1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
// Copyright 2014 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A one-dimensional length, tagged with its units.

use crate::approxeq::ApproxEq;
use crate::approxord::{max, min};
use crate::num::Zero;
use crate::scale::Scale;

use crate::num::One;
#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::iter::Sum;
use core::marker::PhantomData;
use core::ops::{Add, Div, Mul, Neg, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, SubAssign};
use num_traits::{NumCast, Saturating};
#[cfg(feature = "serde")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};

/// A one-dimensional distance, with value represented by `T` and unit of measurement `Unit`.
///
/// `T` can be any numeric type, for example a primitive type like `u64` or `f32`.
///
/// `Unit` is not used in the representation of a `Length` value. It is used only at compile time
/// to ensure that a `Length` stored with one unit is converted explicitly before being used in an
/// expression that requires a different unit.  It may be a type without values, such as an empty
/// enum.
///
/// You can multiply a `Length` by a [`Scale`] to convert it from one unit to
/// another. See the [`Scale`] docs for an example.
#[repr(C)]
pub struct Length<T, Unit>(pub T, #[doc(hidden)] pub PhantomData<Unit>);

impl<T: Clone, U> Clone for Length<T, U> {
    fn clone(&self) -> Self {
        Length(self.0.clone(), PhantomData)
    }
}

impl<T: Copy, U> Copy for Length<T, U> {}

#[cfg(feature = "serde")]
impl<'de, T, U> Deserialize<'de> for Length<T, U>
where
    T: Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        Ok(Length(Deserialize::deserialize(deserializer)?, PhantomData))
    }
}

#[cfg(feature = "serde")]
impl<T, U> Serialize for Length<T, U>
where
    T: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        self.0.serialize(serializer)
    }
}

#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Length<T, U>
where
    T: arbitrary::Arbitrary<'a>,
{
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        Ok(Length(arbitrary::Arbitrary::arbitrary(u)?, PhantomData))
    }
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Length<T, U> {}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Length<T, U> {}

impl<T, U> Length<T, U> {
    /// Associate a value with a unit of measure.
    #[inline]
    pub const fn new(x: T) -> Self {
        Length(x, PhantomData)
    }
}

impl<T: Clone, U> Length<T, U> {
    /// Unpack the underlying value from the wrapper.
    pub fn get(self) -> T {
        self.0
    }

    /// Cast the unit
    #[inline]
    pub fn cast_unit<V>(self) -> Length<T, V> {
        Length::new(self.0)
    }

    /// Linearly interpolate between this length and another length.
    ///
    /// # Example
    ///
    /// ```rust
    /// use euclid::default::Length;
    ///
    /// let from = Length::new(0.0);
    /// let to = Length::new(8.0);
    ///
    /// assert_eq!(from.lerp(to, -1.0), Length::new(-8.0));
    /// assert_eq!(from.lerp(to,  0.0), Length::new( 0.0));
    /// assert_eq!(from.lerp(to,  0.5), Length::new( 4.0));
    /// assert_eq!(from.lerp(to,  1.0), Length::new( 8.0));
    /// assert_eq!(from.lerp(to,  2.0), Length::new(16.0));
    /// ```
    #[inline]
    pub fn lerp(self, other: Self, t: T) -> Self
    where
        T: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,
    {
        let one_t = T::one() - t.clone();
        Length::new(one_t * self.0.clone() + t * other.0)
    }
}

impl<T: PartialOrd, U> Length<T, U> {
    /// Returns minimum between this length and another length.
    #[inline]
    pub fn min(self, other: Self) -> Self {
        min(self, other)
    }

    /// Returns maximum between this length and another length.
    #[inline]
    pub fn max(self, other: Self) -> Self {
        max(self, other)
    }
}

impl<T: NumCast + Clone, U> Length<T, U> {
    /// Cast from one numeric representation to another, preserving the units.
    #[inline]
    pub fn cast<NewT: NumCast>(self) -> Length<NewT, U> {
        self.try_cast().unwrap()
    }

