1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
use crate::common::{DebugArangesOffset, DebugInfoOffset, Encoding, SectionId};
use crate::endianity::Endianity;
use crate::read::{
EndianSlice, Error, Range, Reader, ReaderAddress, ReaderOffset, Result, Section,
};
/// The `DebugAranges` struct represents the DWARF address range information
/// found in the `.debug_aranges` section.
#[derive(Debug, Default, Clone, Copy)]
pub struct DebugAranges<R> {
section: R,
}
impl<'input, Endian> DebugAranges<EndianSlice<'input, Endian>>
where
Endian: Endianity,
{
/// Construct a new `DebugAranges` instance from the data in the `.debug_aranges`
/// section.
///
/// It is the caller's responsibility to read the `.debug_aranges` section and
/// present it as a `&[u8]` slice. That means using some ELF loader on
/// Linux, a Mach-O loader on macOS, etc.
///
/// ```
/// use gimli::{DebugAranges, LittleEndian};
///
/// # let buf = [];
/// # let read_debug_aranges_section = || &buf;
/// let debug_aranges =
/// DebugAranges::new(read_debug_aranges_section(), LittleEndian);
/// ```
pub fn new(section: &'input [u8], endian: Endian) -> Self {
DebugAranges {
section: EndianSlice::new(section, endian),
}
}
}
impl<R: Reader> DebugAranges<R> {
/// Iterate the sets of entries in the `.debug_aranges` section.
///
/// Each set of entries belongs to a single unit.
pub fn headers(&self) -> ArangeHeaderIter<R> {
ArangeHeaderIter {
input: self.section.clone(),
offset: DebugArangesOffset(R::Offset::from_u8(0)),
}
}
/// Get the header at the given offset.
pub fn header(&self, offset: DebugArangesOffset<R::Offset>) -> Result<ArangeHeader<R>> {
let mut input = self.section.clone();
input.skip(offset.0)?;
ArangeHeader::parse(&mut input, offset)
}
}
impl<T> DebugAranges<T> {
/// Create a `DebugAranges` section that references the data in `self`.
///
/// This is useful when `R` implements `Reader` but `T` does not.
///
/// Used by `DwarfSections::borrow`.
pub fn borrow<'a, F, R>(&'a self, mut borrow: F) -> DebugAranges<R>
where
F: FnMut(&'a T) -> R,
{
borrow(&self.section).into()
}
}
impl<R> Section<R> for DebugAranges<R> {
fn id() -> SectionId {
SectionId::DebugAranges
}
fn reader(&self) -> &R {
&self.section
}
}
impl<R> From<R> for DebugAranges<R> {
fn from(section: R) -> Self {
DebugAranges { section }
}
}
/// An iterator over the headers of a `.debug_aranges` section.
#[derive(Clone, Debug)]
pub struct ArangeHeaderIter<R: Reader> {
input: R,
offset: DebugArangesOffset<R::Offset>,
}
impl<R: Reader> ArangeHeaderIter<R> {
/// Advance the iterator to the next header.
pub fn next(&mut self) -> Result<Option<ArangeHeader<R>>> {
if self.input.is_empty() {
return Ok(None);
}
let len = self.input.len();
match ArangeHeader::parse(&mut self.input, self.offset) {
Ok(header) => {
self.offset.0 += len - self.input.len();
Ok(Some(header))
}
Err(e) => {
self.input.empty();
Err(e)
}
}
}
}
#[cfg(feature = "fallible-iterator")]
impl<R: Reader> fallible_iterator::FallibleIterator for ArangeHeaderIter<R> {
type Item = ArangeHeader<R>;
type Error = Error;
fn next(&mut self) -> ::core::result::Result<Option<Self::Item>, Self::Error> {
ArangeHeaderIter::next(self)
}
}
/// A header for a set of entries in the `.debug_arange` section.
///
/// These entries all belong to a single unit.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ArangeHeader<R, Offset = <R as Reader>::Offset>
where
R: Reader<Offset = Offset>,
Offset: ReaderOffset,
{
offset: DebugArangesOffset<Offset>,
encoding: Encoding,
length: Offset,
debug_info_offset: DebugInfoOffset<Offset>,
entries: R,
}
impl<R, Offset> ArangeHeader<R, Offset>
where
R: Reader<Offset = Offset>,
Offset: ReaderOffset,
{
fn parse(input: &mut R, offset: DebugArangesOffset<Offset>) -> Result<Self> {
let (length, format) = input.read_initial_length()?;
let mut rest = input.split(length)?;
// Check the version. The DWARF 5 spec says that this is always 2, but version 3
// has been observed in the wild, potentially due to a bug; see
// https://github.com/gimli-rs/gimli/issues/559 for more information.
