1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
use std::cmp;
use std::fmt;
use std::hash::Hash;
use std::iter;
use std::marker::PhantomData;
use std::mem::size_of;
use std::ops::{Index, IndexMut, Range};
use std::slice;
use {
Direction, Outgoing, Incoming,
Undirected,
Directed,
EdgeType,
IntoWeightedEdge,
};
use iter_format::{
IterFormatExt,
NoPretty,
DebugMap,
};
use visit::EdgeRef;
use visit::{IntoNodeReferences, IntoEdges, IntoEdgesDirected};
use util::enumerate;
#[cfg(feature = "serde-1")]
mod serialization;
/// The default integer type for graph indices.
/// `u32` is the default to reduce the size of the graph's data and improve
/// performance in the common case.
///
/// Used for node and edge indices in `Graph` and `StableGraph`, used
/// for node indices in `Csr`.
pub type DefaultIx = u32;
/// Trait for the unsigned integer type used for node and edge indices.
///
/// Marked `unsafe` because: the trait must faithfully preseve
/// and convert index values.
pub unsafe trait IndexType : Copy + Default + Hash + Ord + fmt::Debug + 'static
{
fn new(x: usize) -> Self;
fn index(&self) -> usize;
fn max() -> Self;
}
unsafe impl IndexType for usize {
#[inline(always)]
fn new(x: usize) -> Self { x }
#[inline(always)]
fn index(&self) -> Self { *self }
#[inline(always)]
fn max() -> Self { ::std::usize::MAX }
}
unsafe impl IndexType for u32 {
#[inline(always)]
fn new(x: usize) -> Self { x as u32 }
#[inline(always)]
fn index(&self) -> usize { *self as usize }
#[inline(always)]
fn max() -> Self { ::std::u32::MAX }
}
unsafe impl IndexType for u16 {
#[inline(always)]
fn new(x: usize) -> Self { x as u16 }
#[inline(always)]
fn index(&self) -> usize { *self as usize }
#[inline(always)]
fn max() -> Self { ::std::u16::MAX }
}
unsafe impl IndexType for u8 {
#[inline(always)]
fn new(x: usize) -> Self { x as u8 }
#[inline(always)]
fn index(&self) -> usize { *self as usize }
#[inline(always)]
fn max() -> Self { ::std::u8::MAX }
}
/// Node identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct NodeIndex<Ix=DefaultIx>(Ix);
impl<Ix: IndexType> NodeIndex<Ix>
{
#[inline]
pub fn new(x: usize) -> Self {
NodeIndex(IndexType::new(x))
}
#[inline]
pub fn index(self) -> usize
{
self.0.index()
}
#[inline]
pub fn end() -> Self
{
NodeIndex(IndexType::max())
}
fn _into_edge(self) -> EdgeIndex<Ix> {
EdgeIndex(self.0)
}
}
impl<Ix: IndexType> From<Ix> for NodeIndex<Ix> {
fn from(ix: Ix) -> Self { NodeIndex(ix) }
}
impl<Ix: fmt::Debug> fmt::Debug for NodeIndex<Ix>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "NodeIndex({:?})", self.0)
}
}
/// Short version of `NodeIndex::new`
pub fn node_index<Ix: IndexType>(index: usize) -> NodeIndex<Ix> { NodeIndex::new(index) }
/// Short version of `EdgeIndex::new`
pub fn edge_index<Ix: IndexType>(index: usize) -> EdgeIndex<Ix> { EdgeIndex::new(index) }
/// Edge identifier.
#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct EdgeIndex<Ix=DefaultIx>(Ix);
impl<Ix: IndexType> EdgeIndex<Ix>
{
#[inline]
pub fn new(x: usize) -> Self {
EdgeIndex(IndexType::new(x))
}
#[inline]
pub fn index(self) -> usize
{
self.0.index()
}
/// An invalid `EdgeIndex` used to denote absence of an edge, for example
/// to end an adjacency list.
#[inline]
pub fn end() -> Self {
EdgeIndex(IndexType::max())
}
fn _into_node(self) -> NodeIndex<Ix> {
NodeIndex(self.0)
}
}
impl<Ix: fmt::Debug> fmt::Debug for EdgeIndex<Ix>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "EdgeIndex({:?})", self.0)
}
}
/*
* FIXME: Use this impl again, when we don't need to add so many bounds
impl<Ix: IndexType> fmt::Debug for EdgeIndex<Ix>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "EdgeIndex("));
if *self == EdgeIndex::end() {
try!(write!(f, "End"));
} else {
try!(write!(f, "{}", self.index()));
}
write!(f, ")")
}
}
*/
const DIRECTIONS: [Direction; 2] = [Outgoing, Incoming];
/// The graph's node type.
#[derive(Debug)]
pub struct Node<N, Ix = DefaultIx> {
/// Associated node data.
pub weight: N,
/// Next edge in outgoing and incoming edge lists.
next: [EdgeIndex<Ix>; 2],
}
impl<E, Ix> Clone for Node<E, Ix> where E: Clone, Ix: Copy {
clone_fields!(Node,
weight,
next,
);
}
impl<N, Ix: IndexType> Node<N, Ix>
{
/// Accessor for data structure internals: the first edge in the given direction.
pub fn next_edge(&self, dir: Direction) -> EdgeIndex<Ix>
{
self.next[dir.index()]
}
}
/// The graph's edge type.
#[derive(Debug)]
pub struct Edge<E, Ix = DefaultIx> {
/// Associated edge data.
pub weight: E,
/// Next edge in outgoing and incoming edge lists.
next: [EdgeIndex<Ix>; 2],
/// Start and End node index
node: [NodeIndex<Ix>; 2],
}
impl<E, Ix> Clone for Edge<E, Ix> where E: Clone, Ix: Copy {
clone_fields!(Edge,
weight,
next,
node,
);
}
impl<E, Ix: IndexType> Edge<E, Ix>
{
/// Accessor for data structure internals: the next edge for the given direction.
pub fn next_edge(&self, dir: Direction) -> EdgeIndex<Ix>
{
self.next[dir.index()]
}
/// Return the source node index.
pub fn source(&self) -> NodeIndex<Ix>
{
self.node[0]
}
/// Return the target node index.
pub fn target(&self) -> NodeIndex<Ix>
{
self.node[1]
}
}
/// `Graph<N, E, Ty, Ix>` is a graph datastructure using an adjacency list representation.
///
/// `Graph` is parameterized over:
///
/// - Associated data `N` for nodes and `E` for edges, called *weights*.
/// The associated data can be of arbitrary type.
/// - Edge type `Ty` that determines whether the graph edges are directed or undirected.
/// - Index type `Ix`, which determines the maximum size of the graph.
///
/// The graph uses **O(|V| + |E|)** space, and allows fast node and edge insert,
/// efficient graph search and graph algorithms.
/// It implements **O(e')** edge lookup and edge and node removals, where **e'**
/// is some local measure of edge count.
/// Based on the graph datastructure used in rustc.
