let duration: TimeArithmetic = duration.into();
1050 self.checked_add(duration).unwrap_or_else(|_| {
1051 if duration.is_negative() {
1052 Time::MIN
1053 } else {
1054 Time::MAX
1055 }
1056 })
1057 }
1058
1059 /// This routine is identical to [`Time::saturating_add`] with the duration
1060 /// negated.
1061 ///
1062 /// # Example
1063 ///
1064 /// ```
1065 /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan};
1066 ///
1067 /// // no saturation
1068 /// let t = time(0, 0, 0, 1);
1069 /// assert_eq!(
1070 /// t.with().nanosecond(0).build()?,
1071 /// t.saturating_sub(1.nanoseconds()),
1072 /// );
1073 ///
1074 /// // saturates
1075 /// let t = time(0, 0, 0, 0);
1076 /// assert_eq!(Time::MIN, t.saturating_sub(1.nanoseconds()));
1077 /// assert_eq!(Time::MIN, t.saturating_sub(SignedDuration::MAX));
1078 /// assert_eq!(Time::MAX, t.saturating_sub(SignedDuration::MIN));
1079 /// assert_eq!(Time::MIN, t.saturating_sub(std::time::Duration::MAX));
1080 ///
1081 /// # Ok::<(), Box<dyn std::error::Error>>(())
1082 /// ```
1083 #[inline]
1084 pub fn saturating_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
1085 let duration: TimeArithmetic = duration.into();
1086 let Ok(duration) = duration.checked_neg() else { return Time::MIN };
1087 self.saturating_add(duration)
1088 }
1089
1090 /// Adds the given span to the this time value, and returns the resulting
1091 /// time with any overflowing amount in the span returned.
1092 ///
1093 /// This isn't part of the public API because it seems a little odd, and
1094 /// I'm unsure of its use case. Overall this routine is a bit specialized
1095 /// and I'm not sure how generally useful it is. But it is used in crucial
1096 /// points in other parts of this crate.
1097 ///
1098 /// If you want this public, please file an issue and discuss your use
1099 /// case: https://github.com/BurntSushi/jiff/issues/new
1100 #[inline]
1101 pub(crate) fn overflowing_add(
1102 self,
1103 span: Span,
1104 ) -> Result<(Time, Span), Error> {
1105 if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
1106 return Err(err);
1107 }
1108 let span_nanos = span.to_invariant_nanoseconds();
1109 let time_nanos = self.to_nanosecond();
1110 let sum = span_nanos + time_nanos;
1111 let days = t::SpanDays::try_new(
1112 "overflowing-days",
1113 sum.div_floor(t::NANOS_PER_CIVIL_DAY),
1114 )?;
1115 let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY);
1116 let time = Time::from_nanosecond(time_nanos.rinto());
1117 Ok((time, Span::new().days_ranged(days)))
1118 }
1119
1120 /// Like `overflowing_add`, but with `SignedDuration`.
1121 ///
1122 /// This is used for datetime arithmetic, when adding to the time
1123 /// component overflows into days (always 24 hours).
1124 #[inline]
1125 pub(crate) fn overflowing_add_duration(
1126 self,
1127 duration: SignedDuration,
1128 ) -> Result<(Time, SignedDuration), Error> {
1129 if self.subsec_nanosecond() != 0 || duration.subsec_nanos() != 0 {
1130 return self.overflowing_add_duration_general(duration);
1131 }
1132 let start = t::NoUnits::rfrom(self.to_second());
1133 let duration_secs = t::NoUnits::new_unchecked(duration.as_secs());
1134 // This can fail if the duration is near its min or max values, and
1135 // thus we fall back to the more general (but slower) implementation
1136 // that uses 128-bit integers.
1137 let Some(sum) = start.checked_add(duration_secs) else {
1138 return self.overflowing_add_duration_general(duration);
1139 };
1140 let days = t::SpanDays::try_new(
1141 "overflowing-days",
1142 sum.div_floor(t::SECONDS_PER_CIVIL_DAY),
1143 )?;
1144 let time_secs = sum.rem_floor(t::SECONDS_PER_CIVIL_DAY);
1145 let time = Time::from_second(time_secs.rinto());
1146 // OK because of the constraint imposed by t::SpanDays.
1147 let hours = i64::from(days).checked_mul(24).unwrap();
1148 Ok((time, SignedDuration::from_hours(hours)))
1149 }
1150
1151 /// Like `overflowing_add`, but with `SignedDuration`.
1152 ///
1153 /// This is used for datetime arithmetic, when adding to the time
1154 /// component overflows into days (always 24 hours).
1155 #[inline(never)]
1156 #[cold]
1157 fn overflowing_add_duration_general(
1158 self,
1159 duration: SignedDuration,
1160 ) -> Result<(Time, SignedDuration), Error> {
1161 let start = t::NoUnits128::rfrom(self.to_nanosecond());
1162 let duration = t::NoUnits96::new_unchecked(duration.as_nanos());
1163 // This can never fail because the maximum duration fits into a
1164 // 96-bit integer, and adding any 96-bit integer to any 64-bit
1165 // integer can never overflow a 128-bit integer.
1166 let sum = start.try_checked_add("nanoseconds", duration).unwrap();
1167 let days = t::SpanDays::try_new(
1168 "overflowing-days",
1169 sum.div_floor(t::NANOS_PER_CIVIL_DAY),
1170 )?;
1171 let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY);
1172 let time = Time::from_nanosecond(time_nanos.rinto());
1173 // OK because of the constraint imposed by t::SpanDays.
1174 let hours = i64::from(days).checked_mul(24).unwrap();
1175 Ok((time, SignedDuration::from_hours(hours)))
1176 }
1177
1178 /// Returns a span representing the elapsed time from this time until
1179 /// the given `other` time.
1180 ///
1181 /// When `other` is earlier than this time, the span returned will be
1182 /// negative.
1183 ///
1184 /// Depending on the input provided, the span returned is rounded. It may
1185 /// also be balanced down to smaller units than the default. By default,
1186 /// the span returned is balanced such that the biggest possible unit is
1187 /// hours.
1188 ///
1189 /// This operation is configured by providing a [`TimeDifference`]
1190 /// value. Since this routine accepts anything that implements
1191 /// `Into<TimeDifference>`, once can pass a `Time` directly. One
1192 /// can also pass a `(Unit, Time)`, where `Unit` is treated as
1193 /// [`TimeDifference::largest`].
1194 ///
1195 /// # Properties
1196 ///
1197 /// As long as no rounding is requested, it is guaranteed that adding the
1198 /// span returned to the `other` time will always equal this time.
1199 ///
1200 /// # Errors
1201 ///
1202 /// An error can occur if `TimeDifference` is misconfigured. For example,
1203 /// if the smallest unit provided is bigger than the largest unit, or if
1204 /// the largest unit is bigger than [`Unit::Hour`].
1205 ///
1206 /// It is guaranteed that if one provides a time with the default
1207 /// [`TimeDifference`] configuration, then this routine will never fail.
1208 ///
1209 /// # Examples
1210 ///
1211 /// ```
1212 /// use jiff::{civil::time, ToSpan};
1213 ///
1214 /// let t1 = time(22, 35, 1, 0);
1215 /// let t2 = time(22, 35, 3, 500_000_000);
1216 /// assert_eq!(t1.until(t2)?, 2.seconds().milliseconds(500).fieldwise());
1217 /// // Flipping the dates is fine, but you'll get a negative span.
1218 /// assert_eq!(t2.until(t1)?, -2.seconds().milliseconds(500).fieldwise());
1219 ///
1220 /// # Ok::<(), Box<dyn std::error::Error>>(())
1221 /// ```
1222 ///
1223 /// # Example: using smaller units
1224 ///
1225 /// This example shows how to contract the span returned to smaller units.
1226 /// This makes use of a `From<(Unit, Time)> for TimeDifference`
1227 /// trait implementation.
1228 ///
1229 /// ```
1230 /// use jiff::{civil::time, Unit, ToSpan};
1231 ///
1232 /// let t1 = time(3, 24, 30, 3500);
1233 /// let t2 = time(15, 30, 0, 0);
1234 ///
1235 /// // The default limits spans to using "hours" as the biggest unit.
1236 /// let span = t1.until(t2)?;
1237 /// assert_eq!(span.to_string(), "PT12H5M29.9999965S");
1238 ///
1239 /// // But we can ask for smaller units, like capping the biggest unit
1240 /// // to minutes instead of hours.
1241 /// let span = t1.until((Unit::Minute, t2))?;
1242 /// assert_eq!(span.to_string(), "PT725M29.9999965S");
1243 ///
1244 /// # Ok::<(), Box<dyn std::error::Error>>(())
1245 /// ```
1246 #[inline]
1247 pub fn until<A: Into<TimeDifference>>(
1248 self,
1249 other: A,
1250 ) -> Result<Span, Error> {
1251 let args: TimeDifference = other.into();
1252 let span = args.until_with_largest_unit(self)?;
1253 if args.rounding_may_change_span() {
1254 span.round(args.round)
1255 } else {
1256 Ok(span)
1257 }
1258 }
1259
1260 /// This routine is identical to [`Time::until`], but the order of the
1261 /// parameters is flipped.
1262 ///
1263 /// # Errors
1264 ///
1265 /// This has the same error conditions as [`Time::until`].
1266 ///
1267 /// # Example
1268 ///
1269 /// This routine can be used via the `-` operator. Since the default
1270 /// configuration is used and because a `Span` can represent the difference
1271 /// between any two possible times, it will never panic.
1272 ///
1273 /// ```
1274 /// use jiff::{civil::time, ToSpan};
1275 ///
1276 /// let earlier = time(1, 0, 0, 0);
1277 /// let later = time(22, 30, 0, 0);
1278 /// assert_eq!(later - earlier, 21.hours().minutes(30).fieldwise());
1279 /// ```
1280 #[inline]
1281 pub fn since<A: Into<TimeDifference>>(
1282 self,
1283 other: A,
1284 ) -> Result<Span, Error> {
1285 let args: TimeDifference = other.into();
1286 let span = -args.until_with_largest_unit(self)?;
1287 if args.rounding_may_change_span() {
1288 span.round(args.round)
1289 } else {
1290 Ok(span)
1291 }
1292 }
1293
1294 /// Returns an absolute duration representing the elapsed time from this
1295 /// time until the given `other` time.
1296 ///
1297 /// When `other` occurs before this time, then the duration returned will
1298 /// be negative.
1299 ///
1300 /// Unlike [`Time::until`], this returns a duration corresponding to a
1301 /// 96-bit integer of nanoseconds between two times. In this case of
1302 /// computing durations between civil times where all days are assumed to
1303 /// be 24 hours long, the duration returned will always be less than 24
1304 /// hours.
1305 ///
1306 /// # Fallibility
1307 ///
1308 /// This routine never panics or returns an error. Since there are no
1309 /// configuration options that can be incorrectly provided, no error is
1310 /// possible when calling this routine. In contrast, [`Time::until`] can
1311 /// return an error in some cases due to misconfiguration. But like this
1312 /// routine, [`Time::until`] never panics or returns an error in its
1313 /// default configuration.
1314 ///
1315 /// # When should I use this versus [`Time::until`]?
1316 ///
1317 /// See the type documentation for [`SignedDuration`] for the section on
1318 /// when one should use [`Span`] and when one should use `SignedDuration`.
1319 /// In short, use `Span` (and therefore `Time::until`) unless you have a
1320 /// specific reason to do otherwise.
1321 ///
1322 /// # Example
1323 ///
1324 /// ```
1325 /// use jiff::{civil::time, SignedDuration};
1326 ///
1327 /// let t1 = time(22, 35, 1, 0);
1328 /// let t2 = time(22, 35, 3, 500_000_000);
1329 /// assert_eq!(t1.duration_until(t2), SignedDuration::new(2, 500_000_000));
1330 /// // Flipping the time is fine, but you'll get a negative duration.