// lldb allows versions 2 through 5, possibly by mistake.
let version = rest.read_u16()?;
if version != 2 && version != 3 {
return Err(Error::UnknownVersion(u64::from(version)));
}
let debug_info_offset = rest.read_offset(format).map(DebugInfoOffset)?;
let address_size = rest.read_address_size()?;
let segment_size = rest.read_u8()?;
if segment_size != 0 {
return Err(Error::UnsupportedSegmentSize);
}
// unit_length + version + offset + address_size + segment_size
let header_length = format.initial_length_size() + 2 + format.word_size() + 1 + 1;
// The first tuple following the header in each set begins at an offset that is
// a multiple of the size of a single tuple (that is, twice the size of an address).
let tuple_length = address_size
.checked_mul(2)
.ok_or(Error::UnsupportedAddressSize(address_size))?;
if tuple_length == 0 {
return Err(Error::UnsupportedAddressSize(address_size));
}
let padding = if header_length % tuple_length == 0 {
0
} else {
tuple_length - header_length % tuple_length
};
rest.skip(R::Offset::from_u8(padding))?;
let encoding = Encoding {
format,
version,
address_size,
};
Ok(ArangeHeader {
offset,
encoding,
length,
debug_info_offset,
entries: rest,
})
}
/// Return the offset of this header within the `.debug_aranges` section.
#[inline]
pub fn offset(&self) -> DebugArangesOffset<Offset> {
self.offset
}
/// Return the length of this set of entries, including the header.
#[inline]
pub fn length(&self) -> Offset {
self.length
}
/// Return the encoding parameters for this set of entries.
#[inline]
pub fn encoding(&self) -> Encoding {
self.encoding
}
/// Return the offset into the .debug_info section for this set of arange entries.
#[inline]
pub fn debug_info_offset(&self) -> DebugInfoOffset<Offset> {
self.debug_info_offset
}
/// Return the arange entries in this set.
#[inline]
pub fn entries(&self) -> ArangeEntryIter<R> {
ArangeEntryIter {
input: self.entries.clone(),
encoding: self.encoding,
}
}
}
/// An iterator over the aranges from a `.debug_aranges` section.
///
/// Can be [used with
/// `FallibleIterator`](./index.html#using-with-fallibleiterator).
#[derive(Debug, Clone)]
pub struct ArangeEntryIter<R: Reader> {
input: R,
encoding: Encoding,
}
impl<R: Reader> ArangeEntryIter<R> {
/// Advance the iterator and return the next arange.
///
/// Returns the newly parsed arange as `Ok(Some(arange))`. Returns `Ok(None)`
/// when iteration is complete and all aranges have already been parsed and
/// yielded. If an error occurs while parsing the next arange, then this error
/// is returned as `Err(e)`, and all subsequent calls return `Ok(None)`.
pub fn next(&mut self) -> Result<Option<ArangeEntry>> {
loop {
let raw_entry = match self.next_raw()? {
Some(entry) => entry,
None => return Ok(None),
};
let entry = self.convert_raw(raw_entry)?;
if entry.is_some() {
return Ok(entry);
}
}
}
/// Advance the iterator and return the next arange without validating it.
///
/// The returned entry will have `range.end` set to 0.
/// This will return tombstone entries as well.
pub fn next_raw(&mut self) -> Result<Option<ArangeEntry>> {
if self.input.is_empty() {
return Ok(None);
}
match ArangeEntry::parse(&mut self.input, self.encoding) {
Ok(Some(entry)) => Ok(Some(entry)),
Ok(None) => {
self.input.empty();
Ok(None)
}
Err(e) => {
self.input.empty();
Err(e)
}
}
}
/// Convert a raw range into a range.
///
/// The raw range should have been obtained from `next_raw`.
#[doc(hidden)]
pub fn convert_raw(&self, mut entry: ArangeEntry) -> Result<Option<ArangeEntry>> {
// Skip tombstone entries.
// DWARF specifies a tombstone value of -1, but many linkers use 0.
// However, 0 may be a valid address, so the caller must handle that case.
let address_size = self.encoding.address_size;
let tombstone_address = !0 >> (64 - self.encoding.address_size * 8);
if entry.range.begin == tombstone_address {
return Ok(None);
}
// Calculate end now so that we can handle overflow.
entry.range.end = entry.range.begin.add_sized(entry.length, address_size)?;
Ok(Some(entry))
}
}
#[cfg(feature = "fallible-iterator")]
impl<R: Reader> fallible_iterator::FallibleIterator for ArangeEntryIter<R> {
type Item = ArangeEntry;
type Error = Error;
fn next(&mut self) -> ::core::result::Result<Option<Self::Item>, Self::Error> {
ArangeEntryIter::next(self)
}
}
/// A single parsed arange.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct ArangeEntry {
range: Range,
length: u64,
}
impl ArangeEntry {
/// Parse a single arange. Return `None` for the null arange, `Some` for an actual arange.
