1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
pub use tiff_value::*;

use std::{
    cmp,
    collections::BTreeMap,
    convert::{TryFrom, TryInto},
    io::{self, Seek, Write},
    marker::PhantomData,
    mem,
    num::TryFromIntError,
};

use crate::{
    error::TiffResult,
    tags::{CompressionMethod, ResolutionUnit, Tag},
    TiffError, TiffFormatError,
};

pub mod colortype;
pub mod compression;
mod tiff_value;
mod writer;

use self::colortype::*;
use self::compression::*;
use self::writer::*;

/// Encoder for Tiff and BigTiff files.
///
/// With this type you can get a `DirectoryEncoder` or a `ImageEncoder`
/// to encode Tiff/BigTiff ifd directories with images.
///
/// See `DirectoryEncoder` and `ImageEncoder`.
///
/// # Examples
/// ```
/// # extern crate tiff;
/// # fn main() {
/// # let mut file = std::io::Cursor::new(Vec::new());
/// # let image_data = vec![0; 100*100*3];
/// use tiff::encoder::*;
///
/// // create a standard Tiff file
/// let mut tiff = TiffEncoder::new(&mut file).unwrap();
/// tiff.write_image::<colortype::RGB8>(100, 100, &image_data).unwrap();
///
/// // create a BigTiff file
/// let mut bigtiff = TiffEncoder::new_big(&mut file).unwrap();
/// bigtiff.write_image::<colortype::RGB8>(100, 100, &image_data).unwrap();
///
/// # }
/// ```
pub struct TiffEncoder<W, K: TiffKind = TiffKindStandard> {
    writer: TiffWriter<W>,
    kind: PhantomData<K>,
}

/// Constructor functions to create standard Tiff files.
impl<W: Write + Seek> TiffEncoder<W> {
    /// Creates a new encoder for standard Tiff files.
    ///
    /// To create BigTiff files, use [`new_big`][TiffEncoder::new_big] or
    /// [`new_generic`][TiffEncoder::new_generic].
    pub fn new(writer: W) -> TiffResult<TiffEncoder<W, TiffKindStandard>> {
        TiffEncoder::new_generic(writer)
    }
}

/// Constructor functions to create BigTiff files.
impl<W: Write + Seek> TiffEncoder<W, TiffKindBig> {
    /// Creates a new encoder for BigTiff files.
    ///
    /// To create standard Tiff files, use [`new`][TiffEncoder::new] or
    /// [`new_generic`][TiffEncoder::new_generic].
    pub fn new_big(writer: W) -> TiffResult<Self> {
        TiffEncoder::new_generic(writer)
    }
}

/// Generic functions that are available for both Tiff and BigTiff encoders.
impl<W: Write + Seek, K: TiffKind> TiffEncoder<W, K> {
    /// Creates a new Tiff or BigTiff encoder, inferred from the return type.
    pub fn new_generic(writer: W) -> TiffResult<Self> {
        let mut encoder = TiffEncoder {
            writer: TiffWriter::new(writer),
            kind: PhantomData,
        };

        K::write_header(&mut encoder.writer)?;

        Ok(encoder)
    }

    /// Create a [`DirectoryEncoder`] to encode an ifd directory.
    pub fn new_directory(&mut self) -> TiffResult<DirectoryEncoder<W, K>> {
        DirectoryEncoder::new(&mut self.writer)
    }

    /// Create an [`ImageEncoder`] to encode an image one slice at a time.
    pub fn new_image<C: ColorType>(
        &mut self,
        width: u32,
        height: u32,
    ) -> TiffResult<ImageEncoder<W, C, K, Uncompressed>> {
        let encoder = DirectoryEncoder::new(&mut self.writer)?;
        ImageEncoder::new(encoder, width, height)
    }

    /// Create an [`ImageEncoder`] to encode an image one slice at a time.
    pub fn new_image_with_compression<C: ColorType, D: Compression>(
        &mut self,
        width: u32,
        height: u32,
        compression: D,
    ) -> TiffResult<ImageEncoder<W, C, K, D>> {
        let encoder = DirectoryEncoder::new(&mut self.writer)?;
        ImageEncoder::with_compression(encoder, width, height, compression)
    }

    /// Convenience function to write an entire image from memory.
    pub fn write_image<C: ColorType>(
        &mut self,
        width: u32,
        height: u32,
        data: &[C::Inner],
    ) -> TiffResult<()>
    where
        [C::Inner]: TiffValue,
    {
        let encoder = DirectoryEncoder::new(&mut self.writer)?;
        let image: ImageEncoder<W, C, K> = ImageEncoder::new(encoder, width, height)?;
        image.write_data(data)
    }