///
/// Here's an example of building a graph with directed edges, and below
/// an illustration of how it could be rendered with graphviz (see
/// [`Dot`](../dot/struct.Dot.html)):
///
/// ```
/// use petgraph::Graph;
///
/// let mut deps = Graph::<&str, &str>::new();
/// let pg = deps.add_node("petgraph");
/// let fb = deps.add_node("fixedbitset");
/// let qc = deps.add_node("quickcheck");
/// let rand = deps.add_node("rand");
/// let libc = deps.add_node("libc");
/// deps.extend_with_edges(&[
/// (pg, fb), (pg, qc),
/// (qc, rand), (rand, libc), (qc, libc),
/// ]);
/// ```
///
/// ![graph-example](https://bluss.github.io/ndarray/images/graph-example.svg)
///
/// ### Graph Indices
///
/// The graph maintains indices for nodes and edges, and node and edge
/// weights may be accessed mutably. Indices range in a compact interval, for
/// example for *n* nodes indices are 0 to *n* - 1 inclusive.
///
/// `NodeIndex` and `EdgeIndex` are types that act as references to nodes and edges,
/// but these are only stable across certain operations.
/// **Adding nodes or edges keeps indices stable.
/// Removing nodes or edges may shift other indices.**
/// Removing a node will force the last node to shift its index to
/// take its place. Similarly, removing an edge shifts the index of the last edge.
///
/// The `Ix` parameter is `u32` by default. The goal is that you can ignore this parameter
/// completely unless you need a very big graph -- then you can use `usize`.
///
/// ### Pros and Cons of Indices
///
/// * The fact that the node and edge indices in the graph each are numbered in compact
/// intervals (from 0 to *n* - 1 for *n* nodes) simplifies some graph algorithms.
///
/// * You can select graph index integer type after the size of the graph. A smaller
/// size may have better performance.
///
/// * Using indices allows mutation while traversing the graph, see `Dfs`,
/// and `.neighbors(a).detach()`.
///
/// * You can create several graphs using the equal node indices but with
/// differing weights or differing edges.
///
/// * The `Graph` is a regular rust collection and is `Send` and `Sync` (as long
/// as associated data `N` and `E` are).
///
/// * Some indices shift during node or edge removal, so that is a drawback
/// of removing elements. Indices don't allow as much compile time checking as
/// references.
///
pub struct Graph<N, E, Ty = Directed, Ix = DefaultIx> {
nodes: Vec<Node<N, Ix>>,
edges: Vec<Edge<E, Ix>>,
ty: PhantomData<Ty>,
}
/// A `Graph` with directed edges.
///
/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
/// *1*.
pub type DiGraph<N, E, Ix = DefaultIx> = Graph<N, E, Directed, Ix>;
/// A `Graph` with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
pub type UnGraph<N, E, Ix = DefaultIx> = Graph<N, E, Undirected, Ix>;
/// The resulting cloned graph has the same graph indices as `self`.
impl<N, E, Ty, Ix: IndexType> Clone for Graph<N, E, Ty, Ix>
where N: Clone, E: Clone,
{
fn clone(&self) -> Self {
Graph {
nodes: self.nodes.clone(),
edges: self.edges.clone(),
ty: self.ty,
}
}
fn clone_from(&mut self, rhs: &Self) {
self.nodes.clone_from(&rhs.nodes);
self.edges.clone_from(&rhs.edges);
self.ty = rhs.ty;
}
}
impl<N, E, Ty, Ix> fmt::Debug for Graph<N, E, Ty, Ix>
where N: fmt::Debug,
E: fmt::Debug,
Ty: EdgeType,
Ix: IndexType,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let etype = if self.is_directed() { "Directed" } else { "Undirected" };
let mut fmt_struct = f.debug_struct("Graph");
fmt_struct.field("Ty", &etype);
fmt_struct.field("node_count", &self.node_count());
fmt_struct.field("edge_count", &self.edge_count());
if self.edge_count() > 0 {
fmt_struct.field("edges",
&self.edges
.iter()
.map(|e| NoPretty((e.source().index(), e.target().index())))
.format(", "));
}
// skip weights if they are ZST!
if size_of::<N>() != 0 {
fmt_struct.field("node weights", &DebugMap(|| self.nodes.iter()
.map(|n| &n.weight)
.enumerate()));
}
if size_of::<E>() != 0 {
fmt_struct.field("edge weights", &DebugMap(|| self.edges.iter()
.map(|n| &n.weight)
.enumerate()));
}
fmt_struct.finish()
}
}
enum Pair<T> {
Both(T, T),
One(T),
None,
}
use std::cmp::max;
/// Get mutable references at index `a` and `b`.
fn index_twice<T>(slc: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
if max(a, b) >= slc.len() {
Pair::None
} else if a == b {
Pair::One(&mut slc[max(a, b)])
} else {
// safe because a, b are in bounds and distinct
unsafe {
let ar = &mut *(slc.get_unchecked_mut(a) as *mut _);
let br = &mut *(slc.get_unchecked_mut(b) as *mut _);
Pair::Both(ar, br)
}
}
}
impl<N, E> Graph<N, E, Directed>
{
/// Create a new `Graph` with directed edges.
///
/// This is a convenience method. Use `Graph::with_capacity` or `Graph::default` for
/// a constructor that is generic in all the type parameters of `Graph`.
pub fn new() -> Self
{
Graph{nodes: Vec::new(), edges: Vec::new(),
ty: PhantomData}
}
}
impl<N, E> Graph<N, E, Undirected>
{
/// Create a new `Graph` with undirected edges.
///
/// This is a convenience method. Use `Graph::with_capacity` or `Graph::default` for
/// a constructor that is generic in all the type parameters of `Graph`.
pub fn new_undirected() -> Self
{
Graph{nodes: Vec::new(), edges: Vec::new(),
ty: PhantomData}
}
}
impl<N, E, Ty, Ix> Graph<N, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
/// Create a new `Graph` with estimated capacity.
pub fn with_capacity(nodes: usize, edges: usize) -> Self
{
Graph{nodes: Vec::with_capacity(nodes), edges: Vec::with_capacity(edges),
ty: PhantomData}
}
/// Return the number of nodes (vertices) in the graph.
///
/// Computes in **O(1)** time.
pub fn node_count(&self) -> usize
{
self.nodes.len()
}
/// Return the number of edges in the graph.
///
/// Computes in **O(1)** time.
pub fn edge_count(&self) -> usize
{
self.edges.len()
}
/// Whether the graph has directed edges or not.
#[inline]
pub fn is_directed(&self) -> bool
{
Ty::is_directed()
}
/// Add a node (also called vertex) with associated data `weight` to the graph.
///
/// Computes in **O(1)** time.
///
/// Return the index of the new node.
///
/// **Panics** if the Graph is at the maximum number of nodes for its index
/// type (N/A if usize).
pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>
{
let node = Node{weight: weight, next: [EdgeIndex::end(), EdgeIndex::end()]};
let node_idx = NodeIndex::new(self.nodes.len());
// check for max capacity, except if we use usize
assert!(<Ix as IndexType>::max().index() == !0 || NodeIndex::end() != node_idx);
self.nodes.push(node);
node_idx
}
/// Access the weight for node `a`.
///
/// Also available with indexing syntax: `&graph[a]`.
pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>
{
self.nodes.get(a.index()).map(|n| &n.weight)
}
/// Access the weight for node `a`, mutably.
///
/// Also available with indexing syntax: `&mut graph[a]`.
pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>
{
self.nodes.get_mut(a.index()).map(|n| &mut n.weight)
}
/// Add an edge from `a` to `b` to the graph, with its associated
/// data `weight`.