1331 /// assert_eq!(t2.duration_until(t1), -SignedDuration::new(2, 500_000_000));
1332 /// ```
1333 ///
1334 /// # Example: difference with [`Time::until`]
1335 ///
1336 /// Since the difference between two civil times is always expressed in
1337 /// units of hours or smaller, and units of hours or smaller are always
1338 /// uniform, there is no "expressive" difference between this routine and
1339 /// `Time::until`. The only difference is that this routine returns a
1340 /// `SignedDuration` and `Time::until` returns a [`Span`]. Moreover, since
1341 /// the difference is always less than 24 hours, the return values can
1342 /// always be infallibly and losslessly converted between each other:
1343 ///
1344 /// ```
1345 /// use jiff::{civil::time, SignedDuration, Span};
1346 ///
1347 /// let t1 = time(22, 35, 1, 0);
1348 /// let t2 = time(22, 35, 3, 500_000_000);
1349 /// let dur = t1.duration_until(t2);
1350 /// // Guaranteed to never fail because the duration
1351 /// // between two civil times never exceeds the limits
1352 /// // of a `Span`.
1353 /// let span = Span::try_from(dur).unwrap();
1354 /// assert_eq!(span, Span::new().seconds(2).milliseconds(500).fieldwise());
1355 /// // Guaranteed to succeed and always return the original
1356 /// // duration because the units are always hours or smaller,
1357 /// // and thus uniform. This means a relative datetime is
1358 /// // never required to do this conversion.
1359 /// let dur = SignedDuration::try_from(span).unwrap();
1360 /// assert_eq!(dur, SignedDuration::new(2, 500_000_000));
1361 /// ```
1362 ///
1363 /// This conversion guarantee also applies to [`Time::until`] since it
1364 /// always returns a balanced span. That is, it never returns spans like
1365 /// `1 second 1000 milliseconds`. (Those cannot be losslessly converted to
1366 /// a `SignedDuration` since a `SignedDuration` is only represented as a
1367 /// single 96-bit integer of nanoseconds.)
1368 ///
1369 /// # Example: getting an unsigned duration
1370 ///
1371 /// If you're looking to find the duration between two times as a
1372 /// [`std::time::Duration`], you'll need to use this method to get a
1373 /// [`SignedDuration`] and then convert it to a `std::time::Duration`:
1374 ///
1375 /// ```
1376 /// use std::time::Duration;
1377 ///
1378 /// use jiff::{civil::time, SignedDuration, Span};
1379 ///
1380 /// let t1 = time(22, 35, 1, 0);
1381 /// let t2 = time(22, 35, 3, 500_000_000);
1382 /// let dur = Duration::try_from(t1.duration_until(t2))?;;
1383 /// assert_eq!(dur, Duration::new(2, 500_000_000));
1384 ///
1385 /// // Note that unsigned durations cannot represent all
1386 /// // possible differences! If the duration would be negative,
1387 /// // then the conversion fails:
1388 /// assert!(Duration::try_from(t2.duration_until(t1)).is_err());
1389 ///
1390 /// # Ok::<(), Box<dyn std::error::Error>>(())
1391 /// ```
1392 #[inline]
1393 pub fn duration_until(self, other: Time) -> SignedDuration {
1394 SignedDuration::time_until(self, other)
1395 }
1396
1397 /// This routine is identical to [`Time::duration_until`], but the order of
1398 /// the parameters is flipped.
1399 ///
1400 /// # Example
1401 ///
1402 /// ```
1403 /// use jiff::{civil::time, SignedDuration};
1404 ///
1405 /// let earlier = time(1, 0, 0, 0);
1406 /// let later = time(22, 30, 0, 0);
1407 /// assert_eq!(
1408 /// later.duration_since(earlier),
1409 /// SignedDuration::from_secs((21 * 60 * 60) + (30 * 60)),
1410 /// );
1411 /// ```
1412 #[inline]
1413 pub fn duration_since(self, other: Time) -> SignedDuration {
1414 SignedDuration::time_until(other, self)
1415 }
1416
1417 /// Rounds this time according to the [`TimeRound`] configuration given.
1418 ///
1419 /// The principal option is [`TimeRound::smallest`], which allows one
1420 /// to configure the smallest units in the returned time. Rounding
1421 /// is what determines whether that unit should keep its current value
1422 /// or whether it should be incremented. Moreover, the amount it should
1423 /// be incremented can be configured via [`TimeRound::increment`].
1424 /// Finally, the rounding strategy itself can be configured via
1425 /// [`TimeRound::mode`].
1426 ///
1427 /// Note that this routine is generic and accepts anything that
1428 /// implements `Into<TimeRound>`. Some notable implementations are:
1429 ///
1430 /// * `From<Unit> for Round`, which will automatically create a
1431 /// `TimeRound::new().smallest(unit)` from the unit provided.
1432 /// * `From<(Unit, i64)> for Round`, which will automatically create a
1433 /// `TimeRound::new().smallest(unit).increment(number)` from the unit
1434 /// and increment provided.
1435 ///
1436 /// # Errors
1437 ///
1438 /// This returns an error if the smallest unit configured on the given
1439 /// [`TimeRound`] is bigger than hours.
1440 ///
1441 /// The rounding increment must divide evenly into the next highest unit
1442 /// after the smallest unit configured (and must not be equivalent to it).
1443 /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
1444 /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
1445 /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
1446 /// nanoseconds since there are `1,000` nanoseconds in the next highest
1447 /// unit (microseconds).
1448 ///
1449 /// This can never fail because of overflow for any input. The only
1450 /// possible errors are "configuration" errors.
1451 ///
1452 /// # Example
1453 ///
1454 /// This is a basic example that demonstrates rounding a datetime to the
1455 /// nearest second. This also demonstrates calling this method with the
1456 /// smallest unit directly, instead of constructing a `TimeRound` manually.
1457 ///
1458 /// ```
1459 /// use jiff::{civil::time, Unit};
1460 ///
1461 /// let t = time(15, 45, 10, 123_456_789);
1462 /// assert_eq!(
1463 /// t.round(Unit::Second)?,
1464 /// time(15, 45, 10, 0),
1465 /// );
1466 /// let t = time(15, 45, 10, 500_000_001);
1467 /// assert_eq!(
1468 /// t.round(Unit::Second)?,
1469 /// time(15, 45, 11, 0),
1470 /// );
1471 ///
1472 /// # Ok::<(), Box<dyn std::error::Error>>(())
1473 /// ```
1474 ///
1475 /// # Example: changing the rounding mode
1476 ///
1477 /// The default rounding mode is [`RoundMode::HalfExpand`], which
1478 /// breaks ties by rounding away from zero. But other modes like
1479 /// [`RoundMode::Trunc`] can be used too:
1480 ///
1481 /// ```
1482 /// use jiff::{civil::{TimeRound, time}, RoundMode, Unit};
1483 ///
1484 /// let t = time(15, 45, 10, 999_999_999);
1485 /// assert_eq!(
1486 /// t.round(Unit::Second)?,
1487 /// time(15, 45, 11, 0),
1488 /// );
1489 /// // The default will round up to the next second for any fraction
1490 /// // greater than or equal to 0.5. But truncation will always round
1491 /// // toward zero.
1492 /// assert_eq!(
1493 /// t.round(
1494 /// TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
1495 /// )?,
1496 /// time(15, 45, 10, 0),
1497 /// );
1498 ///
1499 /// # Ok::<(), Box<dyn std::error::Error>>(())
1500 /// ```
1501 ///
1502 /// # Example: rounding to the nearest 5 minute increment
1503 ///
1504 /// ```
1505 /// use jiff::{civil::time, Unit};
1506 ///
1507 /// // rounds down
1508 /// let t = time(15, 27, 29, 999_999_999);
1509 /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 25, 0, 0));
1510 /// // rounds up
1511 /// let t = time(15, 27, 30, 0);
1512 /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 30, 0, 0));
1513 ///
1514 /// # Ok::<(), Box<dyn std::error::Error>>(())
1515 /// ```
1516 ///
1517 /// # Example: rounding wraps around on overflow
1518 ///
1519 /// This example demonstrates that it's possible for this operation to
1520 /// overflow, and as a result, have the time wrap around.
1521 ///
1522 /// ```
1523 /// use jiff::{civil::Time, Unit};
1524 ///
1525 /// let t = Time::MAX;
1526 /// assert_eq!(t.round(Unit::Hour)?, Time::MIN);
1527 ///
1528 /// # Ok::<(), Box<dyn std::error::Error>>(())
1529 /// ```
1530 #[inline]
1531 pub fn round<R: Into<TimeRound>>(self, options: R) -> Result<Time, Error> {
1532 let options: TimeRound = options.into();
1533 options.round(self)
1534 }
1535
1536 /// Return an iterator of periodic times determined by the given span.
1537 ///
1538 /// The given span may be negative, in which case, the iterator will move
1539 /// backwards through time. The iterator won't stop until either the span
1540 /// itself overflows, or it would otherwise exceed the minimum or maximum
1541 /// `Time` value.
1542 ///
1543 /// # Example: visiting every third hour
1544 ///
1545 /// This shows how to visit each third hour of a 24 hour time interval:
1546 ///
1547 /// ```
1548 /// use jiff::{civil::{Time, time}, ToSpan};
1549 ///
1550 /// let start = Time::MIN;
1551 /// let mut every_third_hour = vec![];
1552 /// for t in start.series(3.hours()) {
1553 /// every_third_hour.push(t);
1554 /// }
1555 /// assert_eq!(every_third_hour, vec![
1556 /// time(0, 0, 0, 0),
1557 /// time(3, 0, 0, 0),
1558 /// time(6, 0, 0, 0),
1559 /// time(9, 0, 0, 0),
1560 /// time(12, 0, 0, 0),
1561 /// time(15, 0, 0, 0),
1562 /// time(18, 0, 0, 0),
1563 /// time(21, 0, 0, 0),
1564 /// ]);
1565 /// ```
1566 ///
1567 /// Or go backwards every 6.5 hours:
1568 ///
1569 /// ```
1570 /// use jiff::{civil::{Time, time}, ToSpan};
1571 ///
1572 /// let start = time(23, 0, 0, 0);
1573 /// let times: Vec<Time> = start.series(-6.hours().minutes(30)).collect();
1574 /// assert_eq!(times, vec![
1575 /// time(23, 0, 0, 0),
1576 /// time(16, 30, 0, 0),
1577 /// time(10, 0, 0, 0),
1578 /// time(3, 30, 0, 0),
1579 /// ]);
1580 /// ```
1581 #[inline]
1582 pub fn series(self, period: Span) -> TimeSeries {
1583 TimeSeries { start: self, period, step: 0 }
1584 }
1585}
1586
1587/// Parsing and formatting using a "printf"-style API.
1588impl Time {
1589 /// Parses a civil time in `input` matching the given `format`.
1590 ///
1591 /// The format string uses a "printf"-style API where conversion
1592 /// specifiers can be used as place holders to match components of
1593 /// a datetime. For details on the specifiers supported, see the
1594 /// [`fmt::strtime`] module documentation.
1595 ///
1596 /// # Errors
1597 ///
1598 /// This returns an error when parsing failed. This might happen because
1599 /// the format string itself was invalid, or because the input didn't match
1600 /// the format string.
1601 ///
1602 /// This also returns an error if there wasn't sufficient information to
1603 /// construct a civil time. For example, if an offset wasn't parsed.
1604 ///
1605 /// # Example
1606 ///
1607 /// This example shows how to parse a civil time:
1608 ///
1609 /// ```
1610 /// use jiff::civil::Time;
1611 ///
1612 /// // Parse with a 12-hour clock.
1613 /// let time = Time::strptime("%I:%M%P", "4:30pm")?;
1614 /// assert_eq!(time.to_string(), "16:30:00");
1615 ///
1616 /// # Ok::<(), Box<dyn std::error::Error>>(())
1617 /// ```
1618 #[inline]
1619 pub fn strptime(
1620 format: impl AsRef<[u8]>,
1621 input: impl AsRef<[u8]>,
1622 ) -> Result<Time, Error> {
1623 fmt::strtime::parse(format, input).and_then(|tm| tm.to_time())
1624 }
1625
1626 /// Formats this civil time according to the given `format`.
