regex_automata/meta/regex.rs
1use core::{
2 borrow::Borrow,
3 panic::{RefUnwindSafe, UnwindSafe},
4};
5
6use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};
7
8use regex_syntax::{
9 ast,
10 hir::{self, Hir},
11};
12
13use crate::{
14 meta::{
15 error::BuildError,
16 strategy::{self, Strategy},
17 wrappers,
18 },
19 nfa::thompson::WhichCaptures,
20 util::{
21 captures::{Captures, GroupInfo},
22 iter,
23 pool::{Pool, PoolGuard},
24 prefilter::Prefilter,
25 primitives::{NonMaxUsize, PatternID},
26 search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
27 },
28};
29
30/// A type alias for our pool of meta::Cache that fixes the type parameters to
31/// what we use for the meta regex below.
32type CachePool = Pool<Cache, CachePoolFn>;
33
34/// Same as above, but for the guard returned by a pool.
35type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36
37/// The type of the closure we use to create new caches. We need to spell out
38/// all of the marker traits or else we risk leaking !MARKER impls.
39type CachePoolFn =
40 Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
41
42/// A regex matcher that works by composing several other regex matchers
43/// automatically.
44///
45/// In effect, a meta regex papers over a lot of the quirks or performance
46/// problems in each of the regex engines in this crate. Its goal is to provide
47/// an infallible and simple API that "just does the right thing" in the common
48/// case.
49///
50/// A meta regex is the implementation of a `Regex` in the `regex` crate.
51/// Indeed, the `regex` crate API is essentially just a light wrapper over
52/// this type. This includes the `regex` crate's `RegexSet` API!
53///
54/// # Composition
55///
56/// This is called a "meta" matcher precisely because it uses other regex
57/// matchers to provide a convenient high level regex API. Here are some
58/// examples of how other regex matchers are composed:
59///
60/// * When calling [`Regex::captures`], instead of immediately
61/// running a slower but more capable regex engine like the
62/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
63/// will usually first look for the bounds of a match with a higher throughput
64/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
65/// is a slower engine like `PikeVM` used to find the matching span for each
66/// capture group.
67/// * While higher throughout engines like the lazy DFA cannot handle
68/// Unicode word boundaries in general, they can still be used on pure ASCII
69/// haystacks by pretending that Unicode word boundaries are just plain ASCII
70/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
71/// will automatically switch to a (possibly slower) regex engine that supports
72/// Unicode word boundaries in general.
73/// * In some cases where a regex pattern is just a simple literal or a small
74/// set of literals, an actual regex engine won't be used at all. Instead,
75/// substring or multi-substring search algorithms will be employed.
76///
77/// There are many other forms of composition happening too, but the above
78/// should give a general idea. In particular, it may perhaps be surprising
79/// that *multiple* regex engines might get executed for a single search. That
80/// is, the decision of what regex engine to use is not _just_ based on the
81/// pattern, but also based on the dynamic execution of the search itself.
82///
83/// The primary reason for this composition is performance. The fundamental
84/// tension is that the faster engines tend to be less capable, and the more
85/// capable engines tend to be slower.
86///
87/// Note that the forms of composition that are allowed are determined by
88/// compile time crate features and configuration. For example, if the `hybrid`
89/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
90/// meta regex engine will never use a lazy DFA.
91///
92/// # Synchronization and cloning
93///
94/// Most of the regex engines in this crate require some kind of mutable
95/// "scratch" space to read and write from while performing a search. Since
96/// a meta regex composes these regex engines, a meta regex also requires
97/// mutable scratch space. This scratch space is called a [`Cache`].
98///
99/// Most regex engines _also_ usually have a read-only component, typically
100/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
101///
102/// In order to make the `Regex` API convenient, most of the routines hide
103/// the fact that a `Cache` is needed at all. To achieve this, a [memory
104/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
105/// values in a thread safe way that also permits reuse. This in turn implies
106/// that every such search call requires some form of synchronization. Usually
107/// this synchronization is fast enough to not notice, but in some cases, it
108/// can be a bottleneck. This typically occurs when all of the following are
109/// true:
110///
111/// * The same `Regex` is shared across multiple threads simultaneously,
112/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
113/// similar from the `once_cell` or `lazy_static` crates.
114/// * The primary unit of work in each thread is a regex search.
115/// * Searches are run on very short haystacks.
116///
117/// This particular case can lead to high contention on the pool used by a
118/// `Regex` internally, which can in turn increase latency to a noticeable
119/// effect. This cost can be mitigated in one of the following ways:
120///
121/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
122/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
123/// But it does lead to each `Regex` having its own memory pool, which in
124/// turn eliminates the problem of contention. In general, this technique should
125/// not result in any additional memory usage when compared to sharing the same
126/// `Regex` across multiple threads simultaneously.
127/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
128/// a `Cache` explicitly. In this case, it is up to you to determine how best
129/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
130/// storage if your use case allows for it.
131///
132/// Overall, this is an issue that happens rarely in practice, but it can
133/// happen.
134///
135/// # Warning: spin-locks may be used in alloc-only mode
136///
137/// When this crate is built without the `std` feature and the high level APIs
138/// on a `Regex` are used, then a spin-lock will be used to synchronize access
139/// to an internal pool of `Cache` values. This may be undesirable because
140/// a spin-lock is [effectively impossible to implement correctly in user
141/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
142/// result in a deadlock.
143///
144/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
145///
146/// If one wants to avoid the use of spin-locks when the `std` feature is
147/// disabled, then you must use APIs that accept a `Cache` value explicitly.
148/// For example, [`Regex::search_with`].
149///
150/// # Example
151///
152/// ```
153/// use regex_automata::meta::Regex;
154///
155/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
156/// assert!(re.is_match("2010-03-14"));
157///
158/// # Ok::<(), Box<dyn std::error::Error>>(())
159/// ```
160///
161/// # Example: anchored search
162///
163/// This example shows how to use [`Input::anchored`] to run an anchored
164/// search, even when the regex pattern itself isn't anchored. An anchored
165/// search guarantees that if a match is found, then the start offset of the
166/// match corresponds to the offset at which the search was started.
167///
168/// ```
169/// use regex_automata::{meta::Regex, Anchored, Input, Match};
170///
171/// let re = Regex::new(r"\bfoo\b")?;
172/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
173/// // The offsets are in terms of the original haystack.
174/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
175///
176/// // Notice that no match occurs here, because \b still takes the
177/// // surrounding context into account, even if it means looking back
178/// // before the start of your search.
179/// let hay = "xxfoo xx";
180/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
181/// assert_eq!(None, re.find(input));
182/// // Indeed, you cannot achieve the above by simply slicing the
183/// // haystack itself, since the regex engine can't see the
184/// // surrounding context. This is why 'Input' permits setting
185/// // the bounds of a search!
186/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
187/// // WRONG!