///
/// Return the index of the new edge.
///
/// Computes in **O(1)** time.
///
/// **Panics** if any of the nodes don't exist.<br>
/// **Panics** if the Graph is at the maximum number of edges for its index
/// type (N/A if usize).
///
/// **Note:** `Graph` allows adding parallel (“duplicate”) edges. If you want
/// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix>
{
let edge_idx = EdgeIndex::new(self.edges.len());
assert!(<Ix as IndexType>::max().index() == !0 || EdgeIndex::end() != edge_idx);
let mut edge = Edge {
weight: weight,
node: [a, b],
next: [EdgeIndex::end(); 2],
};
match index_twice(&mut self.nodes, a.index(), b.index()) {
Pair::None => panic!("Graph::add_edge: node indices out of bounds"),
Pair::One(an) => {
edge.next = an.next;
an.next[0] = edge_idx;
an.next[1] = edge_idx;
}
Pair::Both(an, bn) => {
// a and b are different indices
edge.next = [an.next[0], bn.next[1]];
an.next[0] = edge_idx;
bn.next[1] = edge_idx;
}
}
self.edges.push(edge);
edge_idx
}
/// Add or update an edge from `a` to `b`.
/// If the edge already exists, its weight is updated.
///
/// Return the index of the affected edge.
///
/// Computes in **O(e')** time, where **e'** is the number of edges
/// connected to `a` (and `b`, if the graph edges are undirected).
///
/// **Panics** if any of the nodes don't exist.
pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix>
{
if let Some(ix) = self.find_edge(a, b) {
if let Some(ed) = self.edge_weight_mut(ix) {
*ed = weight;
return ix;
}
}
self.add_edge(a, b, weight)
}
/// Access the weight for edge `e`.
///
/// Also available with indexing syntax: `&graph[e]`.
pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>
{
self.edges.get(e.index()).map(|ed| &ed.weight)
}
/// Access the weight for edge `e`, mutably.
///
/// Also available with indexing syntax: `&mut graph[e]`.
pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>
{
self.edges.get_mut(e.index()).map(|ed| &mut ed.weight)
}
/// Access the source and target nodes for `e`.
pub fn edge_endpoints(&self, e: EdgeIndex<Ix>)
-> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>
{
self.edges.get(e.index()).map(|ed| (ed.source(), ed.target()))
}
/// Remove `a` from the graph if it exists, and return its weight.
/// If it doesn't exist in the graph, return `None`.
///
/// Apart from `a`, this invalidates the last node index in the graph
/// (that node will adopt the removed node index). Edge indices are
/// invalidated as they would be following the removal of each edge
/// with an endpoint in `a`.
///
/// Computes in **O(e')** time, where **e'** is the number of affected
/// edges, including *n* calls to `.remove_edge()` where *n* is the number
/// of edges with an endpoint in `a`, and including the edges with an
/// endpoint in the displaced node.
pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>
{
if self.nodes.get(a.index()).is_none() {
return None
}
for d in &DIRECTIONS {
let k = d.index();
// Remove all edges from and to this node.
loop {
let next = self.nodes[a.index()].next[k];
if next == EdgeIndex::end() {
break
}
let ret = self.remove_edge(next);
debug_assert!(ret.is_some());
let _ = ret;
}
}
// Use swap_remove -- only the swapped-in node is going to change
// NodeIndex<Ix>, so we only have to walk its edges and update them.
let node = self.nodes.swap_remove(a.index());
// Find the edge lists of the node that had to relocate.
// It may be that no node had to relocate, then we are done already.
let swap_edges = match self.nodes.get(a.index()) {
None => return Some(node.weight),
Some(ed) => ed.next,
};
// The swapped element's old index
let old_index = NodeIndex::new(self.nodes.len());
let new_index = a;
// Adjust the starts of the out edges, and ends of the in edges.
for &d in &DIRECTIONS {
let k = d.index();
let mut edges = edges_walker_mut(&mut self.edges, swap_edges[k], d);
while let Some(curedge) = edges.next_edge() {
debug_assert!(curedge.node[k] == old_index);
curedge.node[k] = new_index;
}
}
Some(node.weight)
}
/// For edge `e` with endpoints `edge_node`, replace links to it,
/// with links to `edge_next`.
fn change_edge_links(&mut self, edge_node: [NodeIndex<Ix>; 2], e: EdgeIndex<Ix>,
edge_next: [EdgeIndex<Ix>; 2])
{
for &d in &DIRECTIONS {
let k = d.index();
let node = match self.nodes.get_mut(edge_node[k].index()) {
Some(r) => r,
None => {
debug_assert!(false, "Edge's endpoint dir={:?} index={:?} not found",
d, edge_node[k]);
return
}
};
let fst = node.next[k];
if fst == e {
//println!("Updating first edge 0 for node {}, set to {}", edge_node[0], edge_next[0]);
node.next[k] = edge_next[k];
} else {
let mut edges = edges_walker_mut(&mut self.edges, fst, d);
while let Some(curedge) = edges.next_edge() {
if curedge.next[k] == e {
curedge.next[k] = edge_next[k];
break; // the edge can only be present once in the list.
}
}
}
}
}
/// Remove an edge and return its edge weight, or `None` if it didn't exist.
///
/// Apart from `e`, this invalidates the last edge index in the graph
/// (that edge will adopt the removed edge index).
///
/// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
/// the vertices of `e` and the vertices of another affected edge.
pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>
{
// every edge is part of two lists,
// outgoing and incoming edges.
// Remove it from both
let (edge_node, edge_next) = match self.edges.get(e.index()) {
None => return None,
Some(x) => (x.node, x.next),
};
// Remove the edge from its in and out lists by replacing it with
// a link to the next in the list.
self.change_edge_links(edge_node, e, edge_next);
self.remove_edge_adjust_indices(e)
}
fn remove_edge_adjust_indices(&mut self, e: EdgeIndex<Ix>) -> Option<E>
{
// swap_remove the edge -- only the removed edge
// and the edge swapped into place are affected and need updating
// indices.
let edge = self.edges.swap_remove(e.index());
let swap = match self.edges.get(e.index()) {
// no elment needed to be swapped.
None => return Some(edge.weight),
Some(ed) => ed.node,
};
let swapped_e = EdgeIndex::new(self.edges.len());
// Update the edge lists by replacing links to the old index by references to the new
// edge index.
self.change_edge_links(swap, swapped_e, [e, e]);
Some(edge.weight)
}
/// Return an iterator of all nodes with an edge starting from `a`.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `NodeIndex<Ix>`.
///
/// Use [`.neighbors(a).detach()`][1] to get a neighbor walker that does
/// not borrow from the graph.
///
/// [1]: struct.Neighbors.html#method.detach
pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>
{
self.neighbors_directed(a, Outgoing)
}
/// Return an iterator of all neighbors that have an edge between them and
/// `a`, in the specified direction.
/// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `NodeIndex<Ix>`.
///
/// For a `Directed` graph, neighbors are listed in reverse order of their
/// addition to the graph, so the most recently added edge's neighbor is
/// listed first. The order in an `Undirected` graph is arbitrary.