    /// Fallible cast from one numeric representation to another, preserving the units.
    pub fn try_cast<NewT: NumCast>(self) -> Option<Length<NewT, U>> {
        NumCast::from(self.0).map(Length::new)
    }
}

impl<T: fmt::Debug, U> fmt::Debug for Length<T, U> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<T: Default, U> Default for Length<T, U> {
    #[inline]
    fn default() -> Self {
        Length::new(Default::default())
    }
}

impl<T: Hash, U> Hash for Length<T, U> {
    fn hash<H: Hasher>(&self, h: &mut H) {
        self.0.hash(h);
    }
}

// length + length
impl<T: Add, U> Add for Length<T, U> {
    type Output = Length<T::Output, U>;

    fn add(self, other: Self) -> Self::Output {
        Length::new(self.0 + other.0)
    }
}

// length + &length
impl<T: Add + Copy, U> Add<&Self> for Length<T, U> {
    type Output = Length<T::Output, U>;

    fn add(self, other: &Self) -> Self::Output {
        Length::new(self.0 + other.0)
    }
}

// length_iter.copied().sum()
impl<T: Add<Output = T> + Zero, U> Sum for Length<T, U> {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        iter.fold(Self::zero(), Add::add)
    }
}

// length_iter.sum()
impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Length<T, U> {
    fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
        iter.fold(Self::zero(), Add::add)
    }
}

// length += length
impl<T: AddAssign, U> AddAssign for Length<T, U> {
    fn add_assign(&mut self, other: Self) {
        self.0 += other.0;
    }
}

// length - length
impl<T: Sub, U> Sub for Length<T, U> {
    type Output = Length<T::Output, U>;

    fn sub(self, other: Length<T, U>) -> Self::Output {
        Length::new(self.0 - other.0)
    }
}

// length -= length
impl<T: SubAssign, U> SubAssign for Length<T, U> {
    fn sub_assign(&mut self, other: Self) {
        self.0 -= other.0;
    }
}

// Saturating length + length and length - length.
impl<T: Saturating, U> Saturating for Length<T, U> {
    fn saturating_add(self, other: Self) -> Self {
        Length::new(self.0.saturating_add(other.0))
    }

    fn saturating_sub(self, other: Self) -> Self {
        Length::new(self.0.saturating_sub(other.0))
    }
}

// length / length
impl<Src, Dst, T: Div> Div<Length<T, Src>> for Length<T, Dst> {
    type Output = Scale<T::Output, Src, Dst>;

    #[inline]
    fn div(self, other: Length<T, Src>) -> Self::Output {
        Scale::new(self.0 / other.0)
    }
}

// length * scalar
impl<T: Mul, U> Mul<T> for Length<T, U> {
    type Output = Length<T::Output, U>;

    #[inline]
    fn mul(self, scale: T) -> Self::Output {
        Length::new(self.0 * scale)
    }
}

// length *= scalar
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Length<T, U> {
    #[inline]
    fn mul_assign(&mut self, scale: T) {
        *self = *self * scale
    }
}

// length / scalar
impl<T: Div, U> Div<T> for Length<T, U> {
    type Output = Length<T::Output, U>;

    #[inline]
    fn div(self, scale: T) -> Self::Output {
        Length::new(self.0 / scale)
    }
}

// length /= scalar
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Length<T, U> {
    #[inline]
    fn div_assign(&mut self, scale: T) {
        *self = *self / scale
    }
}

// length * scaleFactor
impl<Src, Dst, T: Mul> Mul<Scale<T, Src, Dst>> for Length<T, Src> {
    type Output = Length<T::Output, Dst>;

    #[inline]
    fn mul(self, scale: Scale<T, Src, Dst>) -> Self::Output {
        Length::new(self.0 * scale.0)
    }
}

// length / scaleFactor
impl<Src, Dst, T: Div> Div<Scale<T, Src, Dst>> for Length<T, Dst> {
    type Output = Length<T::Output, Src>;

    #[inline]
    fn div(self, scale: Scale<T, Src, Dst>) -> Self::Output {
        Length::new(self.0 / scale.0)
    }
}