188/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
189///
190/// # Ok::<(), Box<dyn std::error::Error>>(())
191/// ```
192///
193/// # Example: earliest search
194///
195/// This example shows how to use [`Input::earliest`] to run a search that
196/// might stop before finding the typical leftmost match.
197///
198/// ```
199/// use regex_automata::{meta::Regex, Anchored, Input, Match};
200///
201/// let re = Regex::new(r"[a-z]{3}|b")?;
202/// let input = Input::new("abc").earliest(true);
203/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
204///
205/// // Note that "earliest" isn't really a match semantic unto itself.
206/// // Instead, it is merely an instruction to whatever regex engine
207/// // gets used internally to quit as soon as it can. For example,
208/// // this regex uses a different search technique, and winds up
209/// // producing a different (but valid) match!
210/// let re = Regex::new(r"abc|b")?;
211/// let input = Input::new("abc").earliest(true);
212/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
213///
214/// # Ok::<(), Box<dyn std::error::Error>>(())
215/// ```
216///
217/// # Example: change the line terminator
218///
219/// This example shows how to enable multi-line mode by default and change
220/// the line terminator to the NUL byte:
221///
222/// ```
223/// use regex_automata::{meta::Regex, util::syntax, Match};
224///
225/// let re = Regex::builder()
226/// .syntax(syntax::Config::new().multi_line(true))
227/// .configure(Regex::config().line_terminator(b'\x00'))
228/// .build(r"^foo$")?;
229/// let hay = "\x00foo\x00";
230/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
231///
232/// # Ok::<(), Box<dyn std::error::Error>>(())
233/// ```
234#[derive(Debug)]
235pub struct Regex {
236 /// The actual regex implementation.
237 imp: Arc<RegexI>,
238 /// A thread safe pool of caches.
239 ///
240 /// For the higher level search APIs, a `Cache` is automatically plucked
241 /// from this pool before running a search. The lower level `with` methods
242 /// permit the caller to provide their own cache, thereby bypassing
243 /// accesses to this pool.
244 ///
245 /// Note that we put this outside the `Arc` so that cloning a `Regex`
246 /// results in creating a fresh `CachePool`. This in turn permits callers
247 /// to clone regexes into separate threads where each such regex gets
248 /// the pool's "thread owner" optimization. Otherwise, if one shares the
249 /// `Regex` directly, then the pool will go through a slower mutex path for
250 /// all threads except for the "owner."
251 pool: CachePool,
252}
253
254/// The internal implementation of `Regex`, split out so that it can be wrapped
255/// in an `Arc`.
256#[derive(Debug)]
257struct RegexI {
258 /// The core matching engine.
259 ///
260 /// Why is this reference counted when RegexI is already wrapped in an Arc?
261 /// Well, we need to capture this in a closure to our `Pool` below in order
262 /// to create new `Cache` values when needed. So since it needs to be in
263 /// two places, we make it reference counted.
264 ///
265 /// We make `RegexI` itself reference counted too so that `Regex` itself
266 /// stays extremely small and very cheap to clone.
267 strat: Arc<dyn Strategy>,
268 /// Metadata about the regexes driving the strategy. The metadata is also
269 /// usually stored inside the strategy too, but we put it here as well
270 /// so that we can get quick access to it (without virtual calls) before
271 /// executing the regex engine. For example, we use this metadata to
272 /// detect a subset of cases where we know a match is impossible, and can
273 /// thus avoid calling into the strategy at all.
274 ///
275 /// Since `RegexInfo` is stored in multiple places, it is also reference
276 /// counted.
277 info: RegexInfo,
278}
279
280/// Convenience constructors for a `Regex` using the default configuration.
281impl Regex {
282 /// Builds a `Regex` from a single pattern string using the default
283 /// configuration.
284 ///
285 /// If there was a problem parsing the pattern or a problem turning it into
286 /// a regex matcher, then an error is returned.
287 ///
288 /// If you want to change the configuration of a `Regex`, use a [`Builder`]
289 /// with a [`Config`].
290 ///
291 /// # Example
292 ///
293 /// ```
294 /// use regex_automata::{meta::Regex, Match};
295 ///
296 /// let re = Regex::new(r"(?Rm)^foo$")?;
297 /// let hay = "\r\nfoo\r\n";
298 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
299 ///
300 /// # Ok::<(), Box<dyn std::error::Error>>(())
301 /// ```
302 pub fn new(pattern: &str) -> Result<Regex, BuildError> {
303 Regex::builder().build(pattern)
304 }
305
306 /// Builds a `Regex` from many pattern strings using the default
307 /// configuration.
308 ///
309 /// If there was a problem parsing any of the patterns or a problem turning
310 /// them into a regex matcher, then an error is returned.
311 ///
312 /// If you want to change the configuration of a `Regex`, use a [`Builder`]
313 /// with a [`Config`].
314 ///
315 /// # Example: simple lexer
316 ///
317 /// This simplistic example leverages the multi-pattern support to build a
318 /// simple little lexer. The pattern ID in the match tells you which regex
319 /// matched, which in turn might be used to map back to the "type" of the
320 /// token returned by the lexer.
321 ///
322 /// ```
323 /// use regex_automata::{meta::Regex, Match};
324 ///
325 /// let re = Regex::new_many(&[
326 /// r"[[:space:]]",
327 /// r"[A-Za-z0-9][A-Za-z0-9_]+",
328 /// r"->",
329 /// r".",
330 /// ])?;
331 /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
332 /// let matches: Vec<Match> = re.find_iter(haystack).collect();
333 /// assert_eq!(matches, vec![
334 /// Match::must(1, 0..2), // 'fn'
335 /// Match::must(0, 2..3), // ' '
336 /// Match::must(1, 3..10), // 'is_boss'
337 /// Match::must(3, 10..11), // '('
338 /// Match::must(1, 11..16), // 'bruce'
339 /// Match::must(3, 16..17), // ':'
340 /// Match::must(0, 17..18), // ' '
341 /// Match::must(1, 18..21), // 'i32'
342 /// Match::must(3, 21..22), // ','
343 /// Match::must(0, 22..23), // ' '
344 /// Match::must(1, 23..34), // 'springsteen'
345 /// Match::must(3, 34..35), // ':'
346 /// Match::must(0, 35..36), // ' '
347 /// Match::must(1, 36..42), // 'String'
348 /// Match::must(3, 42..43), // ')'
349 /// Match::must(0, 43..44), // ' '
350 /// Match::must(2, 44..46), // '->'
351 /// Match::must(0, 46..47), // ' '
352 /// Match::must(1, 47..51), // 'bool'
353 /// Match::must(3, 51..52), // ';'
354 /// ]);
355 ///
356 /// # Ok::<(), Box<dyn std::error::Error>>(())
357 /// ```
358 ///
359 /// One can write a lexer like the above using a regex like
360 /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
361 /// but then you need to ask whether capture group matched to determine
362 /// which branch in the regex matched, and thus, which token the match
363 /// corresponds to. In contrast, the above example includes the pattern ID
364 /// in the match. There's no need to use capture groups at all.