///
/// Use [`.neighbors_directed(a, dir).detach()`][1] to get a neighbor walker that does
/// not borrow from the graph.
///
/// [1]: struct.Neighbors.html#method.detach
pub fn neighbors_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Neighbors<E, Ix>
{
let mut iter = self.neighbors_undirected(a);
if self.is_directed() {
let k = dir.index();
iter.next[1 - k] = EdgeIndex::end();
iter.skip_start = NodeIndex::end();
}
iter
}
/// Return an iterator of all neighbors that have an edge between them and
/// `a`, in either direction.
/// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
///
/// - `Directed` and `Undirected`: All edges from or to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `NodeIndex<Ix>`.
///
/// Use [`.neighbors_undirected(a).detach()`][1] to get a neighbor walker that does
/// not borrow from the graph.
///
/// [1]: struct.Neighbors.html#method.detach
///
pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>
{
Neighbors {
skip_start: a,
edges: &self.edges,
next: match self.nodes.get(a.index()) {
None => [EdgeIndex::end(), EdgeIndex::end()],
Some(n) => n.next,
}
}
}
/// Return an iterator of all edges of `a`.
///
/// - `Directed`: Outgoing edges from `a`.
/// - `Undirected`: All edges connected to `a`.
///
/// Produces an empty iterator if the node doesn't exist.<br>
/// Iterator element type is `EdgeReference<E, Ix>`.
pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> {
self.edges_directed(a, Outgoing)
}
/// Return an iterator of all edges of `a`, in the specified direction.
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`: All edges connected to `a`.
///
/// Produces an empty iterator if the node `a` doesn't exist.<br>
/// Iterator element type is `EdgeReference<E, Ix>`.
pub fn edges_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Edges<E, Ty, Ix>
{
let mut iter = self.edges_undirected(a);
if self.is_directed() {
iter.direction = Some(dir);
}
if self.is_directed() && dir == Incoming {
iter.next.swap(0, 1);
}
iter
}
/// Return an iterator over all edges connected to `a`.
///
/// - `Directed` and `Undirected`: All edges connected to `a`.
///
/// Produces an empty iterator if the node `a` doesn't exist.<br>
/// Iterator element type is `EdgeReference<E, Ix>`.
fn edges_undirected(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> {
Edges {
skip_start: a,
edges: &self.edges,
direction: None,
next: match self.nodes.get(a.index()) {
None => [EdgeIndex::end(), EdgeIndex::end()],
Some(n) => n.next,
},
ty: PhantomData,
}
}
/// Lookup if there is an edge from `a` to `b`.
///
/// Computes in **O(e')** time, where **e'** is the number of edges
/// connected to `a` (and `b`, if the graph edges are undirected).
pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
self.find_edge(a, b).is_some()
}
/// Lookup an edge from `a` to `b`.
///
/// Computes in **O(e')** time, where **e'** is the number of edges
/// connected to `a` (and `b`, if the graph edges are undirected).
pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>>
{
if !self.is_directed() {
self.find_edge_undirected(a, b).map(|(ix, _)| ix)
} else {
match self.nodes.get(a.index()) {
None => None,
Some(node) => self.find_edge_directed_from_node(node, b)
}
}
}
fn find_edge_directed_from_node(&self, node: &Node<N, Ix>, b: NodeIndex<Ix>)
-> Option<EdgeIndex<Ix>>
{
let mut edix = node.next[0];
while let Some(edge) = self.edges.get(edix.index()) {
if edge.node[1] == b {
return Some(edix)
}
edix = edge.next[0];
}
None
}
/// Lookup an edge between `a` and `b`, in either direction.
///
/// If the graph is undirected, then this is equivalent to `.find_edge()`.
///
/// Return the edge index and its directionality, with `Outgoing` meaning
/// from `a` to `b` and `Incoming` the reverse,
/// or `None` if the edge does not exist.
pub fn find_edge_undirected(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<(EdgeIndex<Ix>, Direction)>
{
match self.nodes.get(a.index()) {
None => None,
Some(node) => self.find_edge_undirected_from_node(node, b),
}
}
fn find_edge_undirected_from_node(&self, node: &Node<N, Ix>, b: NodeIndex<Ix>)
-> Option<(EdgeIndex<Ix>, Direction)>
{
for &d in &DIRECTIONS {
let k = d.index();
let mut edix = node.next[k];
while let Some(edge) = self.edges.get(edix.index()) {
if edge.node[1 - k] == b {
return Some((edix, d))
}
edix = edge.next[k];
}
}
None
}
/// Return an iterator over either the nodes without edges to them
/// (`Incoming`) or from them (`Outgoing`).
///
/// An *internal* node has both incoming and outgoing edges.
/// The nodes in `.externals(Incoming)` are the source nodes and
/// `.externals(Outgoing)` are the sinks of the graph.
///
/// For a graph with undirected edges, both the sinks and the sources are
/// just the nodes without edges.
///
/// The whole iteration computes in **O(|V|)** time.
pub fn externals(&self, dir: Direction) -> Externals<N, Ty, Ix>
{
Externals{iter: self.nodes.iter().enumerate(), dir: dir, ty: PhantomData}
}
/// Return an iterator over the node indices of the graph
pub fn node_indices(&self) -> NodeIndices<Ix> {
NodeIndices { r: 0..self.node_count(), ty: PhantomData }
}
/// Return an iterator yielding mutable access to all node weights.
///
/// The order in which weights are yielded matches the order of their
/// node indices.
pub fn node_weights_mut(&mut self) -> NodeWeightsMut<N, Ix>
{
NodeWeightsMut { nodes: self.nodes.iter_mut() }
}
/// Return an iterator over the edge indices of the graph
pub fn edge_indices(&self) -> EdgeIndices<Ix> {
EdgeIndices { r: 0..self.edge_count(), ty: PhantomData }
}
/// Create an iterator over all edges, in indexed order.
///
/// Iterator element type is `EdgeReference<E, Ix>`.
pub fn edge_references(&self) -> EdgeReferences<E, Ix> {
EdgeReferences {
iter: self.edges.iter().enumerate()
}
}
/// Return an iterator yielding mutable access to all edge weights.
///
/// The order in which weights are yielded matches the order of their
/// edge indices.
pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<E, Ix>
{
EdgeWeightsMut { edges: self.edges.iter_mut() }
}
// Remaining methods are of the more internal flavour, read-only access to
// the data structure's internals.
/// Access the internal node array.
pub fn raw_nodes(&self) -> &[Node<N, Ix>]
{
&self.nodes
}
/// Access the internal edge array.
pub fn raw_edges(&self) -> &[Edge<E, Ix>]
{
&self.edges
}
/// Convert the graph into a vector of Nodes and a vector of Edges
pub fn into_nodes_edges(self) -> (Vec<Node<N, Ix>>, Vec<Edge<E, Ix>>) {
(self.nodes, self.edges)
}
/// Accessor for data structure internals: the first edge in the given direction.
pub fn first_edge(&self, a: NodeIndex<Ix>, dir: Direction) -> Option<EdgeIndex<Ix>>
{
match self.nodes.get(a.index()) {
None => None,
Some(node) => {
let edix = node.next[dir.index()];
if edix == EdgeIndex::end() {
None
} else { Some(edix) }
}
}
}
/// Accessor for data structure internals: the next edge for the given direction.
pub fn next_edge(&self, e: EdgeIndex<Ix>, dir: Direction) -> Option<EdgeIndex<Ix>>
{
match self.edges.get(e.index()) {
None => None,
Some(node) => {
let edix = node.next[dir.index()];
if edix == EdgeIndex::end() {
None
} else { Some(edix) }
}
}
}
/// Index the `Graph` by two indices, any combination of
/// node or edge indices is fine.