    /// Convenience function to write an entire image from memory with a given compression.
    pub fn write_image_with_compression<C: ColorType, D: Compression>(
        &mut self,
        width: u32,
        height: u32,
        compression: D,
        data: &[C::Inner],
    ) -> TiffResult<()>
    where
        [C::Inner]: TiffValue,
    {
        let encoder = DirectoryEncoder::new(&mut self.writer)?;
        let image: ImageEncoder<W, C, K, D> =
            ImageEncoder::with_compression(encoder, width, height, compression)?;
        image.write_data(data)
    }
}

/// Low level interface to encode ifd directories.
///
/// You should call `finish` on this when you are finished with it.
/// Encoding can silently fail while this is dropping.
pub struct DirectoryEncoder<'a, W: 'a + Write + Seek, K: TiffKind> {
    writer: &'a mut TiffWriter<W>,
    dropped: bool,
    // We use BTreeMap to make sure tags are written in correct order
    ifd_pointer_pos: u64,
    ifd: BTreeMap<u16, DirectoryEntry<K::OffsetType>>,
}

impl<'a, W: 'a + Write + Seek, K: TiffKind> DirectoryEncoder<'a, W, K> {
    fn new(writer: &'a mut TiffWriter<W>) -> TiffResult<Self> {
        // the previous word is the IFD offset position
        let ifd_pointer_pos = writer.offset() - mem::size_of::<K::OffsetType>() as u64;
        writer.pad_word_boundary()?; // TODO: Do we need to adjust this for BigTiff?
        Ok(DirectoryEncoder {
            writer,
            dropped: false,
            ifd_pointer_pos,
            ifd: BTreeMap::new(),
        })
    }

    /// Write a single ifd tag.
    pub fn write_tag<T: TiffValue>(&mut self, tag: Tag, value: T) -> TiffResult<()> {
        let mut bytes = Vec::with_capacity(value.bytes());
        {
            let mut writer = TiffWriter::new(&mut bytes);
            value.write(&mut writer)?;
        }

        self.ifd.insert(
            tag.to_u16(),
            DirectoryEntry {
                data_type: <T>::FIELD_TYPE.to_u16(),
                count: value.count().try_into()?,
                data: bytes,
            },
        );

        Ok(())
    }

    fn write_directory(&mut self) -> TiffResult<u64> {
        // Start by writing out all values
        for &mut DirectoryEntry {
            data: ref mut bytes,
            ..
        } in self.ifd.values_mut()
        {
            let data_bytes = mem::size_of::<K::OffsetType>();

            if bytes.len() > data_bytes {
                let offset = self.writer.offset();
                self.writer.write_bytes(bytes)?;
                *bytes = vec![0; data_bytes];
                let mut writer = TiffWriter::new(bytes as &mut [u8]);
                K::write_offset(&mut writer, offset)?;
            } else {
                while bytes.len() < data_bytes {
                    bytes.push(0);
                }
            }
        }

        let offset = self.writer.offset();

        K::write_entry_count(self.writer, self.ifd.len())?;
        for (
            tag,
            DirectoryEntry {
                data_type: field_type,
                count,
                data: offset,
            },
        ) in self.ifd.iter()
        {
            self.writer.write_u16(*tag)?;
            self.writer.write_u16(*field_type)?;
            (*count).write(self.writer)?;
            self.writer.write_bytes(offset)?;
        }

        Ok(offset)
    }

    /// Write some data to the tiff file, the offset of the data is returned.
    ///
    /// This could be used to write tiff strips.
    pub fn write_data<T: TiffValue>(&mut self, value: T) -> TiffResult<u64> {
        let offset = self.writer.offset();
        value.write(self.writer)?;
        Ok(offset)
    }

    /// Provides the number of bytes written by the underlying TiffWriter during the last call.
    fn last_written(&self) -> u64 {
        self.writer.last_written()
    }

    fn finish_internal(&mut self) -> TiffResult<()> {
        let ifd_pointer = self.write_directory()?;
        let curr_pos = self.writer.offset();

        self.writer.goto_offset(self.ifd_pointer_pos)?;
        K::write_offset(self.writer, ifd_pointer)?;
        self.writer.goto_offset(curr_pos)?;
        K::write_offset(self.writer, 0)?;

        self.dropped = true;

        Ok(())
    }

    /// Write out the ifd directory.
    pub fn finish(mut self) -> TiffResult<()> {
        self.finish_internal()
    }
}

impl<'a, W: Write + Seek, K: TiffKind> Drop for DirectoryEncoder<'a, W, K> {
    fn drop(&mut self) {
        if !self.dropped {
            let _ = self.finish_internal();
        }
    }
}