365 ///
366 /// # Example: finding the pattern that caused an error
367 ///
368 /// When a syntax error occurs, it is possible to ask which pattern
369 /// caused the syntax error.
370 ///
371 /// ```
372 /// use regex_automata::{meta::Regex, PatternID};
373 ///
374 /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
375 /// assert_eq!(Some(PatternID::must(2)), err.pattern());
376 /// ```
377 ///
378 /// # Example: zero patterns is valid
379 ///
380 /// Building a regex with zero patterns results in a regex that never
381 /// matches anything. Because this routine is generic, passing an empty
382 /// slice usually requires a turbo-fish (or something else to help type
383 /// inference).
384 ///
385 /// ```
386 /// use regex_automata::{meta::Regex, util::syntax, Match};
387 ///
388 /// let re = Regex::new_many::<&str>(&[])?;
389 /// assert_eq!(None, re.find(""));
390 ///
391 /// # Ok::<(), Box<dyn std::error::Error>>(())
392 /// ```
393 pub fn new_many<P: AsRef<str>>(
394 patterns: &[P],
395 ) -> Result<Regex, BuildError> {
396 Regex::builder().build_many(patterns)
397 }
398
399 /// Return a default configuration for a `Regex`.
400 ///
401 /// This is a convenience routine to avoid needing to import the [`Config`]
402 /// type when customizing the construction of a `Regex`.
403 ///
404 /// # Example: lower the NFA size limit
405 ///
406 /// In some cases, the default size limit might be too big. The size limit
407 /// can be lowered, which will prevent large regex patterns from compiling.
408 ///
409 /// ```
410 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
411 /// use regex_automata::meta::Regex;
412 ///
413 /// let result = Regex::builder()
414 /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
415 /// // Not even 20KB is enough to build a single large Unicode class!
416 /// .build(r"\pL");
417 /// assert!(result.is_err());
418 ///
419 /// # Ok::<(), Box<dyn std::error::Error>>(())
420 /// ```
421 pub fn config() -> Config {
422 Config::new()
423 }
424
425 /// Return a builder for configuring the construction of a `Regex`.
426 ///
427 /// This is a convenience routine to avoid needing to import the
428 /// [`Builder`] type in common cases.
429 ///
430 /// # Example: change the line terminator
431 ///
432 /// This example shows how to enable multi-line mode by default and change
433 /// the line terminator to the NUL byte:
434 ///
435 /// ```
436 /// use regex_automata::{meta::Regex, util::syntax, Match};
437 ///
438 /// let re = Regex::builder()
439 /// .syntax(syntax::Config::new().multi_line(true))
440 /// .configure(Regex::config().line_terminator(b'\x00'))
441 /// .build(r"^foo$")?;
442 /// let hay = "\x00foo\x00";
443 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
444 ///
445 /// # Ok::<(), Box<dyn std::error::Error>>(())
446 /// ```
447 pub fn builder() -> Builder {
448 Builder::new()
449 }
450}
451
452/// High level convenience routines for using a regex to search a haystack.
453impl Regex {
454 /// Returns true if and only if this regex matches the given haystack.
455 ///
456 /// This routine may short circuit if it knows that scanning future input
457 /// will never lead to a different result. (Consider how this might make
458 /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
459 /// This routine _may_ stop after it sees the first `a`, but routines like
460 /// `find` need to continue searching because `+` is greedy by default.)
461 ///
462 /// # Example
463 ///
464 /// ```
465 /// use regex_automata::meta::Regex;
466 ///
467 /// let re = Regex::new("foo[0-9]+bar")?;
468 ///
469 /// assert!(re.is_match("foo12345bar"));
470 /// assert!(!re.is_match("foobar"));
471 ///
472 /// # Ok::<(), Box<dyn std::error::Error>>(())
473 /// ```
474 ///
475 /// # Example: consistency with search APIs
476 ///
477 /// `is_match` is guaranteed to return `true` whenever `find` returns a
478 /// match. This includes searches that are executed entirely within a
479 /// codepoint:
480 ///
481 /// ```
482 /// use regex_automata::{meta::Regex, Input};
483 ///
484 /// let re = Regex::new("a*")?;
485 ///
486 /// // This doesn't match because the default configuration bans empty
487 /// // matches from splitting a codepoint.
488 /// assert!(!re.is_match(Input::new("☃").span(1..2)));
489 /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
490 ///
491 /// # Ok::<(), Box<dyn std::error::Error>>(())
492 /// ```
493 ///
494 /// Notice that when UTF-8 mode is disabled, then the above reports a
495 /// match because the restriction against zero-width matches that split a
496 /// codepoint has been lifted:
497 ///
498 /// ```
499 /// use regex_automata::{meta::Regex, Input, Match};
500 ///
501 /// let re = Regex::builder()
502 /// .configure(Regex::config().utf8_empty(false))
503 /// .build("a*")?;
504 ///
505 /// assert!(re.is_match(Input::new("☃").span(1..2)));
506 /// assert_eq!(
507 /// Some(Match::must(0, 1..1)),
508 /// re.find(Input::new("☃").span(1..2)),
509 /// );
510 ///
511 /// # Ok::<(), Box<dyn std::error::Error>>(())
512 /// ```
513 ///
514 /// A similar idea applies when using line anchors with CRLF mode enabled,
515 /// which prevents them from matching between a `\r` and a `\n`.
516 ///
517 /// ```
518 /// use regex_automata::{meta::Regex, Input, Match};
519 ///
520 /// let re = Regex::new(r"(?Rm:$)")?;
521 /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
522 /// // A regular line anchor, which only considers \n as a
523 /// // line terminator, will match.
524 /// let re = Regex::new(r"(?m:$)")?;
525 /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
526 ///
527 /// # Ok::<(), Box<dyn std::error::Error>>(())
528 /// ```
529 #[inline]
530 pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
531 let input = input.into().earliest(true);
532 if self.imp.info.is_impossible(&input) {
533 return false;
534 }
535 let mut guard = self.pool.get();
536 let result = self.imp.strat.is_match(&mut guard, &input);
537 // See 'Regex::search' for why we put the guard back explicitly.
538 PoolGuard::put(guard);
539 result
540 }
541
542 /// Executes a leftmost search and returns the first match that is found,
543 /// if one exists.
544 ///
545 /// # Example
546 ///
547 /// ```
548 /// use regex_automata::{meta::Regex, Match};
549 ///
550 /// let re = Regex::new("foo[0-9]+")?;
551 /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
552 ///
553 /// # Ok::<(), Box<dyn std::error::Error>>(())
554 /// ```
555 #[inline]
556 pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
557 self.search(&input.into())
558 }
559
560 /// Executes a leftmost forward search and writes the spans of capturing
561 /// groups that participated in a match into the provided [`Captures`]
562 /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563 /// to return `false`.