///
/// **Panics** if the indices are equal or if they are out of bounds.
///
/// ```
/// use petgraph::{Graph, Incoming};
/// use petgraph::visit::Dfs;
///
/// let mut gr = Graph::new();
/// let a = gr.add_node(0.);
/// let b = gr.add_node(0.);
/// let c = gr.add_node(0.);
/// gr.add_edge(a, b, 3.);
/// gr.add_edge(b, c, 2.);
/// gr.add_edge(c, b, 1.);
///
/// // walk the graph and sum incoming edges into the node weight
/// let mut dfs = Dfs::new(&gr, a);
/// while let Some(node) = dfs.next(&gr) {
/// // use a walker -- a detached neighbors iterator
/// let mut edges = gr.neighbors_directed(node, Incoming).detach();
/// while let Some(edge) = edges.next_edge(&gr) {
/// let (nw, ew) = gr.index_twice_mut(node, edge);
/// *nw += *ew;
/// }
/// }
///
/// // check the result
/// assert_eq!(gr[a], 0.);
/// assert_eq!(gr[b], 4.);
/// assert_eq!(gr[c], 2.);
/// ```
pub fn index_twice_mut<T, U>(&mut self, i: T, j: U)
-> (&mut <Self as Index<T>>::Output,
&mut <Self as Index<U>>::Output)
where Self: IndexMut<T> + IndexMut<U>,
T: GraphIndex,
U: GraphIndex,
{
assert!(T::is_node_index() != U::is_node_index() ||
i.index() != j.index());
// Allow two mutable indexes here -- they are nonoverlapping
unsafe {
let self_mut = self as *mut _;
(<Self as IndexMut<T>>::index_mut(&mut *self_mut, i),
<Self as IndexMut<U>>::index_mut(&mut *self_mut, j))
}
}
/// Reverse the direction of all edges
pub fn reverse(&mut self) {
// swap edge endpoints,
// edge incoming / outgoing lists,
// node incoming / outgoing lists
for edge in &mut self.edges {
edge.node.swap(0, 1);
edge.next.swap(0, 1);
}
for node in &mut self.nodes {
node.next.swap(0, 1);
}
}
/// Remove all nodes and edges
pub fn clear(&mut self) {
self.nodes.clear();
self.edges.clear();
}
/// Remove all edges
pub fn clear_edges(&mut self) {
self.edges.clear();
for node in &mut self.nodes {
node.next = [EdgeIndex::end(), EdgeIndex::end()];
}
}
/// Return the current node and edge capacity of the graph.
pub fn capacity(&self) -> (usize, usize) {
(self.nodes.capacity(), self.edges.capacity())
}
/// Reserves capacity for at least `additional` more nodes to be inserted in
/// the graph. Graph may reserve more space to avoid frequent reallocations.
///
/// **Panics** if the new capacity overflows `usize`.
pub fn reserve_nodes(&mut self, additional: usize) {
self.nodes.reserve(additional);
}
/// Reserves capacity for at least `additional` more edges to be inserted in
/// the graph. Graph may reserve more space to avoid frequent reallocations.
///
/// **Panics** if the new capacity overflows `usize`.
pub fn reserve_edges(&mut self, additional: usize) {
self.edges.reserve(additional);
}
/// Reserves the minimum capacity for exactly `additional` more nodes to be
/// inserted in the graph. Does nothing if the capacity is already
/// sufficient.
///
/// Prefer `reserve_nodes` if future insertions are expected.
///
/// **Panics** if the new capacity overflows `usize`.
pub fn reserve_exact_nodes(&mut self, additional: usize) {
self.nodes.reserve_exact(additional);
}
/// Reserves the minimum capacity for exactly `additional` more edges to be
/// inserted in the graph.
/// Does nothing if the capacity is already sufficient.
///
/// Prefer `reserve_edges` if future insertions are expected.
///
/// **Panics** if the new capacity overflows `usize`.
pub fn reserve_exact_edges(&mut self, additional: usize) {
self.edges.reserve_exact(additional);
}
/// Shrinks the capacity of the underlying nodes collection as much as possible.
pub fn shrink_to_fit_nodes(&mut self) {
self.nodes.shrink_to_fit();
}
/// Shrinks the capacity of the underlying edges collection as much as possible.
pub fn shrink_to_fit_edges(&mut self) {
self.edges.shrink_to_fit();
}
/// Shrinks the capacity of the graph as much as possible.
pub fn shrink_to_fit(&mut self) {
self.nodes.shrink_to_fit();
self.edges.shrink_to_fit();
}
/// Keep all nodes that return `true` from the `visit` closure,
/// remove the others.
///
/// `visit` is provided a proxy reference to the graph, so that
/// the graph can be walked and associated data modified.
///
/// The order nodes are visited is not specified.
pub fn retain_nodes<F>(&mut self, mut visit: F)
where F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool
{
for index in self.node_indices().rev() {
if !visit(Frozen(self), index) {
let ret = self.remove_node(index);
debug_assert!(ret.is_some());
let _ = ret;
}
}
}
/// Keep all edges that return `true` from the `visit` closure,
/// remove the others.
///
/// `visit` is provided a proxy reference to the graph, so that
/// the graph can be walked and associated data modified.
///
/// The order edges are visited is not specified.
pub fn retain_edges<F>(&mut self, mut visit: F)
where F: FnMut(Frozen<Self>, EdgeIndex<Ix>) -> bool
{
for index in self.edge_indices().rev() {
if !visit(Frozen(self), index) {
let ret = self.remove_edge(index);
debug_assert!(ret.is_some());
let _ = ret;
}
}
}
/// Create a new `Graph` from an iterable of edges.
///
/// Node weights `N` are set to default values.
/// Edge weights `E` may either be specified in the list,
/// or they are filled with default values.
///
/// Nodes are inserted automatically to match the edges.
///
/// ```
/// use petgraph::Graph;
///
/// let gr = Graph::<(), i32>::from_edges(&[
/// (0, 1), (0, 2), (0, 3),
/// (1, 2), (1, 3),
/// (2, 3),
/// ]);
/// ```
pub fn from_edges<I>(iterable: I) -> Self
where I: IntoIterator,
I::Item: IntoWeightedEdge<E>,
<I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
N: Default,
{
let mut g = Self::with_capacity(0, 0);
g.extend_with_edges(iterable);
g
}
/// Extend the graph from an iterable of edges.
///
/// Node weights `N` are set to default values.
/// Edge weights `E` may either be specified in the list,
/// or they are filled with default values.
///
/// Nodes are inserted automatically to match the edges.
pub fn extend_with_edges<I>(&mut self, iterable: I)
where I: IntoIterator,
I::Item: IntoWeightedEdge<E>,
<I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
N: Default,
{
let iter = iterable.into_iter();
let (low, _) = iter.size_hint();
self.edges.reserve(low);
for elt in iter {
let (source, target, weight) = elt.into_weighted_edge();
let (source, target) = (source.into(), target.into());
let nx = cmp::max(source, target);
while nx.index() >= self.node_count() {
self.add_node(N::default());
}
self.add_edge(source, target, weight);
}
}
/// Create a new `Graph` by mapping node and
/// edge weights to new values.
