1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Parametric Bézier curves.
//!
//! This is based on `WebCore/platform/graphics/UnitBezier.h` in WebKit.
#![deny(missing_docs)]
use crate::values::CSSFloat;
const NEWTON_METHOD_ITERATIONS: u8 = 8;
/// A unit cubic Bézier curve, used for timing functions in CSS transitions and animations.
pub struct Bezier {
ax: f64,
bx: f64,
cx: f64,
ay: f64,
by: f64,
cy: f64,
}
impl Bezier {
/// Calculate the output of a unit cubic Bézier curve from the two middle control points.
///
/// X coordinate is time, Y coordinate is function advancement.
/// The nominal range for both is 0 to 1.
///
/// The start and end points are always (0, 0) and (1, 1) so that a transition or animation
/// starts at 0% and ends at 100%.
pub fn calculate_bezier_output(
progress: f64,
epsilon: f64,
x1: f32,
y1: f32,
x2: f32,
y2: f32,
) -> f64 {
// Check for a linear curve.
if x1 == y1 && x2 == y2 {
return progress;
}
// Ensure that we return 0 or 1 on both edges.
if progress == 0.0 {
return 0.0;
}
if progress == 1.0 {
return 1.0;
}
// For negative values, try to extrapolate with tangent (p1 - p0) or,
// if p1 is coincident with p0, with (p2 - p0).
if progress < 0.0 {
if x1 > 0.0 {
return progress * y1 as f64 / x1 as f64;
}
if y1 == 0.0 && x2 > 0.0 {
return progress * y2 as f64 / x2 as f64;
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 0.0;
}
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
// if p2 is coincident with p3, with (p1 - p3).
if progress > 1.0 {
if x2 < 1.0 {
return 1.0 + (progress - 1.0) * (y2 as f64 - 1.0) / (x2 as f64 - 1.0);
}
if y2 == 1.0 && x1 < 1.0 {
return 1.0 + (progress - 1.0) * (y1 as f64 - 1.0) / (x1 as f64 - 1.0);
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 1.0;
}
Bezier::new(x1, y1, x2, y2).solve(progress, epsilon)
}
#[inline]
fn new(x1: CSSFloat, y1: CSSFloat, x2: CSSFloat, y2: CSSFloat) -> Bezier {
let cx = 3. * x1 as f64;
let bx = 3. * (x2 as f64 - x1 as f64) - cx;
let cy = 3. * y1 as f64;
let by = 3. * (y2 as f64 - y1 as f64) - cy;
Bezier {
ax: 1.0 - cx - bx,
bx: bx,
cx: cx,
ay: 1.0 - cy - by,
by: by,
cy: cy,
}
}
#[inline]
fn sample_curve_x(&self, t: f64) -> f64 {
// ax * t^3 + bx * t^2 + cx * t
((self.ax * t + self.bx) * t + self.cx) * t
}
#[inline]
fn sample_curve_y(&self, t: f64) -> f64 {
((self.ay * t + self.by) * t + self.cy) * t
}
#[inline]
fn sample_curve_derivative_x(&self, t: f64) -> f64 {
(3.0 * self.ax * t + 2.0 * self.bx) * t + self.cx
}
#[inline]
fn solve_curve_x(&self, x: f64, epsilon: f64) -> f64 {
// Fast path: Use Newton's method.
let mut t = x;
for _ in 0..NEWTON_METHOD_ITERATIONS {
let x2 = self.sample_curve_x(t);
if x2.approx_eq(x, epsilon) {
return t;
}
let dx = self.sample_curve_derivative_x(t);
if dx.approx_eq(0.0, 1e-6) {
break;
}
t -= (x2 - x) / dx;
}
// Slow path: Use bisection.
let (mut lo, mut hi, mut t) = (0.0, 1.0, x);
if t < lo {
return lo;
}
if t > hi {
return hi;
}
while lo < hi {
let x2 = self.sample_curve_x(t);
if x2.approx_eq(x, epsilon) {
return t;
}
if x > x2 {
lo = t
} else {
hi = t
}
t = (hi - lo) / 2.0 + lo
}
t
}
/// Solve the bezier curve for a given `x` and an `epsilon`, that should be
/// between zero and one.
#[inline]
fn solve(&self, x: f64, epsilon: f64) -> f64 {
self.sample_curve_y(self.solve_curve_x(x, epsilon))
}
}
trait ApproxEq {
fn approx_eq(self, value: Self, epsilon: Self) -> bool;
}
impl ApproxEq for f64 {
#[inline]
fn approx_eq(self, value: f64, epsilon: f64) -> bool {
(self - value).abs() < epsilon
}
}