564 ///
565 /// # Example
566 ///
567 /// ```
568 /// use regex_automata::{meta::Regex, Span};
569 ///
570 /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571 /// let mut caps = re.create_captures();
572 ///
573 /// re.captures("2010-03-14", &mut caps);
574 /// assert!(caps.is_match());
575 /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576 /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577 /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578 ///
579 /// # Ok::<(), Box<dyn std::error::Error>>(())
580 /// ```
581 #[inline]
582 pub fn captures<'h, I: Into<Input<'h>>>(
583 &self,
584 input: I,
585 caps: &mut Captures,
586 ) {
587 self.search_captures(&input.into(), caps)
588 }
589
590 /// Returns an iterator over all non-overlapping leftmost matches in
591 /// the given haystack. If no match exists, then the iterator yields no
592 /// elements.
593 ///
594 /// # Example
595 ///
596 /// ```
597 /// use regex_automata::{meta::Regex, Match};
598 ///
599 /// let re = Regex::new("foo[0-9]+")?;
600 /// let haystack = "foo1 foo12 foo123";
601 /// let matches: Vec<Match> = re.find_iter(haystack).collect();
602 /// assert_eq!(matches, vec![
603 /// Match::must(0, 0..4),
604 /// Match::must(0, 5..10),
605 /// Match::must(0, 11..17),
606 /// ]);
607 /// # Ok::<(), Box<dyn std::error::Error>>(())
608 /// ```
609 #[inline]
610 pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
611 &'r self,
612 input: I,
613 ) -> FindMatches<'r, 'h> {
614 let cache = self.pool.get();
615 let it = iter::Searcher::new(input.into());
616 FindMatches { re: self, cache, it }
617 }
618
619 /// Returns an iterator over all non-overlapping `Captures` values. If no
620 /// match exists, then the iterator yields no elements.
621 ///
622 /// This yields the same matches as [`Regex::find_iter`], but it includes
623 /// the spans of all capturing groups that participate in each match.
624 ///
625 /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
626 /// how to correctly iterate over all matches in a haystack while avoiding
627 /// the creation of a new `Captures` value for every match. (Which you are
628 /// forced to do with an `Iterator`.)
629 ///
630 /// # Example
631 ///
632 /// ```
633 /// use regex_automata::{meta::Regex, Span};
634 ///
635 /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
636 ///
637 /// let haystack = "foo1 foo12 foo123";
638 /// let matches: Vec<Span> = re
639 /// .captures_iter(haystack)
640 /// // The unwrap is OK since 'numbers' matches if the pattern matches.
641 /// .map(|caps| caps.get_group_by_name("numbers").unwrap())
642 /// .collect();
643 /// assert_eq!(matches, vec![
644 /// Span::from(3..4),
645 /// Span::from(8..10),
646 /// Span::from(14..17),
647 /// ]);
648 /// # Ok::<(), Box<dyn std::error::Error>>(())
649 /// ```
650 #[inline]
651 pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
652 &'r self,
653 input: I,
654 ) -> CapturesMatches<'r, 'h> {
655 let cache = self.pool.get();
656 let caps = self.create_captures();
657 let it = iter::Searcher::new(input.into());
658 CapturesMatches { re: self, cache, caps, it }
659 }
660
661 /// Returns an iterator of spans of the haystack given, delimited by a
662 /// match of the regex. Namely, each element of the iterator corresponds to
663 /// a part of the haystack that *isn't* matched by the regular expression.
664 ///
665 /// # Example
666 ///
667 /// To split a string delimited by arbitrary amounts of spaces or tabs:
668 ///
669 /// ```
670 /// use regex_automata::meta::Regex;
671 ///
672 /// let re = Regex::new(r"[ \t]+")?;
673 /// let hay = "a b \t c\td e";
674 /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
675 /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
676 ///
677 /// # Ok::<(), Box<dyn std::error::Error>>(())
678 /// ```
679 ///
680 /// # Example: more cases
681 ///
682 /// Basic usage:
683 ///
684 /// ```
685 /// use regex_automata::meta::Regex;
686 ///
687 /// let re = Regex::new(r" ")?;
688 /// let hay = "Mary had a little lamb";
689 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690 /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
691 ///
692 /// let re = Regex::new(r"X")?;
693 /// let hay = "";
694 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695 /// assert_eq!(got, vec![""]);
696 ///
697 /// let re = Regex::new(r"X")?;
698 /// let hay = "lionXXtigerXleopard";
699 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
700 /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
701 ///
702 /// let re = Regex::new(r"::")?;
703 /// let hay = "lion::tiger::leopard";
704 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
705 /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
706 ///
707 /// # Ok::<(), Box<dyn std::error::Error>>(())
708 /// ```
709 ///
710 /// If a haystack contains multiple contiguous matches, you will end up
711 /// with empty spans yielded by the iterator:
712 ///
713 /// ```
714 /// use regex_automata::meta::Regex;
715 ///
716 /// let re = Regex::new(r"X")?;
717 /// let hay = "XXXXaXXbXc";
718 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
719 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
720 ///
721 /// let re = Regex::new(r"/")?;
722 /// let hay = "(///)";
723 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
724 /// assert_eq!(got, vec!["(", "", "", ")"]);
725 ///
726 /// # Ok::<(), Box<dyn std::error::Error>>(())
727 /// ```
728 ///
729 /// Separators at the start or end of a haystack are neighbored by empty
730 /// spans.
731 ///
732 /// ```
733 /// use regex_automata::meta::Regex;
734 ///
735 /// let re = Regex::new(r"0")?;
736 /// let hay = "010";
737 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
738 /// assert_eq!(got, vec!["", "1", ""]);
739 ///
740 /// # Ok::<(), Box<dyn std::error::Error>>(())
741 /// ```
742 ///
743 /// When the empty string is used as a regex, it splits at every valid
744 /// UTF-8 boundary by default (which includes the beginning and end of the
745 /// haystack):
746 ///
747 /// ```
748 /// use regex_automata::meta::Regex;
749 ///
750 /// let re = Regex::new(r"")?;
751 /// let hay = "rust";
752 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
753 /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
754 ///
755 /// // Splitting by an empty string is UTF-8 aware by default!
756 /// let re = Regex::new(r"")?;
757 /// let hay = "☃";
758 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
759 /// assert_eq!(got, vec!["", "☃", ""]);
760 ///
761 /// # Ok::<(), Box<dyn std::error::Error>>(())
762 /// ```
763 ///
764 /// But note that UTF-8 mode for empty strings can be disabled, which will
765 /// then result in a match at every byte offset in the haystack,
766 /// including between every UTF-8 code unit.
