1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//! Order floating point numbers, into this ordering:
//!
//!    NaN | -Infinity | x < 0 | -0 | +0 | x > 0 | +Infinity | NaN

#![no_std]

use core::cmp::{Eq, Ord, Ordering, PartialEq, PartialOrd};
use core::hash::{Hash, Hasher};
use core::mem::transmute;

/// A wrapper for floats, that implements total equality and ordering
/// and hashing.
#[derive(Clone, Copy, Debug)]
#[repr(transparent)]
pub struct FloatOrd<T>(pub T);

macro_rules! float_ord_impl {
    ($f:ident, $i:ident, $n:expr) => {
        impl FloatOrd<$f> {
            fn convert(self) -> $i {
                let u = unsafe { transmute::<$f, $i>(self.0) };
                let bit = 1 << ($n - 1);
                if u & bit == 0 {
                    u | bit
                } else {
                    !u
                }
            }
        }
        impl PartialEq for FloatOrd<$f> {
            fn eq(&self, other: &Self) -> bool {
                self.convert() == other.convert()
            }
        }
        impl Eq for FloatOrd<$f> {}
        impl PartialOrd for FloatOrd<$f> {
            fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
                self.convert().partial_cmp(&other.convert())
            }
        }
        impl Ord for FloatOrd<$f> {
            fn cmp(&self, other: &Self) -> Ordering {
                self.convert().cmp(&other.convert())
            }
        }
        impl Hash for FloatOrd<$f> {
            fn hash<H: Hasher>(&self, state: &mut H) {
                self.convert().hash(state);
            }
        }
    }
}

float_ord_impl!(f32, u32, 32);
float_ord_impl!(f64, u64, 64);

/// Sort a slice of floats.
///
/// # Allocation behavior
///
/// This routine uses a quicksort implementation that does not heap allocate.
///
/// # Example
///
/// ```
/// let mut v = [-5.0, 4.0, 1.0, -3.0, 2.0];
///
/// float_ord::sort(&mut v);
/// assert!(v == [-5.0, -3.0, 1.0, 2.0, 4.0]);
/// ```
pub fn sort<T>(v: &mut [T]) where FloatOrd<T>: Ord {
    let v_: &mut [FloatOrd<T>] = unsafe { transmute(v) };
    v_.sort_unstable();
}

#[cfg(test)]
mod tests {
    extern crate std;
    extern crate rand;

    use self::rand::{Rng, thread_rng};
    use self::std::iter;
    use self::std::prelude::v1::*;
    use self::std::collections::hash_map::DefaultHasher;
    use self::std::hash::{Hash, Hasher};
    use super::FloatOrd;

    #[test]
    fn test_ord() {
        assert!(FloatOrd(1.0f64) < FloatOrd(2.0f64));
        assert!(FloatOrd(2.0f32) > FloatOrd(1.0f32));
        assert!(FloatOrd(1.0f64) == FloatOrd(1.0f64));
        assert!(FloatOrd(1.0f32) == FloatOrd(1.0f32));
        assert!(FloatOrd(0.0f64) > FloatOrd(-0.0f64));
        assert!(FloatOrd(0.0f32) > FloatOrd(-0.0f32));
        assert!(FloatOrd(::core::f64::NAN) == FloatOrd(::core::f64::NAN));
        assert!(FloatOrd(::core::f32::NAN) == FloatOrd(::core::f32::NAN));
        assert!(FloatOrd(-::core::f64::NAN) < FloatOrd(::core::f64::NAN));
        assert!(FloatOrd(-::core::f32::NAN) < FloatOrd(::core::f32::NAN));
        assert!(FloatOrd(-::core::f64::INFINITY) < FloatOrd(::core::f64::INFINITY));
        assert!(FloatOrd(-::core::f32::INFINITY) < FloatOrd(::core::f32::INFINITY));
        assert!(FloatOrd(::core::f64::INFINITY) < FloatOrd(::core::f64::NAN));
        assert!(FloatOrd(::core::f32::INFINITY) < FloatOrd(::core::f32::NAN));
        assert!(FloatOrd(-::core::f64::NAN) < FloatOrd(::core::f64::INFINITY));
        assert!(FloatOrd(-::core::f32::NAN) < FloatOrd(::core::f32::INFINITY));
    }

    #[test]
    fn test_ord_numbers() {
        let mut rng = thread_rng();
        for n in 0..16 {
            for l in 0..16 {
                let v = iter::repeat(()).map(|()| rng.gen())
                    .map(|x: f64| x % (1 << l) as i64 as f64)
                    .take(1 << n)
                    .collect::<Vec<_>>();
                assert!(v.windows(2).all(|w| (w[0] <= w[1]) == (FloatOrd(w[0]) <= FloatOrd(w[1]))));
            }
        }
    }

    fn hash<F: Hash>(f: F) -> u64 {
        let mut hasher = DefaultHasher::new();
        f.hash(&mut hasher);
        hasher.finish()
    }

    #[test]
    fn test_hash() {
        assert_ne!(hash(FloatOrd(0.0f64)), hash(FloatOrd(-0.0f64)));
        assert_ne!(hash(FloatOrd(0.0f32)), hash(FloatOrd(-0.0f32)));
        assert_eq!(hash(FloatOrd(-0.0f64)), hash(FloatOrd(-0.0f64)));
        assert_eq!(hash(FloatOrd(0.0f32)), hash(FloatOrd(0.0f32)));
        assert_ne!(hash(FloatOrd(::core::f64::NAN)), hash(FloatOrd(-::core::f64::NAN)));
        assert_ne!(hash(FloatOrd(::core::f32::NAN)), hash(FloatOrd(-::core::f32::NAN)));
        assert_eq!(hash(FloatOrd(::core::f64::NAN)), hash(FloatOrd(::core::f64::NAN)));
        assert_eq!(hash(FloatOrd(-::core::f32::NAN)), hash(FloatOrd(-::core::f32::NAN)));
    }

    #[test]
    fn test_sort_numbers() {
        let mut rng = thread_rng();
        for n in 0..16 {
            for l in 0..16 {
                let mut v = iter::repeat(()).map(|()| rng.gen())
                    .map(|x: f64| x % (1 << l) as i64 as f64)
                    .take(1 << n)
                    .collect::<Vec<_>>();
                let mut v1 = v.clone();

                super::sort(&mut v);
                assert!(v.windows(2).all(|w: &[f64]| w[0] <= w[1]));

                v1.sort_by(|a, b| a.partial_cmp(b).unwrap());
                assert!(v1.windows(2).all(|w| w[0] <= w[1]));

                v1.sort_by(|a, b| b.partial_cmp(a).unwrap());
                assert!(v1.windows(2).all(|w| w[0] >= w[1]));
            }
        }

        let mut v = [5.0];
        super::sort(&mut v);
        assert!(v == [5.0]);
    }

    #[test]
    fn test_sort_nan() {
        let nan = ::core::f64::NAN;
        let mut v = [-1.0, 5.0, 0.0, -0.0, nan, 1.5, nan, 3.7];
        super::sort(&mut v);
        assert!(v[0] == -1.0);
        assert!(v[1] == 0.0 && v[1].is_sign_negative());
        assert!(v[2] == 0.0 && !v[2].is_sign_negative());
        assert!(v[3] == 1.5);
        assert!(v[4] == 3.7);
        assert!(v[5] == 5.0);
        assert!(v[6].is_nan());
        assert!(v[7].is_nan());
    }
}