1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
//! Plain, uninstrumented wrappers around [`parking_lot`] lock types.
//!
//! These definitions are used when no particular lock instrumentation
//! Cargo feature is selected.

/// A plain wrapper around [`parking_lot::Mutex`].
///
/// This is just like [`parking_lot::Mutex`], except that our [`new`]
/// method takes a rank, indicating where the new mutex should sit in
/// `wgpu-core`'s lock ordering. The rank is ignored.
///
/// See the [`lock`] module documentation for other wrappers.
///
/// [`new`]: Mutex::new
/// [`lock`]: crate::lock
pub struct Mutex<T>(parking_lot::Mutex<T>);

/// A guard produced by locking [`Mutex`].
///
/// This is just a wrapper around a [`parking_lot::MutexGuard`].
pub struct MutexGuard<'a, T>(parking_lot::MutexGuard<'a, T>);

impl<T> Mutex<T> {
    pub fn new(_rank: super::rank::LockRank, value: T) -> Mutex<T> {
        Mutex(parking_lot::Mutex::new(value))
    }

    pub fn lock(&self) -> MutexGuard<T> {
        MutexGuard(self.0.lock())
    }
}

impl<'a, T> MutexGuard<'a, T> {
    pub fn try_map<U: ?Sized, F>(s: Self, f: F) -> Result<parking_lot::MappedMutexGuard<'a, U>, ()>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        parking_lot::MutexGuard::try_map(s.0, f).map_err(|_| ())
    }
}

impl<'a, T> std::ops::Deref for MutexGuard<'a, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.0.deref()
    }
}

impl<'a, T> std::ops::DerefMut for MutexGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.0.deref_mut()
    }
}

impl<T: std::fmt::Debug> std::fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.0.fmt(f)
    }
}

/// A plain wrapper around [`parking_lot::RwLock`].
///
/// This is just like [`parking_lot::RwLock`], except that our [`new`]
/// method takes a rank, indicating where the new mutex should sit in
/// `wgpu-core`'s lock ordering. The rank is ignored.
///
/// See the [`lock`] module documentation for other wrappers.
///
/// [`new`]: RwLock::new
/// [`lock`]: crate::lock
pub struct RwLock<T>(parking_lot::RwLock<T>);

/// A read guard produced by locking [`RwLock`] as a reader.
///
/// This is just a wrapper around a [`parking_lot::RwLockReadGuard`].
pub struct RwLockReadGuard<'a, T>(parking_lot::RwLockReadGuard<'a, T>);

/// A write guard produced by locking [`RwLock`] as a writer.
///
/// This is just a wrapper around a [`parking_lot::RwLockWriteGuard`].
pub struct RwLockWriteGuard<'a, T>(parking_lot::RwLockWriteGuard<'a, T>);

impl<T> RwLock<T> {
    pub fn new(_rank: super::rank::LockRank, value: T) -> RwLock<T> {
        RwLock(parking_lot::RwLock::new(value))
    }

    pub fn read(&self) -> RwLockReadGuard<T> {
        RwLockReadGuard(self.0.read())
    }

    pub fn write(&self) -> RwLockWriteGuard<T> {
        RwLockWriteGuard(self.0.write())
    }
}

impl<'a, T> RwLockWriteGuard<'a, T> {
    pub fn downgrade(this: Self) -> RwLockReadGuard<'a, T> {
        RwLockReadGuard(parking_lot::RwLockWriteGuard::downgrade(this.0))
    }
}

impl<T: std::fmt::Debug> std::fmt::Debug for RwLock<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.0.fmt(f)
    }
}

impl<'a, T> std::ops::Deref for RwLockReadGuard<'a, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.0.deref()
    }
}

impl<'a, T> std::ops::Deref for RwLockWriteGuard<'a, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.0.deref()
    }
}

impl<'a, T> std::ops::DerefMut for RwLockWriteGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.0.deref_mut()
    }
}