767 ///
768 /// ```
769 /// use regex_automata::meta::Regex;
770 ///
771 /// let re = Regex::builder()
772 /// .configure(Regex::config().utf8_empty(false))
773 /// .build(r"")?;
774 /// let hay = "☃".as_bytes();
775 /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
776 /// assert_eq!(got, vec![
777 /// // Writing byte string slices is just brutal. The problem is that
778 /// // b"foo" has type &[u8; 3] instead of &[u8].
779 /// &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
780 /// ]);
781 ///
782 /// # Ok::<(), Box<dyn std::error::Error>>(())
783 /// ```
784 ///
785 /// Contiguous separators (commonly shows up with whitespace), can lead to
786 /// possibly surprising behavior. For example, this code is correct:
787 ///
788 /// ```
789 /// use regex_automata::meta::Regex;
790 ///
791 /// let re = Regex::new(r" ")?;
792 /// let hay = " a b c";
793 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
794 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
795 ///
796 /// # Ok::<(), Box<dyn std::error::Error>>(())
797 /// ```
798 ///
799 /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
800 /// to match contiguous space characters:
801 ///
802 /// ```
803 /// use regex_automata::meta::Regex;
804 ///
805 /// let re = Regex::new(r" +")?;
806 /// let hay = " a b c";
807 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
808 /// // N.B. This does still include a leading empty span because ' +'
809 /// // matches at the beginning of the haystack.
810 /// assert_eq!(got, vec!["", "a", "b", "c"]);
811 ///
812 /// # Ok::<(), Box<dyn std::error::Error>>(())
813 /// ```
814 #[inline]
815 pub fn split<'r, 'h, I: Into<Input<'h>>>(
816 &'r self,
817 input: I,
818 ) -> Split<'r, 'h> {
819 Split { finder: self.find_iter(input), last: 0 }
820 }
821
822 /// Returns an iterator of at most `limit` spans of the haystack given,
823 /// delimited by a match of the regex. (A `limit` of `0` will return no
824 /// spans.) Namely, each element of the iterator corresponds to a part
825 /// of the haystack that *isn't* matched by the regular expression. The
826 /// remainder of the haystack that is not split will be the last element in
827 /// the iterator.
828 ///
829 /// # Example
830 ///
831 /// Get the first two words in some haystack:
832 ///
833 /// ```
834 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
835 /// use regex_automata::meta::Regex;
836 ///
837 /// let re = Regex::new(r"\W+").unwrap();
838 /// let hay = "Hey! How are you?";
839 /// let fields: Vec<&str> =
840 /// re.splitn(hay, 3).map(|span| &hay[span]).collect();
841 /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
842 ///
843 /// # Ok::<(), Box<dyn std::error::Error>>(())
844 /// ```
845 ///
846 /// # Examples: more cases
847 ///
848 /// ```
849 /// use regex_automata::meta::Regex;
850 ///
851 /// let re = Regex::new(r" ")?;
852 /// let hay = "Mary had a little lamb";
853 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
854 /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
855 ///
856 /// let re = Regex::new(r"X")?;
857 /// let hay = "";
858 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
859 /// assert_eq!(got, vec![""]);
860 ///
861 /// let re = Regex::new(r"X")?;
862 /// let hay = "lionXXtigerXleopard";
863 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
864 /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
865 ///
866 /// let re = Regex::new(r"::")?;
867 /// let hay = "lion::tiger::leopard";
868 /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
869 /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
870 ///
871 /// let re = Regex::new(r"X")?;
872 /// let hay = "abcXdef";
873 /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
874 /// assert_eq!(got, vec!["abcXdef"]);
875 ///
876 /// let re = Regex::new(r"X")?;
877 /// let hay = "abcdef";
878 /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
879 /// assert_eq!(got, vec!["abcdef"]);
880 ///
881 /// let re = Regex::new(r"X")?;
882 /// let hay = "abcXdef";
883 /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
884 /// assert!(got.is_empty());
885 ///
886 /// # Ok::<(), Box<dyn std::error::Error>>(())
887 /// ```
888 pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
889 &'r self,
890 input: I,
891 limit: usize,
892 ) -> SplitN<'r, 'h> {
893 SplitN { splits: self.split(input), limit }
894 }
895}
896
897/// Lower level search routines that give more control.
898impl Regex {
899 /// Returns the start and end offset of the leftmost match. If no match
900 /// exists, then `None` is returned.
901 ///
902 /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
903 /// instead of an `Into<Input>`.
904 ///
905 /// # Example
906 ///
907 /// ```
908 /// use regex_automata::{meta::Regex, Input, Match};
909 ///
910 /// let re = Regex::new(r"Samwise|Sam")?;
911 /// let input = Input::new(
912 /// "one of the chief characters, Samwise the Brave",
913 /// );
914 /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
915 ///
916 /// # Ok::<(), Box<dyn std::error::Error>>(())
917 /// ```
918 #[inline]
919 pub fn search(&self, input: &Input<'_>) -> Option<Match> {
920 if self.imp.info.captures_disabled()
921 || self.imp.info.is_impossible(input)
922 {
923 return None;
924 }
925 let mut guard = self.pool.get();
926 let result = self.imp.strat.search(&mut guard, input);
927 // We do this dance with the guard and explicitly put it back in the
928 // pool because it seems to result in better codegen. If we let the
929 // guard's Drop impl put it back in the pool, then functions like
930 // ptr::drop_in_place get called and they *don't* get inlined. This
931 // isn't usually a big deal, but in latency sensitive benchmarks the
932 // extra function call can matter.
933 //
934 // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
935 // the effects here.
936 //
937 // Note that this doesn't eliminate the latency effects of using the
938 // pool. There is still some (minor) cost for the "thread owner" of the
939 // pool. (i.e., The thread that first calls a regex search routine.)
940 // However, for other threads using the regex, the pool access can be
941 // quite expensive as it goes through a mutex. Callers can avoid this
942 // by either cloning the Regex (which creates a distinct copy of the
943 // pool), or callers can use the lower level APIs that accept a 'Cache'
944 // directly and do their own handling.
945 PoolGuard::put(guard);
946 result
947 }
948
949 /// Returns the end offset of the leftmost match. If no match exists, then
950 /// `None` is returned.
951 ///
952 /// This is distinct from [`Regex::search`] in that it only returns the end
953 /// of a match and not the start of the match. Depending on a variety of
954 /// implementation details, this _may_ permit the regex engine to do less
955 /// overall work. For example, if a DFA is being used to execute a search,
956 /// then the start of a match usually requires running a separate DFA in
957 /// reverse to the find the start of a match. If one only needs the end of
958 /// a match, then the separate reverse scan to find the start of a match
959 /// can be skipped. (Note that the reverse scan is avoided even when using
960 /// `Regex::search` when possible, for example, in the case of an anchored
961 /// search.)