fn parse<R: Reader>(input: &mut R, encoding: Encoding) -> Result<Option<Self>> {
let address_size = encoding.address_size;
let tuple_length = R::Offset::from_u8(2 * address_size);
if tuple_length > input.len() {
input.empty();
return Ok(None);
}
let begin = input.read_address(address_size)?;
let length = input.read_address(address_size)?;
let range = Range { begin, end: 0 };
match (begin, length) {
// This is meant to be a null terminator, but in practice it can occur
// before the end, possibly due to a linker omitting a function and
// leaving an unrelocated entry.
(0, 0) => Self::parse(input, encoding),
_ => Ok(Some(ArangeEntry { range, length })),
}
}
/// Return the beginning address of this arange.
#[inline]
pub fn address(&self) -> u64 {
self.range.begin
}
/// Return the length of this arange.
#[inline]
pub fn length(&self) -> u64 {
self.length
}
/// Return the range.
#[inline]
pub fn range(&self) -> Range {
self.range
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::common::{DebugInfoOffset, Format};
use crate::endianity::LittleEndian;
use crate::read::EndianSlice;
#[test]
fn test_iterate_headers() {
#[rustfmt::skip]
let buf = [
// 32-bit length = 28.
0x1c, 0x00, 0x00, 0x00,
// Version.
0x02, 0x00,
// Offset.
0x01, 0x02, 0x03, 0x04,
// Address size.
0x04,
// Segment size.
0x00,
// Dummy padding and arange tuples.
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// 32-bit length = 36.
0x24, 0x00, 0x00, 0x00,
// Version.
0x02, 0x00,
// Offset.
0x11, 0x12, 0x13, 0x14,
// Address size.
0x04,
// Segment size.
0x00,
// Dummy padding and arange tuples.
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
];
let debug_aranges = DebugAranges::new(&buf, LittleEndian);
let mut headers = debug_aranges.headers();
let header = headers
.next()
.expect("should parse header ok")
.expect("should have a header");
assert_eq!(header.offset(), DebugArangesOffset(0));
assert_eq!(header.debug_info_offset(), DebugInfoOffset(0x0403_0201));
let header = headers
.next()
.expect("should parse header ok")
.expect("should have a header");
assert_eq!(header.offset(), DebugArangesOffset(0x20));
assert_eq!(header.debug_info_offset(), DebugInfoOffset(0x1413_1211));
}
#[test]
fn test_parse_header_ok() {
#[rustfmt::skip]
let buf = [
// 32-bit length = 28 (8 bytes header, 4 bytes padding, 16 bytes tuple data).
0x1c, 0x00, 0x00, 0x00,
// Version.
0x02, 0x00,
// Offset.
0x01, 0x02, 0x03, 0x04,
// Address size.
0x08,
// Segment size.
0x00,
// Length to here = 12, tuple length = 16.
// Padding to tuple length multiple = 4.
0x10, 0x00, 0x00, 0x00,
// Dummy arange tuple data.
0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
// Dummy next arange.
0x30, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
];
let rest = &mut EndianSlice::new(&buf, LittleEndian);
let header =
ArangeHeader::parse(rest, DebugArangesOffset(0x10)).expect("should parse header ok");
assert_eq!(
*rest,
EndianSlice::new(&buf[buf.len() - 16..], LittleEndian)
);
assert_eq!(
header,
ArangeHeader {
offset: DebugArangesOffset(0x10),
encoding: Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 8,
},
length: 0x1c,
debug_info_offset: DebugInfoOffset(0x0403_0201),
entries: EndianSlice::new(&buf[buf.len() - 32..buf.len() - 16], LittleEndian),
}
);
}
#[test]
fn test_parse_header_overflow_error() {
#[rustfmt::skip]
let buf = [
// 32-bit length = 32.
0x20, 0x00, 0x00, 0x00,
// Version.
0x02, 0x00,
// Offset.
0x01, 0x02, 0x03, 0x04,
// Address size.
0xff,
// Segment size.
0x00,
// Length to here = 12, tuple length = 20.
// Padding to tuple length multiple = 4.
0x10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
// Dummy arange tuple data.
0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
// Dummy next arange.
0x30, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
];
let rest = &mut EndianSlice::new(&buf, LittleEndian);
let error = ArangeHeader::parse(rest, DebugArangesOffset(0x10))
.expect_err("should fail to parse header");
assert_eq!(error, Error::UnsupportedAddressSize(0xff));
}
#[test]
fn test_parse_header_div_by_zero_error() {
#[rustfmt::skip]
let buf = [
// 32-bit length = 32.