///
/// The resulting graph has the same structure and the same
/// graph indices as `self`.
pub fn map<'a, F, G, N2, E2>(&'a self, mut node_map: F, mut edge_map: G)
-> Graph<N2, E2, Ty, Ix>
where F: FnMut(NodeIndex<Ix>, &'a N) -> N2,
G: FnMut(EdgeIndex<Ix>, &'a E) -> E2,
{
let mut g = Graph::with_capacity(self.node_count(), self.edge_count());
g.nodes.extend(enumerate(&self.nodes).map(|(i, node)|
Node {
weight: node_map(NodeIndex::new(i), &node.weight),
next: node.next,
}));
g.edges.extend(enumerate(&self.edges).map(|(i, edge)|
Edge {
weight: edge_map(EdgeIndex::new(i), &edge.weight),
next: edge.next,
node: edge.node,
}));
g
}
/// Create a new `Graph` by mapping nodes and edges.
/// A node or edge may be mapped to `None` to exclude it from
/// the resulting graph.
///
/// Nodes are mapped first with the `node_map` closure, then
/// `edge_map` is called for the edges that have not had any endpoint
/// removed.
///
/// The resulting graph has the structure of a subgraph of the original graph.
/// If no nodes are removed, the resulting graph has compatible node
/// indices; if neither nodes nor edges are removed, the result has
/// the same graph indices as `self`.
pub fn filter_map<'a, F, G, N2, E2>(&'a self, mut node_map: F, mut edge_map: G)
-> Graph<N2, E2, Ty, Ix>
where F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>,
G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>,
{
let mut g = Graph::with_capacity(0, 0);
// mapping from old node index to new node index, end represents removed.
let mut node_index_map = vec![NodeIndex::end(); self.node_count()];
for (i, node) in enumerate(&self.nodes) {
if let Some(nw) = node_map(NodeIndex::new(i), &node.weight) {
node_index_map[i] = g.add_node(nw);
}
}
for (i, edge) in enumerate(&self.edges) {
// skip edge if any endpoint was removed
let source = node_index_map[edge.source().index()];
let target = node_index_map[edge.target().index()];
if source != NodeIndex::end() && target != NodeIndex::end() {
if let Some(ew) = edge_map(EdgeIndex::new(i), &edge.weight) {
g.add_edge(source, target, ew);
}
}
}
g
}
/// Convert the graph into either undirected or directed. No edge adjustments
/// are done, so you may want to go over the result to remove or add edges.
///
/// Computes in **O(1)** time.
pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix> where
NewTy: EdgeType
{
Graph{nodes: self.nodes, edges: self.edges,
ty: PhantomData}
}
//
// internal methods
//
#[cfg(feature = "serde-1")]
/// Fix up node and edge links after deserialization
fn link_edges(&mut self) -> Result<(), NodeIndex<Ix>> {
for (edge_index, edge) in enumerate(&mut self.edges) {
let a = edge.source();
let b = edge.target();
let edge_idx = EdgeIndex::new(edge_index);
match index_twice(&mut self.nodes, a.index(), b.index()) {
Pair::None => return Err(if a > b { a } else { b }),
Pair::One(an) => {
edge.next = an.next;
an.next[0] = edge_idx;
an.next[1] = edge_idx;
}
Pair::Both(an, bn) => {
// a and b are different indices
edge.next = [an.next[0], bn.next[1]];
an.next[0] = edge_idx;
bn.next[1] = edge_idx;
}
}
}
Ok(())
}
}
/// An iterator over either the nodes without edges to them or from them.
pub struct Externals<'a, N: 'a, Ty, Ix: IndexType = DefaultIx> {
iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
dir: Direction,
ty: PhantomData<Ty>,
}
impl<'a, N: 'a, Ty, Ix> Iterator for Externals<'a, N, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
{
type Item = NodeIndex<Ix>;
fn next(&mut self) -> Option<NodeIndex<Ix>>
{
let k = self.dir.index();
loop {
match self.iter.next() {
None => return None,
Some((index, node)) => {
if node.next[k] == EdgeIndex::end() &&
(Ty::is_directed() ||
node.next[1-k] == EdgeIndex::end()) {
return Some(NodeIndex::new(index))
} else {
continue
}
},
}
}
}
}
/// Iterator over the neighbors of a node.
///
/// Iterator element type is `NodeIndex<Ix>`.
///
/// Created with [`.neighbors()`][1], [`.neighbors_directed()`][2] or
/// [`.neighbors_undirected()`][3].
///
/// [1]: struct.Graph.html#method.neighbors
/// [2]: struct.Graph.html#method.neighbors_directed
/// [3]: struct.Graph.html#method.neighbors_undirected
pub struct Neighbors<'a, E: 'a, Ix: 'a = DefaultIx>
{
/// starting node to skip over
skip_start: NodeIndex<Ix>,
edges: &'a [Edge<E, Ix>],
next: [EdgeIndex<Ix>; 2],
}
impl<'a, E, Ix> Iterator for Neighbors<'a, E, Ix> where
Ix: IndexType,
{
type Item = NodeIndex<Ix>;
fn next(&mut self) -> Option<NodeIndex<Ix>> {
// First any outgoing edges
match self.edges.get(self.next[0].index()) {
None => {}
Some(edge) => {
self.next[0] = edge.next[0];
return Some(edge.node[1]);
}
}
// Then incoming edges
// For an "undirected" iterator (traverse both incoming
// and outgoing edge lists), make sure we don't double
// count selfloops by skipping them in the incoming list.
while let Some(edge) = self.edges.get(self.next[1].index()) {
self.next[1] = edge.next[1];
if edge.node[0] != self.skip_start {
return Some(edge.node[0]);
}
}
None
}
}
impl<'a, E, Ix> Clone for Neighbors<'a, E, Ix>
where Ix: IndexType,
{
clone_fields!(Neighbors,
skip_start,
edges,
next,
);
}
impl<'a, E, Ix> Neighbors<'a, E, Ix>
where Ix: IndexType,
{
/// Return a “walker” object that can be used to step through the
/// neighbors and edges from the origin node.