962 ///
963 /// # Example
964 ///
965 /// ```
966 /// use regex_automata::{meta::Regex, Input, HalfMatch};
967 ///
968 /// let re = Regex::new(r"Samwise|Sam")?;
969 /// let input = Input::new(
970 /// "one of the chief characters, Samwise the Brave",
971 /// );
972 /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
973 ///
974 /// # Ok::<(), Box<dyn std::error::Error>>(())
975 /// ```
976 #[inline]
977 pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
978 if self.imp.info.captures_disabled()
979 || self.imp.info.is_impossible(input)
980 {
981 return None;
982 }
983 let mut guard = self.pool.get();
984 let result = self.imp.strat.search_half(&mut guard, input);
985 // See 'Regex::search' for why we put the guard back explicitly.
986 PoolGuard::put(guard);
987 result
988 }
989
990 /// Executes a leftmost forward search and writes the spans of capturing
991 /// groups that participated in a match into the provided [`Captures`]
992 /// value. If no match was found, then [`Captures::is_match`] is guaranteed
993 /// to return `false`.
994 ///
995 /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
996 /// instead of an `Into<Input>`.
997 ///
998 /// # Example: specific pattern search
999 ///
1000 /// This example shows how to build a multi-pattern `Regex` that permits
1001 /// searching for specific patterns.
1002 ///
1003 /// ```
1004 /// use regex_automata::{
1005 /// meta::Regex,
1006 /// Anchored, Match, PatternID, Input,
1007 /// };
1008 ///
1009 /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1010 /// let mut caps = re.create_captures();
1011 /// let haystack = "foo123";
1012 ///
1013 /// // Since we are using the default leftmost-first match and both
1014 /// // patterns match at the same starting position, only the first pattern
1015 /// // will be returned in this case when doing a search for any of the
1016 /// // patterns.
1017 /// let expected = Some(Match::must(0, 0..6));
1018 /// re.search_captures(&Input::new(haystack), &mut caps);
1019 /// assert_eq!(expected, caps.get_match());
1020 ///
1021 /// // But if we want to check whether some other pattern matches, then we
1022 /// // can provide its pattern ID.
1023 /// let expected = Some(Match::must(1, 0..6));
1024 /// let input = Input::new(haystack)
1025 /// .anchored(Anchored::Pattern(PatternID::must(1)));
1026 /// re.search_captures(&input, &mut caps);
1027 /// assert_eq!(expected, caps.get_match());
1028 ///
1029 /// # Ok::<(), Box<dyn std::error::Error>>(())
1030 /// ```
1031 ///
1032 /// # Example: specifying the bounds of a search
1033 ///
1034 /// This example shows how providing the bounds of a search can produce
1035 /// different results than simply sub-slicing the haystack.
1036 ///
1037 /// ```
1038 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1039 /// use regex_automata::{meta::Regex, Match, Input};
1040 ///
1041 /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1042 /// let mut caps = re.create_captures();
1043 /// let haystack = "foo123bar";
1044 ///
1045 /// // Since we sub-slice the haystack, the search doesn't know about
1046 /// // the larger context and assumes that `123` is surrounded by word
1047 /// // boundaries. And of course, the match position is reported relative
1048 /// // to the sub-slice as well, which means we get `0..3` instead of
1049 /// // `3..6`.
1050 /// let expected = Some(Match::must(0, 0..3));
1051 /// let input = Input::new(&haystack[3..6]);
1052 /// re.search_captures(&input, &mut caps);
1053 /// assert_eq!(expected, caps.get_match());
1054 ///
1055 /// // But if we provide the bounds of the search within the context of the
1056 /// // entire haystack, then the search can take the surrounding context
1057 /// // into account. (And if we did find a match, it would be reported
1058 /// // as a valid offset into `haystack` instead of its sub-slice.)
1059 /// let expected = None;
1060 /// let input = Input::new(haystack).range(3..6);
1061 /// re.search_captures(&input, &mut caps);
1062 /// assert_eq!(expected, caps.get_match());
1063 ///
1064 /// # Ok::<(), Box<dyn std::error::Error>>(())
1065 /// ```
1066 #[inline]
1067 pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1068 caps.set_pattern(None);
1069 let pid = self.search_slots(input, caps.slots_mut());
1070 caps.set_pattern(pid);
1071 }
1072
1073 /// Executes a leftmost forward search and writes the spans of capturing
1074 /// groups that participated in a match into the provided `slots`, and
1075 /// returns the matching pattern ID. The contents of the slots for patterns
1076 /// other than the matching pattern are unspecified. If no match was found,
1077 /// then `None` is returned and the contents of `slots` is unspecified.
1078 ///
1079 /// This is like [`Regex::search`], but it accepts a raw slots slice
1080 /// instead of a `Captures` value. This is useful in contexts where you
1081 /// don't want or need to allocate a `Captures`.
1082 ///
1083 /// It is legal to pass _any_ number of slots to this routine. If the regex
1084 /// engine would otherwise write a slot offset that doesn't fit in the
1085 /// provided slice, then it is simply skipped. In general though, there are
1086 /// usually three slice lengths you might want to use:
1087 ///
1088 /// * An empty slice, if you only care about which pattern matched.
1089 /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1090 /// only care about the overall match spans for each matching pattern.
1091 /// * A slice with
1092 /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1093 /// permits recording match offsets for every capturing group in every
1094 /// pattern.
1095 ///
1096 /// # Example
1097 ///
1098 /// This example shows how to find the overall match offsets in a
1099 /// multi-pattern search without allocating a `Captures` value. Indeed, we
1100 /// can put our slots right on the stack.
1101 ///
1102 /// ```
1103 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1104 /// use regex_automata::{meta::Regex, PatternID, Input};
1105 ///
1106 /// let re = Regex::new_many(&[
1107 /// r"\pL+",
1108 /// r"\d+",
1109 /// ])?;
1110 /// let input = Input::new("!@#123");
1111 ///
1112 /// // We only care about the overall match offsets here, so we just
1113 /// // allocate two slots for each pattern. Each slot records the start
1114 /// // and end of the match.
1115 /// let mut slots = [None; 4];
1116 /// let pid = re.search_slots(&input, &mut slots);
1117 /// assert_eq!(Some(PatternID::must(1)), pid);
1118 ///
1119 /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1120 /// // See 'GroupInfo' for more details on the mapping between groups and
1121 /// // slot indices.
1122 /// let slot_start = pid.unwrap().as_usize() * 2;
1123 /// let slot_end = slot_start + 1;
1124 /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1125 /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1126 ///
1127 /// # Ok::<(), Box<dyn std::error::Error>>(())
1128 /// ```
1129 #[inline]
1130 pub fn search_slots(
1131 &self,
1132 input: &Input<'_>,
1133 slots: &mut [Option<NonMaxUsize>],
1134 ) -> Option<PatternID> {
1135 if self.imp.info.captures_disabled()
1136 || self.imp.info.is_impossible(input)
1137 {
1138 return None;
1139 }
1140 let mut guard = self.pool.get();
1141 let result = self.imp.strat.search_slots(&mut guard, input, slots);
1142 // See 'Regex::search' for why we put the guard back explicitly.