1627 ///
1628 /// The format string uses a "printf"-style API where conversion
1629 /// specifiers can be used as place holders to format components of
1630 /// a datetime. For details on the specifiers supported, see the
1631 /// [`fmt::strtime`] module documentation.
1632 ///
1633 /// # Errors and panics
1634 ///
1635 /// While this routine itself does not error or panic, using the value
1636 /// returned may result in a panic if formatting fails. See the
1637 /// documentation on [`fmt::strtime::Display`] for more information.
1638 ///
1639 /// To format in a way that surfaces errors without panicking, use either
1640 /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`].
1641 ///
1642 /// # Example
1643 ///
1644 /// This example shows how to format a civil time in a 12 hour clock with
1645 /// no padding for the hour:
1646 ///
1647 /// ```
1648 /// use jiff::civil::time;
1649 ///
1650 /// let t = time(16, 30, 59, 0);
1651 /// let string = t.strftime("%-I:%M%P").to_string();
1652 /// assert_eq!(string, "4:30pm");
1653 /// ```
1654 ///
1655 /// Note that one can round a `Time` before formatting. For example, to
1656 /// round to the nearest minute:
1657 ///
1658 /// ```
1659 /// use jiff::{civil::time, Unit};
1660 ///
1661 /// let t = time(16, 30, 59, 0);
1662 /// let string = t.round(Unit::Minute)?.strftime("%-I:%M%P").to_string();
1663 /// assert_eq!(string, "4:31pm");
1664 ///
1665 /// # Ok::<(), Box<dyn std::error::Error>>(())
1666 /// ```
1667 #[inline]
1668 pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>(
1669 &self,
1670 format: &'f F,
1671 ) -> fmt::strtime::Display<'f> {
1672 fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() }
1673 }
1674}
1675
1676/// Crate internal APIs.
1677///
1678/// Many of these are mirrors of the public API, but on ranged types. These
1679/// are often much more convenient to use in composition with other parts of
1680/// the crate that also use ranged integer types. And this often permits the
1681/// routines to be infallible and (possibly) zero-cost.
1682impl Time {
1683 #[inline]
1684 pub(crate) fn new_ranged(
1685 hour: impl RInto<Hour>,
1686 minute: impl RInto<Minute>,
1687 second: impl RInto<Second>,
1688 subsec_nanosecond: impl RInto<SubsecNanosecond>,
1689 ) -> Time {
1690 Time {
1691 hour: hour.rinto(),
1692 minute: minute.rinto(),
1693 second: second.rinto(),
1694 subsec_nanosecond: subsec_nanosecond.rinto(),
1695 }
1696 }
1697
1698 /// Set the fractional parts of this time to the given units via ranged
1699 /// types.
1700 #[inline]
1701 fn with_subsec_parts_ranged(
1702 self,
1703 millisecond: impl RInto<Millisecond>,
1704 microsecond: impl RInto<Microsecond>,
1705 nanosecond: impl RInto<Nanosecond>,
1706 ) -> Time {
1707 let millisecond = SubsecNanosecond::rfrom(millisecond.rinto());
1708 let microsecond = SubsecNanosecond::rfrom(microsecond.rinto());
1709 let nanosecond = SubsecNanosecond::rfrom(nanosecond.rinto());
1710 let mut subsec_nanosecond =
1711 millisecond * t::MICROS_PER_MILLI * t::NANOS_PER_MICRO;
1712 subsec_nanosecond += microsecond * t::NANOS_PER_MICRO;
1713 subsec_nanosecond += nanosecond;
1714 Time { subsec_nanosecond: subsec_nanosecond.rinto(), ..self }
1715 }
1716
1717 #[inline]
1718 pub(crate) fn hour_ranged(self) -> Hour {
1719 self.hour
1720 }
1721
1722 #[inline]
1723 pub(crate) fn minute_ranged(self) -> Minute {
1724 self.minute
1725 }
1726
1727 #[inline]
1728 pub(crate) fn second_ranged(self) -> Second {
1729 self.second
1730 }
1731
1732 #[inline]
1733 pub(crate) fn millisecond_ranged(self) -> Millisecond {
1734 let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO;
1735 let millis = micros / t::MICROS_PER_MILLI;
1736 millis.rinto()
1737 }
1738
1739 #[inline]
1740 pub(crate) fn microsecond_ranged(self) -> Microsecond {
1741 let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO;
1742 let only_micros = micros % t::MICROS_PER_MILLI;
1743 only_micros.rinto()
1744 }
1745
1746 #[inline]
1747 pub(crate) fn nanosecond_ranged(self) -> Nanosecond {
1748 let only_nanos = self.subsec_nanosecond_ranged() % t::NANOS_PER_MICRO;
1749 only_nanos.rinto()
1750 }
1751
1752 #[inline]
1753 pub(crate) fn subsec_nanosecond_ranged(self) -> SubsecNanosecond {
1754 self.subsec_nanosecond
1755 }
1756
1757 #[inline]
1758 pub(crate) fn until_nanoseconds(self, other: Time) -> t::SpanNanoseconds {
1759 let t1 = t::SpanNanoseconds::rfrom(self.to_nanosecond());
1760 let t2 = t::SpanNanoseconds::rfrom(other.to_nanosecond());
1761 t2 - t1
1762 }
1763
1764 /// Converts this time value to the number of seconds that has elapsed
1765 /// since `00:00:00`. This completely ignores seconds. Callers should
1766 /// likely ensure that the fractional second component is zero.
1767 ///
1768 /// The maximum possible value that can be returned represents the time
1769 /// `23:59:59`.
1770 #[inline]
1771 pub(crate) fn to_second(&self) -> CivilDaySecond {
1772 self.to_itime().map(|x| x.to_second().second).to_rint()
1773 }
1774
1775 /// Converts the given second to a time value. The second should correspond
1776 /// to the number of seconds that have elapsed since `00:00:00`. The
1777 /// fractional second component of the `Time` returned is always `0`.
1778 #[cfg_attr(feature = "perf-inline", inline(always))]
1779 pub(crate) fn from_second(second: CivilDaySecond) -> Time {
1780 let second = rangeint::composite!((second) => {
1781 ITimeSecond { second }
1782 });
1783 Time::from_itime(second.map(|x| x.to_time()))
1784 }
1785
1786 /// Converts this time value to the number of nanoseconds that has elapsed
1787 /// since `00:00:00.000000000`.
1788 ///
1789 /// The maximum possible value that can be returned represents the time
1790 /// `23:59:59.999999999`.
1791 #[inline]
1792 pub(crate) fn to_nanosecond(&self) -> CivilDayNanosecond {
1793 self.to_itime().map(|x| x.to_nanosecond().nanosecond).to_rint()
1794 }
1795
1796 /// Converts the given nanosecond to a time value. The nanosecond should
1797 /// correspond to the number of nanoseconds that have elapsed since
1798 /// `00:00:00.000000000`.
1799 #[cfg_attr(feature = "perf-inline", inline(always))]
1800 pub(crate) fn from_nanosecond(nanosecond: CivilDayNanosecond) -> Time {
1801 let nano = rangeint::composite!((nanosecond) => {
1802 ITimeNanosecond { nanosecond }
1803 });
1804 Time::from_itime(nano.map(|x| x.to_time()))
1805 }
1806
1807 #[inline]
1808 pub(crate) fn to_itime(&self) -> Composite<ITime> {
1809 rangeint::composite! {
1810 (
1811 hour = self.hour,
1812 minute = self.minute,
1813 second = self.second,
1814 subsec_nanosecond = self.subsec_nanosecond,
1815 ) => {
1816 ITime { hour, minute, second, subsec_nanosecond }
1817 }
1818 }
1819 }
1820
1821 #[inline]
1822 pub(crate) fn from_itime(itime: Composite<ITime>) -> Time {
1823 let (hour, minute, second, subsec_nanosecond) = rangeint::uncomposite!(
1824 itime,
1825 c => (c.hour, c.minute, c.second, c.subsec_nanosecond),
1826 );
1827 Time {
1828 hour: hour.to_rint(),
1829 minute: minute.to_rint(),
1830 second: second.to_rint(),
1831 subsec_nanosecond: subsec_nanosecond.to_rint(),
1832 }
1833 }
1834
1835 #[inline]
1836 pub(crate) const fn to_itime_const(&self) -> ITime {
1837 ITime {
1838 hour: self.hour.get_unchecked(),
1839 minute: self.minute.get_unchecked(),
1840 second: self.second.get_unchecked(),
1841 subsec_nanosecond: self.subsec_nanosecond.get_unchecked(),
1842 }
1843 }
1844}
1845
1846impl Default for Time {
1847 #[inline]
1848 fn default() -> Time {
1849 Time::midnight()
1850 }
1851}
1852
1853/// Converts a `Time` into a human readable time string.
1854///
1855/// (This `Debug` representation currently emits the same string as the
1856/// `Display` representation, but this is not a guarantee.)
1857///
1858/// Options currently supported:
1859///
1860/// * [`std::fmt::Formatter::precision`] can be set to control the precision
1861/// of the fractional second component.
1862///
1863/// # Example
1864///
1865/// ```
1866/// use jiff::civil::time;
1867///
1868/// let t = time(7, 0, 0, 123_000_000);
1869/// assert_eq!(format!("{t:.6?}"), "07:00:00.123000");
1870/// // Precision values greater than 9 are clamped to 9.
1871/// assert_eq!(format!("{t:.300?}"), "07:00:00.123000000");
1872/// // A precision of 0 implies the entire fractional
1873/// // component is always truncated.
1874/// assert_eq!(format!("{t:.0?}"), "07:00:00");
1875///
1876/// # Ok::<(), Box<dyn std::error::Error>>(())
1877/// ```
1878impl core::fmt::Debug for Time {
1879 #[inline]
1880 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1881 core::fmt::Display::fmt(self, f)
1882 }
1883}
1884
1885/// Converts a `Time` into an ISO 8601 compliant string.
1886///
1887/// # Formatting options supported
1888///
1889/// * [`std::fmt::Formatter::precision`] can be set to control the precision
1890/// of the fractional second component. When not set, the minimum precision
1891/// required to losslessly render the value is used.
1892///
1893/// # Example
1894///
1895/// ```
1896/// use jiff::civil::time;
1897///
1898/// // No fractional seconds:
1899/// let t = time(7, 0, 0, 0);
1900/// assert_eq!(format!("{t}"), "07:00:00");
1901///
1902/// // With fractional seconds:
1903/// let t = time(7, 0, 0, 123_000_000);
1904/// assert_eq!(format!("{t}"), "07:00:00.123");
1905///
1906/// # Ok::<(), Box<dyn std::error::Error>>(())
1907/// ```
1908///
1909/// # Example: setting the precision
1910///
1911/// ```
1912/// use jiff::civil::time;
1913///
1914/// let t = time(7, 0, 0, 123_000_000);
1915/// assert_eq!(format!("{t:.6}"), "07:00:00.123000");
1916/// // Precision values greater than 9 are clamped to 9.
1917/// assert_eq!(format!("{t:.300}"), "07:00:00.123000000");
1918/// // A precision of 0 implies the entire fractional
1919/// // component is always truncated.
1920/// assert_eq!(format!("{t:.0}"), "07:00:00");
1921///
1922/// # Ok::<(), Box<dyn std::error::Error>>(())
1923/// ```
1924impl core::fmt::Display for Time {
1925 #[inline]
1926 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1927 use crate::fmt::StdFmtWrite;
1928
1929 let precision =
1930 f.precision().map(|p| u8::try_from(p).unwrap_or(u8::MAX));
1931 temporal::DateTimePrinter::new()
1932 .precision(precision)
1933 .print_time(self, StdFmtWrite(f))
1934 .map_err(|_| core::fmt::Error)
1935 }
1936}
1937
1938impl core::str::FromStr for Time {
1939 type Err = Error;
1940
1941 #[inline]
1942 fn from_str(string: &str) -> Result<Time, Error> {
1943 DEFAULT_DATETIME_PARSER.parse_time(string)
1944 }
1945}
1946
1947/// Adds a span of time. This uses wrapping arithmetic.