///
/// Note: The walker does not borrow from the graph, this is to allow mixing
/// edge walking with mutating the graph's weights.
pub fn detach(&self) -> WalkNeighbors<Ix> {
WalkNeighbors {
skip_start: self.skip_start,
next: self.next
}
}
}
struct EdgesWalkerMut<'a, E: 'a, Ix: IndexType = DefaultIx> {
edges: &'a mut [Edge<E, Ix>],
next: EdgeIndex<Ix>,
dir: Direction,
}
fn edges_walker_mut<E, Ix>(edges: &mut [Edge<E, Ix>], next: EdgeIndex<Ix>, dir: Direction)
-> EdgesWalkerMut<E, Ix>
where Ix: IndexType,
{
EdgesWalkerMut {
edges: edges,
next: next,
dir: dir
}
}
impl<'a, E, Ix> EdgesWalkerMut<'a, E, Ix> where
Ix: IndexType,
{
fn next_edge(&mut self) -> Option<&mut Edge<E, Ix>> {
self.next().map(|t| t.1)
}
fn next(&mut self) -> Option<(EdgeIndex<Ix>, &mut Edge<E, Ix>)> {
let this_index = self.next;
let k = self.dir.index();
match self.edges.get_mut(self.next.index()) {
None => None,
Some(edge) => {
self.next = edge.next[k];
Some((this_index, edge))
}
}
}
}
impl<'a, N, E, Ty, Ix> IntoEdges for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
type Edges = Edges<'a, E, Ty, Ix>;
fn edges(self, a: Self::NodeId) -> Self::Edges {
self.edges(a)
}
}
impl<'a, N, E, Ty, Ix> IntoEdgesDirected for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
type EdgesDirected = Edges<'a, E, Ty, Ix>;
fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected {
self.edges_directed(a, dir)
}
}
/// Iterator over the edges of from or to a node
pub struct Edges<'a, E: 'a, Ty, Ix: 'a = DefaultIx>
where Ty: EdgeType,
Ix: IndexType,
{
/// starting node to skip over
skip_start: NodeIndex<Ix>,
edges: &'a [Edge<E, Ix>],
/// Next edge to visit.
/// If we are only following one direction, we only use next[0] regardless.
next: [EdgeIndex<Ix>; 2],
/// Which direction to follow
/// None: Both,
/// Some(d): d if Directed, Both if Undirected
direction: Option<Direction>,
ty: PhantomData<Ty>,
}
impl<'a, E, Ty, Ix> Iterator for Edges<'a, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
type Item = EdgeReference<'a, E, Ix>;
fn next(&mut self) -> Option<Self::Item> {
// First the outgoing or incoming edges (directionality)
let k = self.direction.unwrap_or(Outgoing).index();
let i = self.next[0].index();
match self.edges.get(i) {
None => {}
Some(&Edge { ref node, ref weight, ref next }) => {
self.next[0] = next[k];
return Some(EdgeReference {
index: edge_index(i),
node: *node,
weight: weight,
});
}
}
// Stop here if we only follow one direction
if self.direction.is_some() {
return None;
}
// Then incoming edges
// For an "undirected" iterator (traverse both incoming
// and outgoing edge lists), make sure we don't double
// count selfloops by skipping them in the incoming list.
// We reach here if self.direction was None or Outgoing.
debug_assert_eq!(k, 0);
while let Some(edge) = self.edges.get(self.next[1].index()) {
let i = self.next[1].index();
self.next[1] = edge.next[1];
if edge.node[0] != self.skip_start {
return Some(EdgeReference {
index: edge_index(i),
node: swap_pair(edge.node),
weight: &edge.weight,
});
}
}
None
}
}
fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] {
x.swap(0, 1);
x
}
impl<'a, E, Ty, Ix> Clone for Edges<'a, E, Ty, Ix>
where Ix: IndexType,
Ty: EdgeType,
{
fn clone(&self) -> Self {
Edges {
skip_start: self.skip_start,
edges: self.edges,
next: self.next,
direction: self.direction,
ty: self.ty,
}
}
}
/// Iterator yielding mutable access to all node weights.
pub struct NodeWeightsMut<'a, N: 'a, Ix: IndexType = DefaultIx> {
nodes: ::std::slice::IterMut<'a, Node<N, Ix>>,
}
impl<'a, N, Ix> Iterator for NodeWeightsMut<'a, N, Ix> where
Ix: IndexType,
{
type Item = &'a mut N;
fn next(&mut self) -> Option<&'a mut N> {
self.nodes.next().map(|node| &mut node.weight)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.nodes.size_hint()
}
}
/// Iterator yielding mutable access to all edge weights.
pub struct EdgeWeightsMut<'a, E: 'a, Ix: IndexType = DefaultIx> {
edges: ::std::slice::IterMut<'a, Edge<E, Ix>>,
}
impl<'a, E, Ix> Iterator for EdgeWeightsMut<'a, E, Ix> where
Ix: IndexType,
{
type Item = &'a mut E;
fn next(&mut self) -> Option<&'a mut E> {
self.edges.next().map(|edge| &mut edge.weight)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.edges.size_hint()
}
}
/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
{
type Output = N;
fn index(&self, index: NodeIndex<Ix>) -> &N {
&self.nodes[index.index()].weight
}
}
/// Index the `Graph` by `NodeIndex` to access node weights.
///
/// **Panics** if the node doesn't exist.
impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
{
fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N {
&mut self.nodes[index.index()].weight
}
}
/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
{
type Output = E;
fn index(&self, index: EdgeIndex<Ix>) -> &E {
&self.edges[index.index()].weight
}
}
/// Index the `Graph` by `EdgeIndex` to access edge weights.
///
/// **Panics** if the edge doesn't exist.
impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix> where
Ty: EdgeType,
Ix: IndexType,
{
fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E {
&mut self.edges[index.index()].weight
}
}
/// Create a new empty `Graph`.
impl<N, E, Ty, Ix> Default for Graph<N, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
fn default() -> Self { Self::with_capacity(0, 0) }
}
/// A `GraphIndex` is a node or edge index.
pub trait GraphIndex : Copy {
#[doc(hidden)]
fn index(&self) -> usize;
#[doc(hidden)]
fn is_node_index() -> bool;
}
impl<Ix: IndexType> GraphIndex for NodeIndex<Ix> {
#[inline]
fn index(&self) -> usize { NodeIndex::index(*self) }
#[inline]
fn is_node_index() -> bool { true }
}
impl<Ix: IndexType> GraphIndex for EdgeIndex<Ix> {
#[inline]
fn index(&self) -> usize { EdgeIndex::index(*self) }
#[inline]
fn is_node_index() -> bool { false }
}
/// A “walker” object that can be used to step through the edge list of a node.
///
/// Created with [`.detach()`](struct.Neighbors.html#method.detach).
///
/// The walker does not borrow from the graph, so it lets you step through
/// neighbors or incident edges while also mutating graph weights, as
/// in the following example:
///
/// ```
/// use petgraph::{Graph, Incoming};
/// use petgraph::visit::Dfs;
///
/// let mut gr = Graph::new();
/// let a = gr.add_node(0.);
/// let b = gr.add_node(0.);
/// let c = gr.add_node(0.);
/// gr.add_edge(a, b, 3.);
/// gr.add_edge(b, c, 2.);
/// gr.add_edge(c, b, 1.);
///
/// // step through the graph and sum incoming edges into the node weight
/// let mut dfs = Dfs::new(&gr, a);
/// while let Some(node) = dfs.next(&gr) {
/// // use a detached neighbors walker
/// let mut edges = gr.neighbors_directed(node, Incoming).detach();
/// while let Some(edge) = edges.next_edge(&gr) {
/// gr[node] += gr[edge];
/// }
/// }
///
/// // check the result
/// assert_eq!(gr[a], 0.);
/// assert_eq!(gr[b], 4.);
/// assert_eq!(gr[c], 2.);
/// ```
pub struct WalkNeighbors<Ix> {
skip_start: NodeIndex<Ix>,
next: [EdgeIndex<Ix>; 2],
}
impl<Ix> Clone for WalkNeighbors<Ix>
where Ix: IndexType,
{
fn clone(&self) -> Self {
WalkNeighbors {
skip_start: self.skip_start,
next: self.next,
}
}
}
impl<Ix: IndexType> WalkNeighbors<Ix> {
/// Step to the next edge and its endpoint node in the walk for graph `g`.