1143 PoolGuard::put(guard);
1144 result
1145 }
1146
1147 /// Writes the set of patterns that match anywhere in the given search
1148 /// configuration to `patset`. If multiple patterns match at the same
1149 /// position and this `Regex` was configured with [`MatchKind::All`]
1150 /// semantics, then all matching patterns are written to the given set.
1151 ///
1152 /// Unless all of the patterns in this `Regex` are anchored, then generally
1153 /// speaking, this will scan the entire haystack.
1154 ///
1155 /// This search routine *does not* clear the pattern set. This gives some
1156 /// flexibility to the caller (e.g., running multiple searches with the
1157 /// same pattern set), but does make the API bug-prone if you're reusing
1158 /// the same pattern set for multiple searches but intended them to be
1159 /// independent.
1160 ///
1161 /// If a pattern ID matched but the given `PatternSet` does not have
1162 /// sufficient capacity to store it, then it is not inserted and silently
1163 /// dropped.
1164 ///
1165 /// # Example
1166 ///
1167 /// This example shows how to find all matching patterns in a haystack,
1168 /// even when some patterns match at the same position as other patterns.
1169 /// It is important that we configure the `Regex` with [`MatchKind::All`]
1170 /// semantics here, or else overlapping matches will not be reported.
1171 ///
1172 /// ```
1173 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1174 /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1175 ///
1176 /// let patterns = &[
1177 /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1178 /// ];
1179 /// let re = Regex::builder()
1180 /// .configure(Regex::config().match_kind(MatchKind::All))
1181 /// .build_many(patterns)?;
1182 ///
1183 /// let input = Input::new("foobar");
1184 /// let mut patset = PatternSet::new(re.pattern_len());
1185 /// re.which_overlapping_matches(&input, &mut patset);
1186 /// let expected = vec![0, 2, 3, 4, 6];
1187 /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1188 /// assert_eq!(expected, got);
1189 ///
1190 /// # Ok::<(), Box<dyn std::error::Error>>(())
1191 /// ```
1192 #[inline]
1193 pub fn which_overlapping_matches(
1194 &self,
1195 input: &Input<'_>,
1196 patset: &mut PatternSet,
1197 ) {
1198 if self.imp.info.is_impossible(input) {
1199 return;
1200 }
1201 let mut guard = self.pool.get();
1202 let result = self
1203 .imp
1204 .strat
1205 .which_overlapping_matches(&mut guard, input, patset);
1206 // See 'Regex::search' for why we put the guard back explicitly.
1207 PoolGuard::put(guard);
1208 result
1209 }
1210}
1211
1212/// Lower level search routines that give more control, and require the caller
1213/// to provide an explicit [`Cache`] parameter.
1214impl Regex {
1215 /// This is like [`Regex::search`], but requires the caller to
1216 /// explicitly pass a [`Cache`].
1217 ///
1218 /// # Why pass a `Cache` explicitly?
1219 ///
1220 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1221 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1222 /// pool can be slower in some cases when a `Regex` is used from multiple
1223 /// threads simultaneously. Typically, performance only becomes an issue
1224 /// when there is heavy contention, which in turn usually only occurs
1225 /// when each thread's primary unit of work is a regex search on a small
1226 /// haystack.
1227 ///
1228 /// # Example
1229 ///
1230 /// ```
1231 /// use regex_automata::{meta::Regex, Input, Match};
1232 ///
1233 /// let re = Regex::new(r"Samwise|Sam")?;
1234 /// let mut cache = re.create_cache();
1235 /// let input = Input::new(
1236 /// "one of the chief characters, Samwise the Brave",
1237 /// );
1238 /// assert_eq!(
1239 /// Some(Match::must(0, 29..36)),
1240 /// re.search_with(&mut cache, &input),
1241 /// );
1242 ///
1243 /// # Ok::<(), Box<dyn std::error::Error>>(())
1244 /// ```
1245 #[inline]
1246 pub fn search_with(
1247 &self,
1248 cache: &mut Cache,
1249 input: &Input<'_>,
1250 ) -> Option<Match> {
1251 if self.imp.info.captures_disabled()
1252 || self.imp.info.is_impossible(input)
1253 {
1254 return None;
1255 }
1256 self.imp.strat.search(cache, input)
1257 }
1258
1259 /// This is like [`Regex::search_half`], but requires the caller to
1260 /// explicitly pass a [`Cache`].
1261 ///
1262 /// # Why pass a `Cache` explicitly?
1263 ///
1264 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1265 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1266 /// pool can be slower in some cases when a `Regex` is used from multiple
1267 /// threads simultaneously. Typically, performance only becomes an issue
1268 /// when there is heavy contention, which in turn usually only occurs
1269 /// when each thread's primary unit of work is a regex search on a small
1270 /// haystack.
1271 ///
1272 /// # Example
1273 ///
1274 /// ```
1275 /// use regex_automata::{meta::Regex, Input, HalfMatch};
1276 ///
1277 /// let re = Regex::new(r"Samwise|Sam")?;
1278 /// let mut cache = re.create_cache();
1279 /// let input = Input::new(
1280 /// "one of the chief characters, Samwise the Brave",
1281 /// );
1282 /// assert_eq!(
1283 /// Some(HalfMatch::must(0, 36)),
1284 /// re.search_half_with(&mut cache, &input),
1285 /// );
1286 ///
1287 /// # Ok::<(), Box<dyn std::error::Error>>(())
1288 /// ```
1289 #[inline]
1290 pub fn search_half_with(
1291 &self,
1292 cache: &mut Cache,
1293 input: &Input<'_>,
1294 ) -> Option<HalfMatch> {
1295 if self.imp.info.captures_disabled()
1296 || self.imp.info.is_impossible(input)
1297 {
1298 return None;
1299 }
1300 self.imp.strat.search_half(cache, input)
1301 }
1302
1303 /// This is like [`Regex::search_captures`], but requires the caller to
1304 /// explicitly pass a [`Cache`].
1305 ///
1306 /// # Why pass a `Cache` explicitly?
1307 ///
1308 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1309 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1310 /// pool can be slower in some cases when a `Regex` is used from multiple
1311 /// threads simultaneously. Typically, performance only becomes an issue
1312 /// when there is heavy contention, which in turn usually only occurs
1313 /// when each thread's primary unit of work is a regex search on a small
1314 /// haystack.
1315 ///
1316 /// # Example: specific pattern search
1317 ///
1318 /// This example shows how to build a multi-pattern `Regex` that permits
1319 /// searching for specific patterns.
1320 ///
1321 /// ```
1322 /// use regex_automata::{
1323 /// meta::Regex,
1324 /// Anchored, Match, PatternID, Input,
1325 /// };
1326 ///
1327 /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1328 /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1329 /// let haystack = "foo123";
1330 ///
1331 /// // Since we are using the default leftmost-first match and both
1332 /// // patterns match at the same starting position, only the first pattern
1333 /// // will be returned in this case when doing a search for any of the
1334 /// // patterns.