1948///
1949/// For checked arithmetic, see [`Time::checked_add`].
1950impl core::ops::Add<Span> for Time {
1951 type Output = Time;
1952
1953 #[inline]
1954 fn add(self, rhs: Span) -> Time {
1955 self.wrapping_add(rhs)
1956 }
1957}
1958
1959/// Adds a span of time in place. This uses wrapping arithmetic.
1960///
1961/// For checked arithmetic, see [`Time::checked_add`].
1962impl core::ops::AddAssign<Span> for Time {
1963 #[inline]
1964 fn add_assign(&mut self, rhs: Span) {
1965 *self = *self + rhs;
1966 }
1967}
1968
1969/// Subtracts a span of time. This uses wrapping arithmetic.
1970///
1971/// For checked arithmetic, see [`Time::checked_sub`].
1972impl core::ops::Sub<Span> for Time {
1973 type Output = Time;
1974
1975 #[inline]
1976 fn sub(self, rhs: Span) -> Time {
1977 self.wrapping_sub(rhs)
1978 }
1979}
1980
1981/// Subtracts a span of time in place. This uses wrapping arithmetic.
1982///
1983/// For checked arithmetic, see [`Time::checked_sub`].
1984impl core::ops::SubAssign<Span> for Time {
1985 #[inline]
1986 fn sub_assign(&mut self, rhs: Span) {
1987 *self = *self - rhs;
1988 }
1989}
1990
1991/// Computes the span of time between two times.
1992///
1993/// This will return a negative span when the time being subtracted is greater.
1994///
1995/// Since this uses the default configuration for calculating a span between
1996/// two times (no rounding and largest units is hours), this will never panic
1997/// or fail in any way.
1998///
1999/// To configure the largest unit or enable rounding, use [`Time::since`].
2000impl core::ops::Sub for Time {
2001 type Output = Span;
2002
2003 #[inline]
2004 fn sub(self, rhs: Time) -> Span {
2005 self.since(rhs).expect("since never fails when given Time")
2006 }
2007}
2008
2009/// Adds a signed duration of time. This uses wrapping arithmetic.
2010///
2011/// For checked arithmetic, see [`Time::checked_add`].
2012impl core::ops::Add<SignedDuration> for Time {
2013 type Output = Time;
2014
2015 #[inline]
2016 fn add(self, rhs: SignedDuration) -> Time {
2017 self.wrapping_add(rhs)
2018 }
2019}
2020
2021/// Adds a signed duration of time in place. This uses wrapping arithmetic.
2022///
2023/// For checked arithmetic, see [`Time::checked_add`].
2024impl core::ops::AddAssign<SignedDuration> for Time {
2025 #[inline]
2026 fn add_assign(&mut self, rhs: SignedDuration) {
2027 *self = *self + rhs;
2028 }
2029}
2030
2031/// Subtracts a signed duration of time. This uses wrapping arithmetic.
2032///
2033/// For checked arithmetic, see [`Time::checked_sub`].
2034impl core::ops::Sub<SignedDuration> for Time {
2035 type Output = Time;
2036
2037 #[inline]
2038 fn sub(self, rhs: SignedDuration) -> Time {
2039 self.wrapping_sub(rhs)
2040 }
2041}
2042
2043/// Subtracts a signed duration of time in place. This uses wrapping arithmetic.
2044///
2045/// For checked arithmetic, see [`Time::checked_sub`].
2046impl core::ops::SubAssign<SignedDuration> for Time {
2047 #[inline]
2048 fn sub_assign(&mut self, rhs: SignedDuration) {
2049 *self = *self - rhs;
2050 }
2051}
2052
2053/// Adds an unsigned duration of time. This uses wrapping arithmetic.
2054///
2055/// For checked arithmetic, see [`Time::checked_add`].
2056impl core::ops::Add<UnsignedDuration> for Time {
2057 type Output = Time;
2058
2059 #[inline]
2060 fn add(self, rhs: UnsignedDuration) -> Time {
2061 self.wrapping_add(rhs)
2062 }
2063}
2064
2065/// Adds an unsigned duration of time in place. This uses wrapping arithmetic.
2066///
2067/// For checked arithmetic, see [`Time::checked_add`].
2068impl core::ops::AddAssign<UnsignedDuration> for Time {
2069 #[inline]
2070 fn add_assign(&mut self, rhs: UnsignedDuration) {
2071 *self = *self + rhs;
2072 }
2073}
2074
2075/// Subtracts an unsigned duration of time. This uses wrapping arithmetic.
2076///
2077/// For checked arithmetic, see [`Time::checked_sub`].
2078impl core::ops::Sub<UnsignedDuration> for Time {
2079 type Output = Time;
2080
2081 #[inline]
2082 fn sub(self, rhs: UnsignedDuration) -> Time {
2083 self.wrapping_sub(rhs)
2084 }
2085}
2086
2087/// Subtracts an unsigned duration of time in place. This uses wrapping
2088/// arithmetic.
2089///
2090/// For checked arithmetic, see [`Time::checked_sub`].
2091impl core::ops::SubAssign<UnsignedDuration> for Time {
2092 #[inline]
2093 fn sub_assign(&mut self, rhs: UnsignedDuration) {
2094 *self = *self - rhs;
2095 }
2096}
2097
2098impl From<DateTime> for Time {
2099 #[inline]
2100 fn from(dt: DateTime) -> Time {
2101 dt.time()
2102 }
2103}
2104
2105impl From<Zoned> for Time {
2106 #[inline]
2107 fn from(zdt: Zoned) -> Time {
2108 zdt.datetime().time()
2109 }
2110}
2111
2112impl<'a> From<&'a Zoned> for Time {
2113 #[inline]
2114 fn from(zdt: &'a Zoned) -> Time {
2115 zdt.datetime().time()
2116 }
2117}
2118
2119#[cfg(feature = "serde")]
2120impl serde_core::Serialize for Time {
2121 #[inline]
2122 fn serialize<S: serde_core::Serializer>(
2123 &self,
2124 serializer: S,
2125 ) -> Result<S::Ok, S::Error> {
2126 serializer.collect_str(self)
2127 }
2128}
2129
2130#[cfg(feature = "serde")]
2131impl<'de> serde_core::Deserialize<'de> for Time {
2132 #[inline]
2133 fn deserialize<D: serde_core::Deserializer<'de>>(
2134 deserializer: D,
2135 ) -> Result<Time, D::Error> {
2136 use serde_core::de;
2137
2138 struct TimeVisitor;
2139
2140 impl<'de> de::Visitor<'de> for TimeVisitor {
2141 type Value = Time;
2142
2143 fn expecting(
2144 &self,
2145 f: &mut core::fmt::Formatter,
2146 ) -> core::fmt::Result {
2147 f.write_str("a time string")
2148 }
2149
2150 #[inline]
2151 fn visit_bytes<E: de::Error>(
2152 self,
2153 value: &[u8],
2154 ) -> Result<Time, E> {
2155 DEFAULT_DATETIME_PARSER
2156 .parse_time(value)
2157 .map_err(de::Error::custom)
2158 }
2159
2160 #[inline]
2161 fn visit_str<E: de::Error>(self, value: &str) -> Result<Time, E> {
2162 self.visit_bytes(value.as_bytes())
2163 }
2164 }
2165
2166 deserializer.deserialize_str(TimeVisitor)
2167 }
2168}
2169
2170#[cfg(test)]
2171impl quickcheck::Arbitrary for Time {
2172 fn arbitrary(g: &mut quickcheck::Gen) -> Time {
2173 let hour = Hour::arbitrary(g);
2174 let minute = Minute::arbitrary(g);
2175 let second = Second::arbitrary(g);
2176 let subsec_nanosecond = SubsecNanosecond::arbitrary(g);
2177 Time::new_ranged(hour, minute, second, subsec_nanosecond)
2178 }
2179
2180 fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Time>> {
2181 alloc::boxed::Box::new(
2182 (
2183 self.hour_ranged(),
2184 self.minute_ranged(),
2185 self.second_ranged(),
2186 self.subsec_nanosecond_ranged(),
2187 )
2188 .shrink()
2189 .map(
2190 |(hour, minute, second, subsec_nanosecond)| {
2191 Time::new_ranged(
2192 hour,
2193 minute,
2194 second,
2195 subsec_nanosecond,
2196 )
2197 },
2198 ),
2199 )
2200 }
2201}
2202
2203/// An iterator over periodic times, created by [`Time::series`].
2204///
2205/// It is exhausted when the next value would exceed the limits of a [`Span`]
2206/// or [`Time`] value.
2207///
2208/// This iterator is created by [`Time::series`].
2209#[derive(Clone, Debug)]
2210pub struct TimeSeries {
2211 start: Time,
2212 period: Span,
2213 step: i64,
2214}
2215
2216impl Iterator for TimeSeries {
2217 type Item = Time;
2218
2219 #[inline]
2220 fn next(&mut self) -> Option<Time> {
2221 let span = self.period.checked_mul(self.step).ok()?;
2222 self.step = self.step.checked_add(1)?;
2223 let time = self.start.checked_add(span).ok()?;
2224 Some(time)
2225 }
2226}
2227
2228impl core::iter::FusedIterator for TimeSeries {}
2229
2230/// Options for [`Time::checked_add`] and [`Time::checked_sub`].
2231///
2232/// This type provides a way to ergonomically add one of a few different
2233/// duration types to a [`Time`].
2234///
2235/// The main way to construct values of this type is with its `From` trait
2236/// implementations:
2237///
2238/// * `From<Span> for TimeArithmetic` adds (or subtracts) the given span to the
2239/// receiver time.
2240/// * `From<SignedDuration> for TimeArithmetic` adds (or subtracts)
2241/// the given signed duration to the receiver time.
2242/// * `From<std::time::Duration> for TimeArithmetic` adds (or subtracts)
2243/// the given unsigned duration to the receiver time.