// -length
impl<U, T: Neg> Neg for Length<T, U> {
    type Output = Length<T::Output, U>;

    #[inline]
    fn neg(self) -> Self::Output {
        Length::new(-self.0)
    }
}

impl<T: PartialEq, U> PartialEq for Length<T, U> {
    fn eq(&self, other: &Self) -> bool {
        self.0.eq(&other.0)
    }
}

impl<T: PartialOrd, U> PartialOrd for Length<T, U> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.0.partial_cmp(&other.0)
    }
}

impl<T: Eq, U> Eq for Length<T, U> {}

impl<T: Ord, U> Ord for Length<T, U> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.0.cmp(&other.0)
    }
}

impl<T: Zero, U> Zero for Length<T, U> {
    #[inline]
    fn zero() -> Self {
        Length::new(Zero::zero())
    }
}

impl<U, T: ApproxEq<T>> ApproxEq<T> for Length<T, U> {
    #[inline]
    fn approx_epsilon() -> T {
        T::approx_epsilon()
    }

    #[inline]
    fn approx_eq_eps(&self, other: &Length<T, U>, approx_epsilon: &T) -> bool {
        self.0.approx_eq_eps(&other.0, approx_epsilon)
    }
}

#[cfg(test)]
mod tests {
    use super::Length;
    use crate::num::Zero;

    use crate::scale::Scale;
    use core::f32::INFINITY;
    use num_traits::Saturating;

    enum Inch {}
    enum Mm {}
    enum Cm {}
    enum Second {}

    #[cfg(feature = "serde")]
    mod serde {
        use super::*;

        extern crate serde_test;
        use self::serde_test::assert_tokens;
        use self::serde_test::Token;

        #[test]
        fn test_length_serde() {
            let one_cm: Length<f32, Mm> = Length::new(10.0);

            assert_tokens(&one_cm, &[Token::F32(10.0)]);
        }
    }

    #[test]
    fn test_clone() {
        // A cloned Length is a separate length with the state matching the
        // original Length at the point it was cloned.
        let mut variable_length: Length<f32, Inch> = Length::new(12.0);

        let one_foot = variable_length.clone();
        variable_length.0 = 24.0;

        assert_eq!(one_foot.get(), 12.0);
        assert_eq!(variable_length.get(), 24.0);
    }

    #[test]
    fn test_add() {
        let length1: Length<u8, Mm> = Length::new(250);
        let length2: Length<u8, Mm> = Length::new(5);

        assert_eq!((length1 + length2).get(), 255);
        assert_eq!((length1 + &length2).get(), 255);
    }

    #[test]
    fn test_sum() {
        type L = Length<f32, Mm>;
        let lengths = [L::new(1.0), L::new(2.0), L::new(3.0)];

        assert_eq!(lengths.iter().sum::<L>(), L::new(6.0));
    }

    #[test]
    fn test_addassign() {
        let one_cm: Length<f32, Mm> = Length::new(10.0);
        let mut measurement: Length<f32, Mm> = Length::new(5.0);

        measurement += one_cm;

        assert_eq!(measurement.get(), 15.0);
    }

    #[test]
    fn test_sub() {
        let length1: Length<u8, Mm> = Length::new(250);
        let length2: Length<u8, Mm> = Length::new(5);

        let result = length1 - length2;

        assert_eq!(result.get(), 245);
    }

    #[test]
    fn test_subassign() {
        let one_cm: Length<f32, Mm> = Length::new(10.0);
        let mut measurement: Length<f32, Mm> = Length::new(5.0);

        measurement -= one_cm;

        assert_eq!(measurement.get(), -5.0);
    }

    #[test]
    fn test_saturating_add() {
        let length1: Length<u8, Mm> = Length::new(250);
        let length2: Length<u8, Mm> = Length::new(6);

        let result = length1.saturating_add(length2);

        assert_eq!(result.get(), 255);
    }

    #[test]
    fn test_saturating_sub() {
        let length1: Length<u8, Mm> = Length::new(5);
        let length2: Length<u8, Mm> = Length::new(10);