0x20, 0x00, 0x00, 0x00,
// Version.
0x02, 0x00,
// Offset.
0x01, 0x02, 0x03, 0x04,
// Address size = 0. Could cause a division by zero if we aren't
// careful.
0x00,
// Segment size.
0x00,
// Length to here = 12, tuple length = 20.
// Padding to tuple length multiple = 4.
0x10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
// Dummy arange tuple data.
0x20, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
// Dummy next arange.
0x30, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
];
let rest = &mut EndianSlice::new(&buf, LittleEndian);
let error = ArangeHeader::parse(rest, DebugArangesOffset(0x10))
.expect_err("should fail to parse header");
assert_eq!(error, Error::UnsupportedAddressSize(0));
}
#[test]
fn test_parse_entry_ok() {
let encoding = Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 4,
};
let buf = [0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09];
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next().expect("should parse entry ok");
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 1..], LittleEndian)
);
assert_eq!(
entry,
Some(ArangeEntry {
range: Range {
begin: 0x0403_0201,
end: 0x0403_0201 + 0x0807_0605,
},
length: 0x0807_0605,
})
);
}
#[test]
fn test_parse_entry_zero() {
let encoding = Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 4,
};
#[rustfmt::skip]
let buf = [
// Zero tuple.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// Address.
0x01, 0x02, 0x03, 0x04,
// Length.
0x05, 0x06, 0x07, 0x08,
// Next tuple.
0x09
];
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next().expect("should parse entry ok");
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 1..], LittleEndian)
);
assert_eq!(
entry,
Some(ArangeEntry {
range: Range {
begin: 0x0403_0201,
end: 0x0403_0201 + 0x0807_0605,
},
length: 0x0807_0605,
})
);
}
#[test]
fn test_parse_entry_overflow_32() {
let encoding = Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 4,
};
#[rustfmt::skip]
let buf = [
// Address.
0x01, 0x02, 0x03, 0x84,
// Length.
0x05, 0x06, 0x07, 0x88,
// Next tuple.
0x09
];
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next();
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 1..], LittleEndian)
);
assert_eq!(entry, Err(Error::AddressOverflow));
}
#[test]
fn test_parse_entry_overflow_64() {
let encoding = Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 8,
};
#[rustfmt::skip]
let buf = [
// Address.
0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x80,
// Length.
0x05, 0x06, 0x07, 0x08, 0x00, 0x00, 0x00, 0x80,
// Next tuple.
0x09
];
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next();
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 1..], LittleEndian)
);
assert_eq!(entry, Err(Error::AddressOverflow));
}
#[test]
fn test_parse_entry_tombstone_32() {
let encoding = Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 4,
};
#[rustfmt::skip]
let buf = [
// Address.
0xff, 0xff, 0xff, 0xff,
// Length.
0x05, 0x06, 0x07, 0x08,
// Address.
0x01, 0x02, 0x03, 0x04,
// Length.
0x05, 0x06, 0x07, 0x08,
// Next tuple.
0x09
];
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next_raw().unwrap();
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 9..], LittleEndian)
);
assert_eq!(
entry,
Some(ArangeEntry {
range: Range {
begin: 0xffff_ffff,
end: 0,
},
length: 0x0807_0605,
})
);
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next().unwrap();
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 1..], LittleEndian)
);
assert_eq!(
entry,
Some(ArangeEntry {
range: Range {
begin: 0x0403_0201,
end: 0x0403_0201 + 0x0807_0605,
},
length: 0x0807_0605,
})
);
}
#[test]
fn test_parse_entry_tombstone_64() {
let encoding = Encoding {
format: Format::Dwarf32,
version: 2,
address_size: 8,
};
#[rustfmt::skip]
let buf = [
// Address.
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
// Length.
0x05, 0x06, 0x07, 0x08, 0x00, 0x00, 0x00, 0x00,
// Address.
0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00, 0x00,
// Length.
0x05, 0x06, 0x07, 0x08, 0x00, 0x00, 0x00, 0x00,
// Next tuple.
0x09
];
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next_raw().unwrap();
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 17..], LittleEndian)
);
assert_eq!(
entry,
Some(ArangeEntry {
range: Range {
begin: 0xffff_ffff_ffff_ffff,
end: 0,
},
length: 0x0807_0605,
})
);
let mut iter = ArangeEntryIter {
input: EndianSlice::new(&buf, LittleEndian),
encoding,
};
let entry = iter.next().unwrap();
assert_eq!(
iter.input,
EndianSlice::new(&buf[buf.len() - 1..], LittleEndian)
);
assert_eq!(
entry,
Some(ArangeEntry {
range: Range {
begin: 0x0403_0201,
end: 0x0403_0201 + 0x0807_0605,
},
length: 0x0807_0605,
})
);
}
}