2244///
2245/// # Example
2246///
2247/// ```
2248/// use std::time::Duration;
2249///
2250/// use jiff::{civil::time, SignedDuration, ToSpan};
2251///
2252/// let t = time(0, 0, 0, 0);
2253/// assert_eq!(t.checked_add(2.hours())?, time(2, 0, 0, 0));
2254/// assert_eq!(t.checked_add(SignedDuration::from_hours(2))?, time(2, 0, 0, 0));
2255/// assert_eq!(t.checked_add(Duration::from_secs(2 * 60 * 60))?, time(2, 0, 0, 0));
2256///
2257/// # Ok::<(), Box<dyn std::error::Error>>(())
2258/// ```
2259#[derive(Clone, Copy, Debug)]
2260pub struct TimeArithmetic {
2261 duration: Duration,
2262}
2263
2264impl TimeArithmetic {
2265 #[inline]
2266 fn wrapping_add(self, time: Time) -> Time {
2267 match self.duration {
2268 Duration::Span(span) => time.wrapping_add_span(span),
2269 Duration::Signed(sdur) => time.wrapping_add_signed_duration(sdur),
2270 Duration::Unsigned(udur) => {
2271 time.wrapping_add_unsigned_duration(udur)
2272 }
2273 }
2274 }
2275
2276 #[inline]
2277 fn wrapping_sub(self, time: Time) -> Time {
2278 match self.duration {
2279 Duration::Span(span) => time.wrapping_add_span(span.negate()),
2280 Duration::Signed(sdur) => {
2281 if let Some(sdur) = sdur.checked_neg() {
2282 time.wrapping_add_signed_duration(sdur)
2283 } else {
2284 let udur = UnsignedDuration::new(
2285 i64::MIN.unsigned_abs(),
2286 sdur.subsec_nanos().unsigned_abs(),
2287 );
2288 time.wrapping_add_unsigned_duration(udur)
2289 }
2290 }
2291 Duration::Unsigned(udur) => {
2292 time.wrapping_sub_unsigned_duration(udur)
2293 }
2294 }
2295 }
2296
2297 #[inline]
2298 fn checked_add(self, time: Time) -> Result<Time, Error> {
2299 match self.duration.to_signed()? {
2300 SDuration::Span(span) => time.checked_add_span(span),
2301 SDuration::Absolute(sdur) => time.checked_add_duration(sdur),
2302 }
2303 }
2304
2305 #[inline]
2306 fn checked_neg(self) -> Result<TimeArithmetic, Error> {
2307 let duration = self.duration.checked_neg()?;
2308 Ok(TimeArithmetic { duration })
2309 }
2310
2311 #[inline]
2312 fn is_negative(&self) -> bool {
2313 self.duration.is_negative()
2314 }
2315}
2316
2317impl From<Span> for TimeArithmetic {
2318 fn from(span: Span) -> TimeArithmetic {
2319 let duration = Duration::from(span);
2320 TimeArithmetic { duration }
2321 }
2322}
2323
2324impl From<SignedDuration> for TimeArithmetic {
2325 fn from(sdur: SignedDuration) -> TimeArithmetic {
2326 let duration = Duration::from(sdur);
2327 TimeArithmetic { duration }
2328 }
2329}
2330
2331impl From<UnsignedDuration> for TimeArithmetic {
2332 fn from(udur: UnsignedDuration) -> TimeArithmetic {
2333 let duration = Duration::from(udur);
2334 TimeArithmetic { duration }
2335 }
2336}
2337
2338impl<'a> From<&'a Span> for TimeArithmetic {
2339 fn from(span: &'a Span) -> TimeArithmetic {
2340 TimeArithmetic::from(*span)
2341 }
2342}
2343
2344impl<'a> From<&'a SignedDuration> for TimeArithmetic {
2345 fn from(sdur: &'a SignedDuration) -> TimeArithmetic {
2346 TimeArithmetic::from(*sdur)
2347 }
2348}
2349
2350impl<'a> From<&'a UnsignedDuration> for TimeArithmetic {
2351 fn from(udur: &'a UnsignedDuration) -> TimeArithmetic {
2352 TimeArithmetic::from(*udur)
2353 }
2354}
2355
2356/// Options for [`Time::since`] and [`Time::until`].
2357///
2358/// This type provides a way to configure the calculation of spans between two
2359/// [`Time`] values. In particular, both `Time::since` and `Time::until` accept
2360/// anything that implements `Into<TimeDifference>`. There are a few key trait
2361/// implementations that make this convenient:
2362///
2363/// * `From<Time> for TimeDifference` will construct a configuration consisting
2364/// of just the time. So for example, `time1.until(time2)` will return the span
2365/// from `time1` to `time2`.
2366/// * `From<DateTime> for TimeDifference` will construct a configuration
2367/// consisting of just the time from the given datetime. So for example,
2368/// `time.since(datetime)` returns the span from `datetime.time()` to `time`.
2369/// * `From<(Unit, Time)>` is a convenient way to specify the largest units
2370/// that should be present on the span returned. By default, the largest units
2371/// are hours. Using this trait implementation is equivalent to
2372/// `TimeDifference::new(time).largest(unit)`.
2373/// * `From<(Unit, DateTime)>` is like the one above, but with the time from
2374/// the given datetime.
2375///
2376/// One can also provide a `TimeDifference` value directly. Doing so
2377/// is necessary to use the rounding features of calculating a span. For
2378/// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the
2379/// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment
2380/// (defaults to `1`). The defaults are selected such that no rounding occurs.
2381///
2382/// Rounding a span as part of calculating it is provided as a convenience.
2383/// Callers may choose to round the span as a distinct step via
2384/// [`Span::round`].
2385///
2386/// # Example
2387///
2388/// This example shows how to round a span between two datetimes to the nearest
2389/// half-hour, with ties breaking away from zero.
2390///
2391/// ```
2392/// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2393///
2394/// let t1 = "08:14:00.123456789".parse::<Time>()?;
2395/// let t2 = "15:00".parse::<Time>()?;
2396/// let span = t1.until(
2397/// TimeDifference::new(t2)
2398/// .smallest(Unit::Minute)
2399/// .mode(RoundMode::HalfExpand)
2400/// .increment(30),
2401/// )?;
2402/// assert_eq!(span, 7.hours().fieldwise());
2403///
2404/// // One less minute, and because of the HalfExpand mode, the span would
2405/// // get rounded down.
2406/// let t2 = "14:59".parse::<Time>()?;
2407/// let span = t1.until(
2408/// TimeDifference::new(t2)
2409/// .smallest(Unit::Minute)
2410/// .mode(RoundMode::HalfExpand)
2411/// .increment(30),
2412/// )?;
2413/// assert_eq!(span, 6.hours().minutes(30).fieldwise());
2414///
2415/// # Ok::<(), Box<dyn std::error::Error>>(())
2416/// ```
2417#[derive(Clone, Copy, Debug)]
2418pub struct TimeDifference {
2419 time: Time,
2420 round: SpanRound<'static>,
2421}
2422
2423impl TimeDifference {
2424 /// Create a new default configuration for computing the span between
2425 /// the given time and some other time (specified as the receiver in
2426 /// [`Time::since`] or [`Time::until`]).
2427 #[inline]
2428 pub fn new(time: Time) -> TimeDifference {
2429 // We use truncation rounding by default since it seems that's
2430 // what is generally expected when computing the difference between
2431 // datetimes.
2432 //
2433 // See: https://github.com/tc39/proposal-temporal/issues/1122
2434 let round = SpanRound::new().mode(RoundMode::Trunc);
2435 TimeDifference { time, round }
2436 }
2437
2438 /// Set the smallest units allowed in the span returned.
2439 ///
2440 /// # Errors
2441 ///
2442 /// The smallest units must be no greater than the largest units. If this
2443 /// is violated, then computing a span with this configuration will result
2444 /// in an error.
2445 ///
2446 /// # Example
2447 ///
2448 /// This shows how to round a span between two times to units no less than
2449 /// seconds.
2450 ///
2451 /// ```
2452 /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2453 ///
2454 /// let t1 = "08:14:02.5001".parse::<Time>()?;
2455 /// let t2 = "08:30:03.0001".parse::<Time>()?;
2456 /// let span = t1.until(
2457 /// TimeDifference::new(t2)
2458 /// .smallest(Unit::Second)
2459 /// .mode(RoundMode::HalfExpand),
2460 /// )?;
2461 /// assert_eq!(span, 16.minutes().seconds(1).fieldwise());
2462 ///
2463 /// # Ok::<(), Box<dyn std::error::Error>>(())
2464 /// ```
2465 #[inline]
2466 pub fn smallest(self, unit: Unit) -> TimeDifference {
2467 TimeDifference { round: self.round.smallest(unit), ..self }
2468 }
2469
2470 /// Set the largest units allowed in the span returned.
2471 ///
2472 /// When a largest unit is not specified, computing a span between times
2473 /// behaves as if it were set to [`Unit::Hour`].
2474 ///
2475 /// # Errors
2476 ///
2477 /// The largest units, when set, must be at least as big as the smallest
2478 /// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
2479 /// then computing a span with this configuration will result in an error.
2480 ///
2481 /// # Example
2482 ///
2483 /// This shows how to round a span between two times to units no
2484 /// bigger than seconds.
2485 ///
2486 /// ```
2487 /// use jiff::{civil::{Time, TimeDifference}, ToSpan, Unit};
2488 ///
2489 /// let t1 = "08:14".parse::<Time>()?;
2490 /// let t2 = "08:30".parse::<Time>()?;
2491 /// let span = t1.until(TimeDifference::new(t2).largest(Unit::Second))?;
2492 /// assert_eq!(span, 960.seconds().fieldwise());
2493 ///
2494 /// # Ok::<(), Box<dyn std::error::Error>>(())
2495 /// ```
2496 #[inline]
2497 pub fn largest(self, unit: Unit) -> TimeDifference {
2498 TimeDifference { round: self.round.largest(unit), ..self }
2499 }
2500
2501 /// Set the rounding mode.
2502 ///
2503 /// This defaults to [`RoundMode::Trunc`] since it's plausible that
2504 /// rounding "up" in the context of computing the span between two times
2505 /// could be surprising in a number of cases. The [`RoundMode::HalfExpand`]
2506 /// mode corresponds to typical rounding you might have learned about in
2507 /// school. But a variety of other rounding modes exist.
2508 ///
2509 /// # Example
2510 ///
2511 /// This shows how to always round "up" towards positive infinity.
2512 ///
2513 /// ```
2514 /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2515 ///
2516 /// let t1 = "08:10".parse::<Time>()?;
2517 /// let t2 = "08:11".parse::<Time>()?;
2518 /// let span = t1.until(
2519 /// TimeDifference::new(t2)
2520 /// .smallest(Unit::Hour)
2521 /// .mode(RoundMode::Ceil),
2522 /// )?;
2523 /// // Only one minute elapsed, but we asked to always round up!
2524 /// assert_eq!(span, 1.hour().fieldwise());
2525 ///
2526 /// // Since `Ceil` always rounds toward positive infinity, the behavior
2527 /// // flips for a negative span.
2528 /// let span = t1.since(
2529 /// TimeDifference::new(t2)
2530 /// .smallest(Unit::Hour)
2531 /// .mode(RoundMode::Ceil),
2532 /// )?;
2533 /// assert_eq!(span, 0.hour().fieldwise());
2534 ///
2535 /// # Ok::<(), Box<dyn std::error::Error>>(())
2536 /// ```
2537 #[inline]
2538 pub fn mode(self, mode: RoundMode) -> TimeDifference {
2539 TimeDifference { round: self.round.mode(mode), ..self }
2540 }
2541
2542 /// Set the rounding increment for the smallest unit.
2543 ///
2544 /// The default value is `1`. Other values permit rounding the smallest
2545 /// unit to the nearest integer increment specified. For example, if the
2546 /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
2547 /// `30` would result in rounding in increments of a half hour. That is,
2548 /// the only minute value that could result would be `0` or `30`.
2549 ///
2550 /// # Errors
2551 ///
2552 /// The rounding increment must divide evenly into the next highest unit
2553 /// after the smallest unit configured (and must not be equivalent to it).
2554 /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
2555 /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
2556 /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
2557 /// nanoseconds since there are `1,000` nanoseconds in the next highest
2558 /// unit (microseconds).
2559 ///
2560 /// The error will occur when computing the span, and not when setting
2561 /// the increment here.
2562 ///
2563 /// # Example
2564 ///
2565 /// This shows how to round the span between two times to the nearest 5
2566 /// minute increment.
2567 ///
2568 /// ```
2569 /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2570 ///
2571 /// let t1 = "08:19".parse::<Time>()?;
2572 /// let t2 = "12:52".parse::<Time>()?;
2573 /// let span = t1.until(
2574 /// TimeDifference::new(t2)
2575 /// .smallest(Unit::Minute)
2576 /// .increment(5)
2577 /// .mode(RoundMode::HalfExpand),
2578 /// )?;
2579 /// assert_eq!(span, 4.hour().minutes(35).fieldwise());
2580 ///
2581 /// # Ok::<(), Box<dyn std::error::Error>>(())
2582 /// ```
2583 #[inline]
2584 pub fn increment(self, increment: i64) -> TimeDifference {
2585 TimeDifference { round: self.round.increment(increment), ..self }
2586 }
2587
2588 /// Returns true if and only if this configuration could change the span
2589 /// via rounding.
2590 #[inline]
2591 fn rounding_may_change_span(&self) -> bool {
2592 self.round.rounding_may_change_span_ignore_largest()
2593 }
2594
2595 /// Returns the span of time from `t1` to the time in this configuration.