        let result = length1.saturating_sub(length2);

        assert_eq!(result.get(), 0);
    }

    #[test]
    fn test_division_by_length() {
        // Division results in a Scale from denominator units
        // to numerator units.
        let length: Length<f32, Cm> = Length::new(5.0);
        let duration: Length<f32, Second> = Length::new(10.0);

        let result = length / duration;

        let expected: Scale<f32, Second, Cm> = Scale::new(0.5);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_multiplication() {
        let length_mm: Length<f32, Mm> = Length::new(10.0);
        let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);

        let result = length_mm * cm_per_mm;

        let expected: Length<f32, Cm> = Length::new(1.0);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_multiplication_with_scalar() {
        let length_mm: Length<f32, Mm> = Length::new(10.0);

        let result = length_mm * 2.0;

        let expected: Length<f32, Mm> = Length::new(20.0);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_multiplication_assignment() {
        let mut length: Length<f32, Mm> = Length::new(10.0);

        length *= 2.0;

        let expected: Length<f32, Mm> = Length::new(20.0);
        assert_eq!(length, expected);
    }

    #[test]
    fn test_division_by_scalefactor() {
        let length: Length<f32, Cm> = Length::new(5.0);
        let cm_per_second: Scale<f32, Second, Cm> = Scale::new(10.0);

        let result = length / cm_per_second;

        let expected: Length<f32, Second> = Length::new(0.5);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_division_by_scalar() {
        let length: Length<f32, Cm> = Length::new(5.0);

        let result = length / 2.0;

        let expected: Length<f32, Cm> = Length::new(2.5);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_division_assignment() {
        let mut length: Length<f32, Mm> = Length::new(10.0);

        length /= 2.0;

        let expected: Length<f32, Mm> = Length::new(5.0);
        assert_eq!(length, expected);
    }

    #[test]
    fn test_negation() {
        let length: Length<f32, Cm> = Length::new(5.0);

        let result = -length;

        let expected: Length<f32, Cm> = Length::new(-5.0);
        assert_eq!(result, expected);
    }

    #[test]
    fn test_cast() {
        let length_as_i32: Length<i32, Cm> = Length::new(5);

        let result: Length<f32, Cm> = length_as_i32.cast();

        let length_as_f32: Length<f32, Cm> = Length::new(5.0);
        assert_eq!(result, length_as_f32);
    }

    #[test]
    fn test_equality() {
        let length_5_point_0: Length<f32, Cm> = Length::new(5.0);
        let length_5_point_1: Length<f32, Cm> = Length::new(5.1);
        let length_0_point_1: Length<f32, Cm> = Length::new(0.1);

        assert!(length_5_point_0 == length_5_point_1 - length_0_point_1);
        assert!(length_5_point_0 != length_5_point_1);
    }

    #[test]
    fn test_order() {
        let length_5_point_0: Length<f32, Cm> = Length::new(5.0);
        let length_5_point_1: Length<f32, Cm> = Length::new(5.1);
        let length_0_point_1: Length<f32, Cm> = Length::new(0.1);

        assert!(length_5_point_0 < length_5_point_1);
        assert!(length_5_point_0 <= length_5_point_1);
        assert!(length_5_point_0 <= length_5_point_1 - length_0_point_1);
        assert!(length_5_point_1 > length_5_point_0);
        assert!(length_5_point_1 >= length_5_point_0);
        assert!(length_5_point_0 >= length_5_point_1 - length_0_point_1);
    }

    #[test]
    fn test_zero_add() {
        type LengthCm = Length<f32, Cm>;
        let length: LengthCm = Length::new(5.0);

        let result = length - LengthCm::zero();

        assert_eq!(result, length);
    }

    #[test]
    fn test_zero_division() {
        type LengthCm = Length<f32, Cm>;
        let length: LengthCm = Length::new(5.0);
        let length_zero: LengthCm = Length::zero();

        let result = length / length_zero;

        let expected: Scale<f32, Cm, Cm> = Scale::new(INFINITY);
        assert_eq!(result, expected);
    }
}