/// Type to encode images strip by strip.
///
/// You should call `finish` on this when you are finished with it.
/// Encoding can silently fail while this is dropping.
///
/// # Examples
/// ```
/// # extern crate tiff;
/// # fn main() {
/// # let mut file = std::io::Cursor::new(Vec::new());
/// # let image_data = vec![0; 100*100*3];
/// use tiff::encoder::*;
/// use tiff::tags::Tag;
///
/// let mut tiff = TiffEncoder::new(&mut file).unwrap();
/// let mut image = tiff.new_image::<colortype::RGB8>(100, 100).unwrap();
///
/// // You can encode tags here
/// image.encoder().write_tag(Tag::Artist, "Image-tiff").unwrap();
///
/// // Strip size can be configured before writing data
/// image.rows_per_strip(2).unwrap();
///
/// let mut idx = 0;
/// while image.next_strip_sample_count() > 0 {
///     let sample_count = image.next_strip_sample_count() as usize;
///     image.write_strip(&image_data[idx..idx+sample_count]).unwrap();
///     idx += sample_count;
/// }
/// image.finish().unwrap();
/// # }
/// ```
/// You can also call write_data function wich will encode by strip and finish
pub struct ImageEncoder<
    'a,
    W: 'a + Write + Seek,
    C: ColorType,
    K: TiffKind,
    D: Compression = Uncompressed,
> {
    encoder: DirectoryEncoder<'a, W, K>,
    strip_idx: u64,
    strip_count: u64,
    row_samples: u64,
    width: u32,
    height: u32,
    rows_per_strip: u64,
    strip_offsets: Vec<K::OffsetType>,
    strip_byte_count: Vec<K::OffsetType>,
    dropped: bool,
    compression: D,
    _phantom: ::std::marker::PhantomData<C>,
}

impl<'a, W: 'a + Write + Seek, T: ColorType, K: TiffKind, D: Compression>
    ImageEncoder<'a, W, T, K, D>
{
    fn new(encoder: DirectoryEncoder<'a, W, K>, width: u32, height: u32) -> TiffResult<Self>
    where
        D: Default,
    {
        Self::with_compression(encoder, width, height, D::default())
    }

    fn with_compression(
        mut encoder: DirectoryEncoder<'a, W, K>,
        width: u32,
        height: u32,
        compression: D,
    ) -> TiffResult<Self> {
        if width == 0 || height == 0 {
            return Err(TiffError::FormatError(TiffFormatError::InvalidDimensions(
                width, height,
            )));
        }

        let row_samples = u64::from(width) * u64::try_from(<T>::BITS_PER_SAMPLE.len())?;
        let row_bytes = row_samples * u64::from(<T::Inner>::BYTE_LEN);

        // Limit the strip size to prevent potential memory and security issues.
        // Also keep the multiple strip handling 'oiled'
        let rows_per_strip = {
            match D::COMPRESSION_METHOD {
                CompressionMethod::PackBits => 1, // Each row must be packed separately. Do not compress across row boundaries
                _ => (1_000_000 + row_bytes - 1) / row_bytes,
            }
        };

        let strip_count = (u64::from(height) + rows_per_strip - 1) / rows_per_strip;

        encoder.write_tag(Tag::ImageWidth, width)?;
        encoder.write_tag(Tag::ImageLength, height)?;
        encoder.write_tag(Tag::Compression, D::COMPRESSION_METHOD.to_u16())?;

        encoder.write_tag(Tag::BitsPerSample, <T>::BITS_PER_SAMPLE)?;
        let sample_format: Vec<_> = <T>::SAMPLE_FORMAT.iter().map(|s| s.to_u16()).collect();
        encoder.write_tag(Tag::SampleFormat, &sample_format[..])?;
        encoder.write_tag(Tag::PhotometricInterpretation, <T>::TIFF_VALUE.to_u16())?;

        encoder.write_tag(Tag::RowsPerStrip, u32::try_from(rows_per_strip)?)?;

        encoder.write_tag(
            Tag::SamplesPerPixel,
            u16::try_from(<T>::BITS_PER_SAMPLE.len())?,
        )?;
        encoder.write_tag(Tag::XResolution, Rational { n: 1, d: 1 })?;
        encoder.write_tag(Tag::YResolution, Rational { n: 1, d: 1 })?;
        encoder.write_tag(Tag::ResolutionUnit, ResolutionUnit::None.to_u16())?;