2596 /// The biggest units allowed are determined by the `smallest` and
2597 /// `largest` settings, but defaults to `Unit::Hour`.
2598 #[inline]
2599 fn until_with_largest_unit(&self, t1: Time) -> Result<Span, Error> {
2600 let t2 = self.time;
2601 if t1 == t2 {
2602 return Ok(Span::new());
2603 }
2604 let largest = self.round.get_largest().unwrap_or(Unit::Hour);
2605 if largest > Unit::Hour {
2606 return Err(err!(
2607 "rounding the span between two times must use hours \
2608 or smaller for its units, but found {units}",
2609 units = largest.plural(),
2610 ));
2611 }
2612 let start = t1.to_nanosecond();
2613 let end = t2.to_nanosecond();
2614 let span =
2615 Span::from_invariant_nanoseconds(largest, (end - start).rinto())
2616 .expect("difference in civil times is always in bounds");
2617 Ok(span)
2618 }
2619}
2620
2621impl From<Time> for TimeDifference {
2622 #[inline]
2623 fn from(time: Time) -> TimeDifference {
2624 TimeDifference::new(time)
2625 }
2626}
2627
2628impl From<DateTime> for TimeDifference {
2629 #[inline]
2630 fn from(dt: DateTime) -> TimeDifference {
2631 TimeDifference::from(Time::from(dt))
2632 }
2633}
2634
2635impl From<Zoned> for TimeDifference {
2636 #[inline]
2637 fn from(zdt: Zoned) -> TimeDifference {
2638 TimeDifference::from(Time::from(zdt))
2639 }
2640}
2641
2642impl<'a> From<&'a Zoned> for TimeDifference {
2643 #[inline]
2644 fn from(zdt: &'a Zoned) -> TimeDifference {
2645 TimeDifference::from(zdt.datetime())
2646 }
2647}
2648
2649impl From<(Unit, Time)> for TimeDifference {
2650 #[inline]
2651 fn from((largest, time): (Unit, Time)) -> TimeDifference {
2652 TimeDifference::from(time).largest(largest)
2653 }
2654}
2655
2656impl From<(Unit, DateTime)> for TimeDifference {
2657 #[inline]
2658 fn from((largest, dt): (Unit, DateTime)) -> TimeDifference {
2659 TimeDifference::from((largest, Time::from(dt)))
2660 }
2661}
2662
2663impl From<(Unit, Zoned)> for TimeDifference {
2664 #[inline]
2665 fn from((largest, zdt): (Unit, Zoned)) -> TimeDifference {
2666 TimeDifference::from((largest, Time::from(zdt)))
2667 }
2668}
2669
2670impl<'a> From<(Unit, &'a Zoned)> for TimeDifference {
2671 #[inline]
2672 fn from((largest, zdt): (Unit, &'a Zoned)) -> TimeDifference {
2673 TimeDifference::from((largest, zdt.datetime()))
2674 }
2675}
2676
2677/// Options for [`Time::round`].
2678///
2679/// This type provides a way to configure the rounding of a civil time.
2680/// In particular, `Time::round` accepts anything that implements the
2681/// `Into<TimeRound>` trait. There are some trait implementations that
2682/// therefore make calling `Time::round` in some common cases more ergonomic:
2683///
2684/// * `From<Unit> for TimeRound` will construct a rounding configuration that
2685/// rounds to the unit given. Specifically, `TimeRound::new().smallest(unit)`.
2686/// * `From<(Unit, i64)> for TimeRound` is like the one above, but also
2687/// specifies the rounding increment for [`TimeRound::increment`].
2688///
2689/// Note that in the default configuration, no rounding occurs.
2690///
2691/// # Example
2692///
2693/// This example shows how to round a time to the nearest second:
2694///
2695/// ```
2696/// use jiff::{civil::{Time, time}, Unit};
2697///
2698/// let t: Time = "16:24:59.5".parse()?;
2699/// assert_eq!(
2700/// t.round(Unit::Second)?,
2701/// // The second rounds up and causes minutes to increase.
2702/// time(16, 25, 0, 0),
2703/// );
2704///
2705/// # Ok::<(), Box<dyn std::error::Error>>(())
2706/// ```
2707///
2708/// The above makes use of the fact that `Unit` implements
2709/// `Into<TimeRound>`. If you want to change the rounding mode to, say,
2710/// truncation, then you'll need to construct a `TimeRound` explicitly
2711/// since there are no convenience `Into` trait implementations for
2712/// [`RoundMode`].
2713///
2714/// ```
2715/// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2716///
2717/// let t: Time = "2024-06-20 16:24:59.5".parse()?;
2718/// assert_eq!(
2719/// t.round(
2720/// TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
2721/// )?,
2722/// // The second just gets truncated as if it wasn't there.
2723/// time(16, 24, 59, 0),
2724/// );
2725///
2726/// # Ok::<(), Box<dyn std::error::Error>>(())
2727/// ```
2728#[derive(Clone, Copy, Debug)]
2729pub struct TimeRound {
2730 smallest: Unit,
2731 mode: RoundMode,
2732 increment: i64,
2733}
2734
2735impl TimeRound {
2736 /// Create a new default configuration for rounding a [`Time`].
2737 #[inline]
2738 pub fn new() -> TimeRound {
2739 TimeRound {
2740 smallest: Unit::Nanosecond,
2741 mode: RoundMode::HalfExpand,
2742 increment: 1,
2743 }
2744 }
2745
2746 /// Set the smallest units allowed in the time returned after rounding.
2747 ///
2748 /// Any units below the smallest configured unit will be used, along with
2749 /// the rounding increment and rounding mode, to determine the value of the
2750 /// smallest unit. For example, when rounding `03:25:30` to the
2751 /// nearest minute, the `30` second unit will result in rounding the minute
2752 /// unit of `25` up to `26` and zeroing out everything below minutes.
2753 ///
2754 /// This defaults to [`Unit::Nanosecond`].
2755 ///
2756 /// # Errors
2757 ///
2758 /// The smallest units must be no greater than [`Unit::Hour`].
2759 ///
2760 /// # Example
2761 ///
2762 /// ```
2763 /// use jiff::{civil::{TimeRound, time}, Unit};
2764 ///
2765 /// let t = time(3, 25, 30, 0);
2766 /// assert_eq!(
2767 /// t.round(TimeRound::new().smallest(Unit::Minute))?,
2768 /// time(3, 26, 0, 0),
2769 /// );
2770 /// // Or, utilize the `From<Unit> for TimeRound` impl:
2771 /// assert_eq!(t.round(Unit::Minute)?, time(3, 26, 0, 0));
2772 ///
2773 /// # Ok::<(), Box<dyn std::error::Error>>(())
2774 /// ```
2775 #[inline]
2776 pub fn smallest(self, unit: Unit) -> TimeRound {
2777 TimeRound { smallest: unit, ..self }
2778 }
2779
2780 /// Set the rounding mode.
2781 ///
2782 /// This defaults to [`RoundMode::HalfExpand`], which rounds away from
2783 /// zero. It matches the kind of rounding you might have been taught in
2784 /// school.
2785 ///
2786 /// # Example
2787 ///
2788 /// This shows how to always round times up towards positive infinity.
2789 ///
2790 /// ```
2791 /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2792 ///
2793 /// let t: Time = "03:25:01".parse()?;
2794 /// assert_eq!(
2795 /// t.round(
2796 /// TimeRound::new()
2797 /// .smallest(Unit::Minute)
2798 /// .mode(RoundMode::Ceil),
2799 /// )?,
2800 /// time(3, 26, 0, 0),
2801 /// );
2802 ///
2803 /// # Ok::<(), Box<dyn std::error::Error>>(())
2804 /// ```
2805 #[inline]
2806 pub fn mode(self, mode: RoundMode) -> TimeRound {
2807 TimeRound { mode, ..self }
2808 }
2809
2810 /// Set the rounding increment for the smallest unit.
2811 ///
2812 /// The default value is `1`. Other values permit rounding the smallest
2813 /// unit to the nearest integer increment specified. For example, if the
2814 /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
2815 /// `30` would result in rounding in increments of a half hour. That is,
2816 /// the only minute value that could result would be `0` or `30`.
2817 ///
2818 /// # Errors
2819 ///
2820 /// The rounding increment must divide evenly into the
2821 /// next highest unit above the smallest unit set. The rounding increment
2822 /// must also not be equal to the next highest unit. For example, if the
2823 /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
2824 /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
2825 /// Namely, any integer that divides evenly into `1,000` nanoseconds since
2826 /// there are `1,000` nanoseconds in the next highest unit (microseconds).
2827 ///
2828 /// # Example
2829 ///
2830 /// This example shows how to round a time to the nearest 10 minute
2831 /// increment.
2832 ///
2833 /// ```
2834 /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2835 ///
2836 /// let t: Time = "03:24:59".parse()?;
2837 /// assert_eq!(t.round((Unit::Minute, 10))?, time(3, 20, 0, 0));
2838 ///
2839 /// # Ok::<(), Box<dyn std::error::Error>>(())
2840 /// ```
2841 #[inline]
2842 pub fn increment(self, increment: i64) -> TimeRound {
2843 TimeRound { increment, ..self }
2844 }
2845
2846 /// Does the actual rounding.
2847 pub(crate) fn round(&self, t: Time) -> Result<Time, Error> {
2848 let increment = increment::for_time(self.smallest, self.increment)?;
2849 let nanos = t.to_nanosecond();
2850 let rounded = self.mode.round_by_unit_in_nanoseconds(
2851 nanos,
2852 self.smallest,
2853 increment,
2854 );
2855 let limit =
2856 t::NoUnits128::rfrom(t::CivilDayNanosecond::MAX_SELF) + C(1);
2857 Ok(Time::from_nanosecond((rounded % limit).rinto()))
2858 }
2859}
2860
2861impl Default for TimeRound {
2862 #[inline]
2863 fn default() -> TimeRound {
2864 TimeRound::new()
2865 }
2866}
2867
2868impl From<Unit> for TimeRound {
2869 #[inline]
2870 fn from(unit: Unit) -> TimeRound {
2871 TimeRound::default().smallest(unit)
2872 }
2873}
2874
2875impl From<(Unit, i64)> for TimeRound {
2876 #[inline]
2877 fn from((unit, increment): (Unit, i64)) -> TimeRound {
2878 TimeRound::from(unit).increment(increment)
2879 }
2880}
2881
2882/// A builder for setting the fields on a [`Time`].
2883///
2884/// This builder is constructed via [`Time::with`].
2885///
2886/// # Example
2887///
2888/// Unlike [`Date`], a [`Time`] is valid for all possible valid values of its
2889/// fields. That is, there is no way for two valid field values to combine
2890/// into an invalid `Time`. So, for `Time`, this builder does have as much of
2891/// a benefit versus an API design with methods like `Time::with_hour` and
2892/// `Time::with_minute`. Nevertheless, this builder permits settings multiple
2893/// fields at the same time and performing only one validity check. Moreover,
2894/// this provides a consistent API with other date and time types in this
2895/// crate.
2896///
2897/// ```
2898/// use jiff::civil::time;
2899///
2900/// let t1 = time(0, 0, 24, 0);
2901/// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?;
2902/// assert_eq!(t2, time(15, 30, 24, 10_000_000));
2903///
2904/// # Ok::<(), Box<dyn std::error::Error>>(())
2905/// ```
2906#[derive(Clone, Copy, Debug)]
2907pub struct TimeWith {
2908 original: Time,
2909 hour: Option<i8>,
2910 minute: Option<i8>,
2911 second: Option<i8>,
2912 millisecond: Option<i16>,
2913 microsecond: Option<i16>,
2914 nanosecond: Option<i16>,
2915 subsec_nanosecond: Option<i32>,
2916}
2917
2918impl TimeWith {
2919 #[inline]
2920 fn new(original: Time) -> TimeWith {
2921 TimeWith {
2922 original,
2923 hour: None,
2924 minute: None,
2925 second: None,
2926 millisecond: None,
2927 microsecond: None,
2928 nanosecond: None,
2929 subsec_nanosecond: None,
2930 }
2931 }
2932
2933 /// Create a new `Time` from the fields set on this configuration.