///
/// The next node indices are always the others than the starting point
/// where the `WalkNeighbors` value was created.
/// For an `Outgoing` walk, the target nodes,
/// for an `Incoming` walk, the source nodes of the edge.
pub fn next<N, E, Ty: EdgeType>(&mut self, g: &Graph<N, E, Ty, Ix>)
-> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> {
// First any outgoing edges
match g.edges.get(self.next[0].index()) {
None => {}
Some(edge) => {
let ed = self.next[0];
self.next[0] = edge.next[0];
return Some((ed, edge.node[1]));
}
}
// Then incoming edges
// For an "undirected" iterator (traverse both incoming
// and outgoing edge lists), make sure we don't double
// count selfloops by skipping them in the incoming list.
while let Some(edge) = g.edges.get(self.next[1].index()) {
let ed = self.next[1];
self.next[1] = edge.next[1];
if edge.node[0] != self.skip_start {
return Some((ed, edge.node[0]));
}
}
None
}
pub fn next_node<N, E, Ty: EdgeType>(&mut self, g: &Graph<N, E, Ty, Ix>)
-> Option<NodeIndex<Ix>>
{
self.next(g).map(|t| t.1)
}
pub fn next_edge<N, E, Ty: EdgeType>(&mut self, g: &Graph<N, E, Ty, Ix>)
-> Option<EdgeIndex<Ix>>
{
self.next(g).map(|t| t.0)
}
}
/// Iterator over the node indices of a graph.
#[derive(Clone, Debug)]
pub struct NodeIndices<Ix = DefaultIx> {
r: Range<usize>,
ty: PhantomData<fn() -> Ix>,
}
impl<Ix: IndexType> Iterator for NodeIndices<Ix> {
type Item = NodeIndex<Ix>;
fn next(&mut self) -> Option<Self::Item> {
self.r.next().map(node_index)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.r.size_hint()
}
}
impl<Ix: IndexType> DoubleEndedIterator for NodeIndices<Ix> {
fn next_back(&mut self) -> Option<Self::Item> {
self.r.next_back().map(node_index)
}
}
impl<Ix: IndexType> ExactSizeIterator for NodeIndices<Ix> {}
/// Iterator over the edge indices of a graph.
#[derive(Clone, Debug)]
pub struct EdgeIndices<Ix = DefaultIx> {
r: Range<usize>,
ty: PhantomData<fn() -> Ix>,
}
impl<Ix: IndexType> Iterator for EdgeIndices<Ix> {
type Item = EdgeIndex<Ix>;
fn next(&mut self) -> Option<Self::Item> {
self.r.next().map(edge_index)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.r.size_hint()
}
}
impl<Ix: IndexType> DoubleEndedIterator for EdgeIndices<Ix> {
fn next_back(&mut self) -> Option<Self::Item> {
self.r.next_back().map(edge_index)
}
}
impl<Ix: IndexType> ExactSizeIterator for EdgeIndices<Ix> {}
/// Reference to a `Graph` edge.
#[derive(Debug)]
pub struct EdgeReference<'a, E: 'a, Ix = DefaultIx> {
index: EdgeIndex<Ix>,
node: [NodeIndex<Ix>; 2],
weight: &'a E,
}
impl<'a, E, Ix: IndexType> Clone for EdgeReference<'a, E, Ix> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, E, Ix: IndexType> Copy for EdgeReference<'a, E, Ix> { }
impl<'a, E, Ix: IndexType> PartialEq for EdgeReference<'a, E, Ix>
where E: PartialEq,
{
fn eq(&self, rhs: &Self) -> bool {
self.index == rhs.index && self.weight == rhs.weight
}
}
impl<'a, N, E, Ty, Ix> IntoNodeReferences for &'a Graph<N, E, Ty, Ix>
where Ty: EdgeType,
Ix: IndexType,
{
type NodeRef = (NodeIndex<Ix>, &'a N);
type NodeReferences = NodeReferences<'a, N, Ix>;
fn node_references(self) -> Self::NodeReferences {
NodeReferences {
iter: self.nodes.iter().enumerate()
}
}
}
/// Iterator over all nodes of a graph.
pub struct NodeReferences<'a, N: 'a, Ix: IndexType = DefaultIx> {
iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
}
impl<'a, N, Ix> Iterator for NodeReferences<'a, N, Ix>
where Ix: IndexType
{
type Item = (NodeIndex<Ix>, &'a N);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(i, node)|
(node_index(i), &node.weight)
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, N, Ix> DoubleEndedIterator for NodeReferences<'a, N, Ix>
where Ix: IndexType
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map(|(i, node)|
(node_index(i), &node.weight)
)
}
}
impl<'a, N, Ix> ExactSizeIterator for NodeReferences<'a, N, Ix>
where Ix: IndexType
{ }
impl<'a, Ix, E> EdgeReference<'a, E, Ix>
where Ix: IndexType,
{
/// Access the edge’s weight.
///
/// **NOTE** that this method offers a longer lifetime
/// than the trait (unfortunately they don't match yet).
pub fn weight(&self) -> &'a E { self.weight }
}
impl<'a, Ix, E> EdgeRef for EdgeReference<'a, E, Ix>
where Ix: IndexType,
{
type NodeId = NodeIndex<Ix>;
type EdgeId = EdgeIndex<Ix>;
type Weight = E;
fn source(&self) -> Self::NodeId { self.node[0] }
fn target(&self) -> Self::NodeId { self.node[1] }
fn weight(&self) -> &E { self.weight }
fn id(&self) -> Self::EdgeId { self.index }
}
/// Iterator over all edges of a graph.
pub struct EdgeReferences<'a, E: 'a, Ix: IndexType = DefaultIx> {
iter: iter::Enumerate<slice::Iter<'a, Edge<E, Ix>>>,
}
impl<'a, E, Ix> Iterator for EdgeReferences<'a, E, Ix>
where Ix: IndexType
{
type Item = EdgeReference<'a, E, Ix>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(i, edge)|
EdgeReference {
index: edge_index(i),
node: edge.node,
weight: &edge.weight,
}
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, E, Ix> DoubleEndedIterator for EdgeReferences<'a, E, Ix>
where Ix: IndexType
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map(|(i, edge)|
EdgeReference {
index: edge_index(i),
node: edge.node,
weight: &edge.weight,
}
)
}
}
impl<'a, E, Ix> ExactSizeIterator for EdgeReferences<'a, E, Ix>
where Ix: IndexType
{}
#[cfg(feature = "stable_graph")]
pub mod stable_graph;
mod frozen;
/// `Frozen` is a graph wrapper.
///
/// The `Frozen` only allows shared access (read-only) to the
/// underlying graph `G`, but it allows mutable access to its
/// node and edge weights.
///
/// This is used to ensure immutability of the graph's structure
/// while permitting weights to be both read and written.
///
/// See indexing implementations and the traits `Data` and `DataMap`
/// for read-write access to the graph's weights.
pub struct Frozen<'a, G: 'a>(&'a mut G);