        Ok(ImageEncoder {
            encoder,
            strip_count,
            strip_idx: 0,
            row_samples,
            rows_per_strip,
            width,
            height,
            strip_offsets: Vec::new(),
            strip_byte_count: Vec::new(),
            dropped: false,
            compression,
            _phantom: ::std::marker::PhantomData,
        })
    }

    /// Number of samples the next strip should have.
    pub fn next_strip_sample_count(&self) -> u64 {
        if self.strip_idx >= self.strip_count {
            return 0;
        }

        let raw_start_row = self.strip_idx * self.rows_per_strip;
        let start_row = cmp::min(u64::from(self.height), raw_start_row);
        let end_row = cmp::min(u64::from(self.height), raw_start_row + self.rows_per_strip);

        (end_row - start_row) * self.row_samples
    }

    /// Write a single strip.
    pub fn write_strip(&mut self, value: &[T::Inner]) -> TiffResult<()>
    where
        [T::Inner]: TiffValue,
    {
        let samples = self.next_strip_sample_count();
        if u64::try_from(value.len())? != samples {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                "Slice is wrong size for strip",
            )
            .into());
        }

        // Write the (possible compressed) data to the encoder.
        let offset = self.encoder.write_data(value)?;
        let byte_count = self.encoder.last_written() as usize;

        self.strip_offsets.push(K::convert_offset(offset)?);
        self.strip_byte_count.push(byte_count.try_into()?);

        self.strip_idx += 1;
        Ok(())
    }

    /// Write strips from data
    pub fn write_data(mut self, data: &[T::Inner]) -> TiffResult<()>
    where
        [T::Inner]: TiffValue,
    {
        let num_pix = usize::try_from(self.width)?
            .checked_mul(usize::try_from(self.height)?)
            .ok_or_else(|| {
                io::Error::new(
                    io::ErrorKind::InvalidInput,
                    "Image width * height exceeds usize",
                )
            })?;
        if data.len() < num_pix {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                "Input data slice is undersized for provided dimensions",
            )
            .into());
        }

        self.encoder
            .writer
            .set_compression(self.compression.get_algorithm());

        let mut idx = 0;
        while self.next_strip_sample_count() > 0 {
            let sample_count = usize::try_from(self.next_strip_sample_count())?;
            self.write_strip(&data[idx..idx + sample_count])?;
            idx += sample_count;
        }

        self.encoder.writer.reset_compression();
        self.finish()?;
        Ok(())
    }

    /// Set image resolution
    pub fn resolution(&mut self, unit: ResolutionUnit, value: Rational) {
        self.encoder
            .write_tag(Tag::ResolutionUnit, unit.to_u16())
            .unwrap();
        self.encoder
            .write_tag(Tag::XResolution, value.clone())
            .unwrap();
        self.encoder.write_tag(Tag::YResolution, value).unwrap();
    }

    /// Set image resolution unit
    pub fn resolution_unit(&mut self, unit: ResolutionUnit) {
        self.encoder
            .write_tag(Tag::ResolutionUnit, unit.to_u16())
            .unwrap();
    }

    /// Set image x-resolution
    pub fn x_resolution(&mut self, value: Rational) {
        self.encoder.write_tag(Tag::XResolution, value).unwrap();
    }

    /// Set image y-resolution
    pub fn y_resolution(&mut self, value: Rational) {
        self.encoder.write_tag(Tag::YResolution, value).unwrap();
    }

    /// Set image number of lines per strip
    ///
    /// This function needs to be called before any calls to `write_data` or
    /// `write_strip` and will return an error otherwise.
    pub fn rows_per_strip(&mut self, value: u32) -> TiffResult<()> {
        if self.strip_idx != 0 {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "Cannot change strip size after data was written",
            )
            .into());
        }
        // Write tag as 32 bits
        self.encoder.write_tag(Tag::RowsPerStrip, value)?;

        let value: u64 = value as u64;
        self.strip_count = (self.height as u64 + value - 1) / value;
        self.rows_per_strip = value;

        Ok(())
    }

    fn finish_internal(&mut self) -> TiffResult<()> {
        self.encoder
            .write_tag(Tag::StripOffsets, K::convert_slice(&self.strip_offsets))?;
        self.encoder.write_tag(
            Tag::StripByteCounts,
            K::convert_slice(&self.strip_byte_count),
        )?;
        self.dropped = true;

        self.encoder.finish_internal()
    }

    /// Get a reference of the underlying `DirectoryEncoder`
    pub fn encoder(&mut self) -> &mut DirectoryEncoder<'a, W, K> {
        &mut self.encoder
    }