2934 ///
2935 /// An error occurs when the fields combine to an invalid time. This only
2936 /// occurs when at least one field has an invalid value, or if at least
2937 /// one of `millisecond`, `microsecond` or `nanosecond` is set _and_
2938 /// `subsec_nanosecond` is set. Otherwise, if all fields are valid, then
2939 /// the entire `Time` is guaranteed to be valid.
2940 ///
2941 /// For any fields not set on this configuration, the values are taken from
2942 /// the [`Time`] that originally created this configuration. When no values
2943 /// are set, this routine is guaranteed to succeed and will always return
2944 /// the original time without modification.
2945 ///
2946 /// # Example
2947 ///
2948 /// This creates a time but with its fractional nanosecond component
2949 /// stripped:
2950 ///
2951 /// ```
2952 /// use jiff::civil::time;
2953 ///
2954 /// let t = time(14, 27, 30, 123_456_789);
2955 /// assert_eq!(t.with().subsec_nanosecond(0).build()?, time(14, 27, 30, 0));
2956 ///
2957 /// # Ok::<(), Box<dyn std::error::Error>>(())
2958 /// ```
2959 ///
2960 /// # Example: error for invalid time
2961 ///
2962 /// ```
2963 /// use jiff::civil::time;
2964 ///
2965 /// let t = time(14, 27, 30, 0);
2966 /// assert!(t.with().hour(24).build().is_err());
2967 /// ```
2968 ///
2969 /// # Example: error for ambiguous sub-second value
2970 ///
2971 /// ```
2972 /// use jiff::civil::time;
2973 ///
2974 /// let t = time(14, 27, 30, 123_456_789);
2975 /// // Setting both the individual sub-second fields and the entire
2976 /// // fractional component could lead to a misleading configuration. So
2977 /// // if it's done, it results in an error in all cases. Callers must
2978 /// // choose one or the other.
2979 /// assert!(t.with().microsecond(1).subsec_nanosecond(0).build().is_err());
2980 /// ```
2981 #[inline]
2982 pub fn build(self) -> Result<Time, Error> {
2983 let hour = match self.hour {
2984 None => self.original.hour_ranged(),
2985 Some(hour) => Hour::try_new("hour", hour)?,
2986 };
2987 let minute = match self.minute {
2988 None => self.original.minute_ranged(),
2989 Some(minute) => Minute::try_new("minute", minute)?,
2990 };
2991 let second = match self.second {
2992 None => self.original.second_ranged(),
2993 Some(second) => Second::try_new("second", second)?,
2994 };
2995 let millisecond = match self.millisecond {
2996 None => self.original.millisecond_ranged(),
2997 Some(millisecond) => {
2998 Millisecond::try_new("millisecond", millisecond)?
2999 }
3000 };
3001 let microsecond = match self.microsecond {
3002 None => self.original.microsecond_ranged(),
3003 Some(microsecond) => {
3004 Microsecond::try_new("microsecond", microsecond)?
3005 }
3006 };
3007 let nanosecond = match self.nanosecond {
3008 None => self.original.nanosecond_ranged(),
3009 Some(nanosecond) => Nanosecond::try_new("nanosecond", nanosecond)?,
3010 };
3011 let subsec_nanosecond = match self.subsec_nanosecond {
3012 None => self.original.subsec_nanosecond_ranged(),
3013 Some(subsec_nanosecond) => {
3014 if self.millisecond.is_some() {
3015 return Err(err!(
3016 "cannot set both TimeWith::millisecond \
3017 and TimeWith::subsec_nanosecond",
3018 ));
3019 }
3020 if self.microsecond.is_some() {
3021 return Err(err!(
3022 "cannot set both TimeWith::microsecond \
3023 and TimeWith::subsec_nanosecond",
3024 ));
3025 }
3026 if self.nanosecond.is_some() {
3027 return Err(err!(
3028 "cannot set both TimeWith::nanosecond \
3029 and TimeWith::subsec_nanosecond",
3030 ));
3031 }
3032 SubsecNanosecond::try_new(
3033 "subsec_nanosecond",
3034 subsec_nanosecond,
3035 )?
3036 }
3037 };
3038 if self.subsec_nanosecond.is_some() {
3039 Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond))
3040 } else {
3041 Ok(Time::new_ranged(hour, minute, second, C(0))
3042 .with_subsec_parts_ranged(
3043 millisecond,
3044 microsecond,
3045 nanosecond,
3046 ))
3047 }
3048 }
3049
3050 /// Set the hour field on a [`Time`].
3051 ///
3052 /// One can access this value via [`Time::hour`].
3053 ///
3054 /// This overrides any previous hour settings.
3055 ///
3056 /// # Errors
3057 ///
3058 /// This returns an error when [`TimeWith::build`] is called if the given
3059 /// hour is outside the range `0..=23`.
3060 ///
3061 /// # Example
3062 ///
3063 /// ```
3064 /// use jiff::civil::time;
3065 ///
3066 /// let t1 = time(15, 21, 59, 0);
3067 /// assert_eq!(t1.hour(), 15);
3068 /// let t2 = t1.with().hour(3).build()?;
3069 /// assert_eq!(t2.hour(), 3);
3070 ///
3071 /// # Ok::<(), Box<dyn std::error::Error>>(())
3072 /// ```
3073 #[inline]
3074 pub fn hour(self, hour: i8) -> TimeWith {
3075 TimeWith { hour: Some(hour), ..self }
3076 }
3077
3078 /// Set the minute field on a [`Time`].
3079 ///
3080 /// One can access this value via [`Time::minute`].
3081 ///
3082 /// This overrides any previous minute settings.
3083 ///
3084 /// # Errors
3085 ///
3086 /// This returns an error when [`TimeWith::build`] is called if the given
3087 /// minute is outside the range `0..=59`.
3088 ///
3089 /// # Example
3090 ///
3091 /// ```
3092 /// use jiff::civil::time;
3093 ///
3094 /// let t1 = time(15, 21, 59, 0);
3095 /// assert_eq!(t1.minute(), 21);
3096 /// let t2 = t1.with().minute(3).build()?;
3097 /// assert_eq!(t2.minute(), 3);
3098 ///
3099 /// # Ok::<(), Box<dyn std::error::Error>>(())
3100 /// ```
3101 #[inline]
3102 pub fn minute(self, minute: i8) -> TimeWith {
3103 TimeWith { minute: Some(minute), ..self }
3104 }
3105
3106 /// Set the second field on a [`Time`].
3107 ///
3108 /// One can access this value via [`Time::second`].
3109 ///
3110 /// This overrides any previous second settings.
3111 ///
3112 /// # Errors
3113 ///
3114 /// This returns an error when [`TimeWith::build`] is called if the given
3115 /// second is outside the range `0..=59`.
3116 ///
3117 /// # Example
3118 ///
3119 /// ```
3120 /// use jiff::civil::time;
3121 ///
3122 /// let t1 = time(15, 21, 59, 0);
3123 /// assert_eq!(t1.second(), 59);
3124 /// let t2 = t1.with().second(3).build()?;
3125 /// assert_eq!(t2.second(), 3);
3126 ///
3127 /// # Ok::<(), Box<dyn std::error::Error>>(())
3128 /// ```
3129 #[inline]
3130 pub fn second(self, second: i8) -> TimeWith {
3131 TimeWith { second: Some(second), ..self }
3132 }
3133
3134 /// Set the millisecond field on a [`Time`].
3135 ///
3136 /// One can access this value via [`Time::millisecond`].
3137 ///
3138 /// This overrides any previous millisecond settings.
3139 ///
3140 /// Note that this only sets the millisecond component. It does
3141 /// not change the microsecond or nanosecond components. To set
3142 /// the fractional second component to nanosecond precision, use
3143 /// [`TimeWith::subsec_nanosecond`].
3144 ///
3145 /// # Errors
3146 ///
3147 /// This returns an error when [`TimeWith::build`] is called if the given
3148 /// millisecond is outside the range `0..=999`, or if both this and
3149 /// [`TimeWith::subsec_nanosecond`] are set.
3150 ///
3151 /// # Example
3152 ///
3153 /// This shows the relationship between [`Time::millisecond`] and
3154 /// [`Time::subsec_nanosecond`]:
3155 ///
3156 /// ```
3157 /// use jiff::civil::time;
3158 ///
3159 /// let t = time(15, 21, 35, 0).with().millisecond(123).build()?;
3160 /// assert_eq!(t.subsec_nanosecond(), 123_000_000);
3161 ///
3162 /// # Ok::<(), Box<dyn std::error::Error>>(())
3163 /// ```
3164 #[inline]
3165 pub fn millisecond(self, millisecond: i16) -> TimeWith {
3166 TimeWith { millisecond: Some(millisecond), ..self }
3167 }
3168
3169 /// Set the microsecond field on a [`Time`].
3170 ///
3171 /// One can access this value via [`Time::microsecond`].
3172 ///
3173 /// This overrides any previous microsecond settings.
3174 ///
3175 /// Note that this only sets the microsecond component. It does
3176 /// not change the millisecond or nanosecond components. To set
3177 /// the fractional second component to nanosecond precision, use
3178 /// [`TimeWith::subsec_nanosecond`].
3179 ///
3180 /// # Errors
3181 ///
3182 /// This returns an error when [`TimeWith::build`] is called if the given
3183 /// microsecond is outside the range `0..=999`, or if both this and
3184 /// [`TimeWith::subsec_nanosecond`] are set.
3185 ///
3186 /// # Example
3187 ///
3188 /// This shows the relationship between [`Time::microsecond`] and
3189 /// [`Time::subsec_nanosecond`]:
3190 ///
3191 /// ```
3192 /// use jiff::civil::time;
3193 ///
3194 /// let t = time(15, 21, 35, 0).with().microsecond(123).build()?;
3195 /// assert_eq!(t.subsec_nanosecond(), 123_000);
3196 ///
3197 /// # Ok::<(), Box<dyn std::error::Error>>(())
3198 /// ```
3199 #[inline]
3200 pub fn microsecond(self, microsecond: i16) -> TimeWith {
3201 TimeWith { microsecond: Some(microsecond), ..self }
3202 }
3203
3204 /// Set the nanosecond field on a [`Time`].
3205 ///
3206 /// One can access this value via [`Time::nanosecond`].
3207 ///
3208 /// This overrides any previous nanosecond settings.
3209 ///
3210 /// Note that this only sets the nanosecond component. It does
3211 /// not change the millisecond or microsecond components. To set
3212 /// the fractional second component to nanosecond precision, use
3213 /// [`TimeWith::subsec_nanosecond`].
3214 ///
3215 /// # Errors
3216 ///
3217 /// This returns an error when [`TimeWith::build`] is called if the given
3218 /// nanosecond is outside the range `0..=999`, or if both this and
3219 /// [`TimeWith::subsec_nanosecond`] are set.
3220 ///
3221 /// # Example
3222 ///
3223 /// This shows the relationship between [`Time::nanosecond`] and
3224 /// [`Time::subsec_nanosecond`]:
3225 ///
3226 /// ```
3227 /// use jiff::civil::time;
3228 ///
3229 /// let t = time(15, 21, 35, 0).with().nanosecond(123).build()?;
3230 /// assert_eq!(t.subsec_nanosecond(), 123);
3231 ///
3232 /// # Ok::<(), Box<dyn std::error::Error>>(())
3233 /// ```
3234 #[inline]
3235 pub fn nanosecond(self, nanosecond: i16) -> TimeWith {
3236 TimeWith { nanosecond: Some(nanosecond), ..self }
3237 }
3238
3239 /// Set the subsecond nanosecond field on a [`Time`].
3240 ///
3241 /// If you want to access this value on `Time`, then use
3242 /// [`Time::subsec_nanosecond`].