    /// Write out image and ifd directory.
    pub fn finish(mut self) -> TiffResult<()> {
        self.finish_internal()
    }
}

impl<'a, W: Write + Seek, C: ColorType, K: TiffKind, D: Compression> Drop
    for ImageEncoder<'a, W, C, K, D>
{
    fn drop(&mut self) {
        if !self.dropped {
            let _ = self.finish_internal();
        }
    }
}

struct DirectoryEntry<S> {
    data_type: u16,
    count: S,
    data: Vec<u8>,
}

/// Trait to abstract over Tiff/BigTiff differences.
///
/// Implemented for [`TiffKindStandard`] and [`TiffKindBig`].
pub trait TiffKind {
    /// The type of offset fields, `u32` for normal Tiff, `u64` for BigTiff.
    type OffsetType: TryFrom<usize, Error = TryFromIntError> + Into<u64> + TiffValue;

    /// Needed for the `convert_slice` method.
    type OffsetArrayType: ?Sized + TiffValue;

    /// Write the (Big)Tiff header.
    fn write_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()>;

    /// Convert a file offset to `Self::OffsetType`.
    ///
    /// This returns an error for normal Tiff if the offset is larger than `u32::MAX`.
    fn convert_offset(offset: u64) -> TiffResult<Self::OffsetType>;

    /// Write an offset value to the given writer.
    ///
    /// Like `convert_offset`, this errors if `offset > u32::MAX` for normal Tiff.
    fn write_offset<W: Write>(writer: &mut TiffWriter<W>, offset: u64) -> TiffResult<()>;

    /// Write the IFD entry count field with the given `count` value.
    ///
    /// The entry count field is an `u16` for normal Tiff and `u64` for BigTiff. Errors
    /// if the given `usize` is larger than the representable values.
    fn write_entry_count<W: Write>(writer: &mut TiffWriter<W>, count: usize) -> TiffResult<()>;

    /// Internal helper method for satisfying Rust's type checker.
    ///
    /// The `TiffValue` trait is implemented for both primitive values (e.g. `u8`, `u32`) and
    /// slices of primitive values (e.g. `[u8]`, `[u32]`). However, this is not represented in
    /// the type system, so there is no guarantee that that for all `T: TiffValue` there is also
    /// an implementation of `TiffValue` for `[T]`. This method works around that problem by
    /// providing a conversion from `[T]` to some value that implements `TiffValue`, thereby
    /// making all slices of `OffsetType` usable with `write_tag` and similar methods.
    ///
    /// Implementations of this trait should always set `OffsetArrayType` to `[OffsetType]`.
    fn convert_slice(slice: &[Self::OffsetType]) -> &Self::OffsetArrayType;
}

/// Create a standard Tiff file.
pub struct TiffKindStandard;

impl TiffKind for TiffKindStandard {
    type OffsetType = u32;
    type OffsetArrayType = [u32];

    fn write_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()> {
        write_tiff_header(writer)?;
        // blank the IFD offset location
        writer.write_u32(0)?;

        Ok(())
    }

    fn convert_offset(offset: u64) -> TiffResult<Self::OffsetType> {
        Ok(Self::OffsetType::try_from(offset)?)
    }

    fn write_offset<W: Write>(writer: &mut TiffWriter<W>, offset: u64) -> TiffResult<()> {
        writer.write_u32(u32::try_from(offset)?)?;
        Ok(())
    }

    fn write_entry_count<W: Write>(writer: &mut TiffWriter<W>, count: usize) -> TiffResult<()> {
        writer.write_u16(u16::try_from(count)?)?;

        Ok(())
    }

    fn convert_slice(slice: &[Self::OffsetType]) -> &Self::OffsetArrayType {
        slice
    }
}

/// Create a BigTiff file.
pub struct TiffKindBig;

impl TiffKind for TiffKindBig {
    type OffsetType = u64;
    type OffsetArrayType = [u64];

    fn write_header<W: Write>(writer: &mut TiffWriter<W>) -> TiffResult<()> {
        write_bigtiff_header(writer)?;
        // blank the IFD offset location
        writer.write_u64(0)?;

        Ok(())
    }

    fn convert_offset(offset: u64) -> TiffResult<Self::OffsetType> {
        Ok(offset)
    }

    fn write_offset<W: Write>(writer: &mut TiffWriter<W>, offset: u64) -> TiffResult<()> {
        writer.write_u64(offset)?;
        Ok(())
    }

    fn write_entry_count<W: Write>(writer: &mut TiffWriter<W>, count: usize) -> TiffResult<()> {
        writer.write_u64(u64::try_from(count)?)?;
        Ok(())
    }

    fn convert_slice(slice: &[Self::OffsetType]) -> &Self::OffsetArrayType {
        slice
    }
}