3243 ///
3244 /// This overrides any previous subsecond nanosecond settings.
3245 ///
3246 /// Note that this sets the entire fractional second component to
3247 /// nanosecond precision, and overrides any individual millisecond,
3248 /// microsecond or nanosecond settings. To set individual components,
3249 /// use [`TimeWith::millisecond`], [`TimeWith::microsecond`] or
3250 /// [`TimeWith::nanosecond`].
3251 ///
3252 /// # Errors
3253 ///
3254 /// This returns an error when [`TimeWith::build`] is called if the given
3255 /// subsecond nanosecond is outside the range `0..=999,999,999`, or if both
3256 /// this and one of [`TimeWith::millisecond`], [`TimeWith::microsecond`] or
3257 /// [`TimeWith::nanosecond`] are set.
3258 ///
3259 /// # Example
3260 ///
3261 /// This shows the relationship between constructing a `Time` value with
3262 /// subsecond nanoseconds and its individual subsecond fields:
3263 ///
3264 /// ```
3265 /// use jiff::civil::time;
3266 ///
3267 /// let t1 = time(15, 21, 35, 0);
3268 /// let t2 = t1.with().subsec_nanosecond(123_456_789).build()?;
3269 /// assert_eq!(t2.millisecond(), 123);
3270 /// assert_eq!(t2.microsecond(), 456);
3271 /// assert_eq!(t2.nanosecond(), 789);
3272 ///
3273 /// # Ok::<(), Box<dyn std::error::Error>>(())
3274 /// ```
3275 #[inline]
3276 pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> TimeWith {
3277 TimeWith { subsec_nanosecond: Some(subsec_nanosecond), ..self }
3278 }
3279}
3280
3281#[cfg(test)]
3282mod tests {
3283 use std::io::Cursor;
3284
3285 use crate::{civil::time, span::span_eq, ToSpan};
3286
3287 use super::*;
3288
3289 #[test]
3290 fn min() {
3291 let t = Time::MIN;
3292 assert_eq!(t.hour(), 0);
3293 assert_eq!(t.minute(), 0);
3294 assert_eq!(t.second(), 0);
3295 assert_eq!(t.subsec_nanosecond(), 0);
3296 }
3297
3298 #[test]
3299 fn max() {
3300 let t = Time::MAX;
3301 assert_eq!(t.hour(), 23);
3302 assert_eq!(t.minute(), 59);
3303 assert_eq!(t.second(), 59);
3304 assert_eq!(t.subsec_nanosecond(), 999_999_999);
3305 }
3306
3307 #[test]
3308 fn invalid() {
3309 assert!(Time::new(24, 0, 0, 0).is_err());
3310 assert!(Time::new(23, 60, 0, 0).is_err());
3311 assert!(Time::new(23, 59, 60, 0).is_err());
3312 assert!(Time::new(23, 59, 61, 0).is_err());
3313 assert!(Time::new(-1, 0, 0, 0).is_err());
3314 assert!(Time::new(0, -1, 0, 0).is_err());
3315 assert!(Time::new(0, 0, -1, 0).is_err());
3316
3317 assert!(Time::new(0, 0, 0, 1_000_000_000).is_err());
3318 assert!(Time::new(0, 0, 0, -1).is_err());
3319 assert!(Time::new(23, 59, 59, 1_000_000_000).is_err());
3320 assert!(Time::new(23, 59, 59, -1).is_err());
3321 }
3322
3323 #[test]
3324 fn rounding_cross_midnight() {
3325 let t1 = time(23, 59, 59, 999_999_999);
3326
3327 let t2 = t1.round(Unit::Nanosecond).unwrap();
3328 assert_eq!(t2, t1);
3329
3330 let t2 = t1.round(Unit::Millisecond).unwrap();
3331 assert_eq!(t2, time(0, 0, 0, 0));
3332
3333 let t2 = t1.round(Unit::Microsecond).unwrap();
3334 assert_eq!(t2, time(0, 0, 0, 0));
3335
3336 let t2 = t1.round(Unit::Millisecond).unwrap();
3337 assert_eq!(t2, time(0, 0, 0, 0));
3338
3339 let t2 = t1.round(Unit::Second).unwrap();
3340 assert_eq!(t2, time(0, 0, 0, 0));
3341
3342 let t2 = t1.round(Unit::Minute).unwrap();
3343 assert_eq!(t2, time(0, 0, 0, 0));
3344
3345 let t2 = t1.round(Unit::Hour).unwrap();
3346 assert_eq!(t2, time(0, 0, 0, 0));
3347
3348 let t1 = time(22, 15, 0, 0);
3349 assert_eq!(
3350 time(22, 30, 0, 0),
3351 t1.round(TimeRound::new().smallest(Unit::Minute).increment(30))
3352 .unwrap()
3353 );
3354 }
3355
3356 #[cfg(not(miri))]
3357 quickcheck::quickcheck! {
3358 fn prop_ordering_same_as_civil_nanosecond(
3359 civil_nanosecond1: CivilDayNanosecond,
3360 civil_nanosecond2: CivilDayNanosecond
3361 ) -> bool {
3362 let t1 = Time::from_nanosecond(civil_nanosecond1);
3363 let t2 = Time::from_nanosecond(civil_nanosecond2);
3364 t1.cmp(&t2) == civil_nanosecond1.cmp(&civil_nanosecond2)
3365 }
3366
3367 fn prop_checked_add_then_sub(
3368 time: Time,
3369 nano_span: CivilDayNanosecond
3370 ) -> quickcheck::TestResult {
3371 let span = Span::new().nanoseconds(nano_span.get());
3372 let Ok(sum) = time.checked_add(span) else {
3373 return quickcheck::TestResult::discard()
3374 };
3375 let diff = sum.checked_sub(span).unwrap();
3376 quickcheck::TestResult::from_bool(time == diff)
3377 }
3378
3379 fn prop_wrapping_add_then_sub(
3380 time: Time,
3381 nano_span: CivilDayNanosecond
3382 ) -> bool {
3383 let span = Span::new().nanoseconds(nano_span.get());
3384 let sum = time.wrapping_add(span);
3385 let diff = sum.wrapping_sub(span);
3386 time == diff
3387 }
3388
3389 fn prop_checked_add_equals_wrapping_add(
3390 time: Time,
3391 nano_span: CivilDayNanosecond
3392 ) -> quickcheck::TestResult {
3393 let span = Span::new().nanoseconds(nano_span.get());
3394 let Ok(sum_checked) = time.checked_add(span) else {
3395 return quickcheck::TestResult::discard()
3396 };
3397 let sum_wrapped = time.wrapping_add(span);
3398 quickcheck::TestResult::from_bool(sum_checked == sum_wrapped)
3399 }
3400
3401 fn prop_checked_sub_equals_wrapping_sub(
3402 time: Time,
3403 nano_span: CivilDayNanosecond
3404 ) -> quickcheck::TestResult {
3405 let span = Span::new().nanoseconds(nano_span.get());
3406 let Ok(diff_checked) = time.checked_sub(span) else {
3407 return quickcheck::TestResult::discard()
3408 };
3409 let diff_wrapped = time.wrapping_sub(span);
3410 quickcheck::TestResult::from_bool(diff_checked == diff_wrapped)
3411 }
3412
3413 fn prop_until_then_add(t1: Time, t2: Time) -> bool {
3414 let span = t1.until(t2).unwrap();
3415 t1.checked_add(span).unwrap() == t2
3416 }
3417
3418 fn prop_until_then_sub(t1: Time, t2: Time) -> bool {
3419 let span = t1.until(t2).unwrap();
3420 t2.checked_sub(span).unwrap() == t1
3421 }
3422
3423 fn prop_since_then_add(t1: Time, t2: Time) -> bool {
3424 let span = t1.since(t2).unwrap();
3425 t2.checked_add(span).unwrap() == t1
3426 }
3427
3428 fn prop_since_then_sub(t1: Time, t2: Time) -> bool {
3429 let span = t1.since(t2).unwrap();
3430 t1.checked_sub(span).unwrap() == t2
3431 }
3432
3433 fn prop_until_is_since_negated(t1: Time, t2: Time) -> bool {
3434 t1.until(t2).unwrap().get_nanoseconds()
3435 == t1.since(t2).unwrap().negate().get_nanoseconds()
3436 }
3437 }
3438
3439 #[test]
3440 fn overflowing_add() {
3441 let t1 = time(23, 30, 0, 0);
3442 let (t2, span) = t1.overflowing_add(5.hours()).unwrap();
3443 assert_eq!(t2, time(4, 30, 0, 0));
3444 span_eq!(span, 1.days());
3445 }
3446
3447 #[test]
3448 fn overflowing_add_overflows() {
3449 let t1 = time(23, 30, 0, 0);
3450 let span = Span::new()
3451 .hours(t::SpanHours::MAX_REPR)
3452 .minutes(t::SpanMinutes::MAX_REPR)
3453 .seconds(t::SpanSeconds::MAX_REPR)
3454 .milliseconds(t::SpanMilliseconds::MAX_REPR)
3455 .microseconds(t::SpanMicroseconds::MAX_REPR)
3456 .nanoseconds(t::SpanNanoseconds::MAX_REPR);
3457 assert!(t1.overflowing_add(span).is_err());
3458 }
3459
3460 #[test]
3461 fn time_size() {
3462 #[cfg(debug_assertions)]
3463 {
3464 assert_eq!(24, core::mem::size_of::<Time>());
3465 }
3466 #[cfg(not(debug_assertions))]
3467 {
3468 assert_eq!(8, core::mem::size_of::<Time>());
3469 }
3470 }
3471
3472 // This test checks that a wrapping subtraction with the minimum signed
3473 // duration is as expected.
3474 #[test]
3475 fn wrapping_sub_signed_duration_min() {
3476 let max = -SignedDuration::MIN.as_nanos();
3477 let got = time(15, 30, 8, 999_999_999).to_nanosecond();
3478 let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3479 assert_eq!(i128::from(got.get()), expected);
3480 }
3481
3482 // This test checks that a wrapping subtraction with the maximum signed
3483 // duration is as expected.
3484 #[test]
3485 fn wrapping_sub_signed_duration_max() {
3486 let max = -SignedDuration::MAX.as_nanos();
3487 let got = time(8, 29, 52, 1).to_nanosecond();
3488 let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3489 assert_eq!(i128::from(got.get()), expected);
3490 }
3491
3492 // This test checks that a wrapping subtraction with the maximum unsigned
3493 // duration is as expected.
3494 #[test]
3495 fn wrapping_sub_unsigned_duration_max() {
3496 let max =
3497 -i128::try_from(std::time::Duration::MAX.as_nanos()).unwrap();
3498 let got = time(16, 59, 44, 1).to_nanosecond();
3499 let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3500 assert_eq!(i128::from(got.get()), expected);
3501 }
3502
3503 /// # `serde` deserializer compatibility test
3504 ///
3505 /// Serde YAML used to be unable to deserialize `jiff` types,
3506 /// as deserializing from bytes is not supported by the deserializer.
3507 ///
3508 /// - <https://github.com/BurntSushi/jiff/issues/138>
3509 /// - <https://github.com/BurntSushi/jiff/discussions/148>
3510 #[test]
3511 fn civil_time_deserialize_yaml() {
3512 let expected = time(16, 35, 4, 987654321);
3513
3514 let deserialized: Time =
3515 serde_yaml::from_str("16:35:04.987654321").unwrap();
3516
3517 assert_eq!(deserialized, expected);
3518
3519 let deserialized: Time =
3520 serde_yaml::from_slice("16:35:04.987654321".as_bytes()).unwrap();
3521
3522 assert_eq!(deserialized, expected);
3523
3524 let cursor = Cursor::new(b"16:35:04.987654321");
3525 let deserialized: Time = serde_yaml::from_reader(cursor).unwrap();
3526
3527 assert_eq!(deserialized, expected);
3528 }
3529}