1335 /// let expected = Some(Match::must(0, 0..6));
1336 /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1337 /// assert_eq!(expected, caps.get_match());
1338 ///
1339 /// // But if we want to check whether some other pattern matches, then we
1340 /// // can provide its pattern ID.
1341 /// let expected = Some(Match::must(1, 0..6));
1342 /// let input = Input::new(haystack)
1343 /// .anchored(Anchored::Pattern(PatternID::must(1)));
1344 /// re.search_captures_with(&mut cache, &input, &mut caps);
1345 /// assert_eq!(expected, caps.get_match());
1346 ///
1347 /// # Ok::<(), Box<dyn std::error::Error>>(())
1348 /// ```
1349 ///
1350 /// # Example: specifying the bounds of a search
1351 ///
1352 /// This example shows how providing the bounds of a search can produce
1353 /// different results than simply sub-slicing the haystack.
1354 ///
1355 /// ```
1356 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1357 /// use regex_automata::{meta::Regex, Match, Input};
1358 ///
1359 /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1360 /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1361 /// let haystack = "foo123bar";
1362 ///
1363 /// // Since we sub-slice the haystack, the search doesn't know about
1364 /// // the larger context and assumes that `123` is surrounded by word
1365 /// // boundaries. And of course, the match position is reported relative
1366 /// // to the sub-slice as well, which means we get `0..3` instead of
1367 /// // `3..6`.
1368 /// let expected = Some(Match::must(0, 0..3));
1369 /// let input = Input::new(&haystack[3..6]);
1370 /// re.search_captures_with(&mut cache, &input, &mut caps);
1371 /// assert_eq!(expected, caps.get_match());
1372 ///
1373 /// // But if we provide the bounds of the search within the context of the
1374 /// // entire haystack, then the search can take the surrounding context
1375 /// // into account. (And if we did find a match, it would be reported
1376 /// // as a valid offset into `haystack` instead of its sub-slice.)
1377 /// let expected = None;
1378 /// let input = Input::new(haystack).range(3..6);
1379 /// re.search_captures_with(&mut cache, &input, &mut caps);
1380 /// assert_eq!(expected, caps.get_match());
1381 ///
1382 /// # Ok::<(), Box<dyn std::error::Error>>(())
1383 /// ```
1384 #[inline]
1385 pub fn search_captures_with(
1386 &self,
1387 cache: &mut Cache,
1388 input: &Input<'_>,
1389 caps: &mut Captures,
1390 ) {
1391 caps.set_pattern(None);
1392 let pid = self.search_slots_with(cache, input, caps.slots_mut());
1393 caps.set_pattern(pid);
1394 }
1395
1396 /// This is like [`Regex::search_slots`], but requires the caller to
1397 /// explicitly pass a [`Cache`].
1398 ///
1399 /// # Why pass a `Cache` explicitly?
1400 ///
1401 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1402 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1403 /// pool can be slower in some cases when a `Regex` is used from multiple
1404 /// threads simultaneously. Typically, performance only becomes an issue
1405 /// when there is heavy contention, which in turn usually only occurs
1406 /// when each thread's primary unit of work is a regex search on a small
1407 /// haystack.
1408 ///
1409 /// # Example
1410 ///
1411 /// This example shows how to find the overall match offsets in a
1412 /// multi-pattern search without allocating a `Captures` value. Indeed, we
1413 /// can put our slots right on the stack.
1414 ///
1415 /// ```
1416 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1417 /// use regex_automata::{meta::Regex, PatternID, Input};
1418 ///
1419 /// let re = Regex::new_many(&[
1420 /// r"\pL+",
1421 /// r"\d+",
1422 /// ])?;
1423 /// let mut cache = re.create_cache();
1424 /// let input = Input::new("!@#123");
1425 ///
1426 /// // We only care about the overall match offsets here, so we just
1427 /// // allocate two slots for each pattern. Each slot records the start
1428 /// // and end of the match.
1429 /// let mut slots = [None; 4];
1430 /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1431 /// assert_eq!(Some(PatternID::must(1)), pid);
1432 ///
1433 /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1434 /// // See 'GroupInfo' for more details on the mapping between groups and
1435 /// // slot indices.
1436 /// let slot_start = pid.unwrap().as_usize() * 2;
1437 /// let slot_end = slot_start + 1;
1438 /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1439 /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1440 ///
1441 /// # Ok::<(), Box<dyn std::error::Error>>(())
1442 /// ```
1443 #[inline]
1444 pub fn search_slots_with(
1445 &self,
1446 cache: &mut Cache,
1447 input: &Input<'_>,
1448 slots: &mut [Option<NonMaxUsize>],
1449 ) -> Option<PatternID> {
1450 if self.imp.info.captures_disabled()
1451 || self.imp.info.is_impossible(input)
1452 {
1453 return None;
1454 }
1455 self.imp.strat.search_slots(cache, input, slots)
1456 }
1457
1458 /// This is like [`Regex::which_overlapping_matches`], but requires the
1459 /// caller to explicitly pass a [`Cache`].
1460 ///
1461 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1462 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1463 /// pool can be slower in some cases when a `Regex` is used from multiple
1464 /// threads simultaneously. Typically, performance only becomes an issue
1465 /// when there is heavy contention, which in turn usually only occurs
1466 /// when each thread's primary unit of work is a regex search on a small
1467 /// haystack.
1468 ///
1469 /// # Why pass a `Cache` explicitly?
1470 ///
1471 /// # Example
1472 ///
1473 /// ```
1474 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1475 /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1476 ///
1477 /// let patterns = &[
1478 /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1479 /// ];
1480 /// let re = Regex::builder()
1481 /// .configure(Regex::config().match_kind(MatchKind::All))
1482 /// .build_many(patterns)?;
1483 /// let mut cache = re.create_cache();
1484 ///
1485 /// let input = Input::new("foobar");
1486 /// let mut patset = PatternSet::new(re.pattern_len());
1487 /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
1488 /// let expected = vec![0, 2, 3, 4, 6];
1489 /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1490 /// assert_eq!(expected, got);
1491 ///
1492 /// # Ok::<(), Box<dyn std::error::Error>>(())
1493 /// ```
1494 #[inline]
1495 pub fn which_overlapping_matches_with(
1496 &self,
1497 cache: &mut Cache,
1498 input: &Input<'_>,
1499 patset: &mut PatternSet,
1500 ) {
1501 if self.imp.info.is_impossible(input) {
1502 return;
1503 }
1504 self.imp.strat.which_overlapping_matches(cache, input, patset)
1505 }
1506}
1507
1508/// Various non-search routines for querying properties of a `Regex` and
1509/// convenience routines for creating [`Captures`] and [`Cache`] values.
1510impl Regex {
1511 /// Creates a new object for recording capture group offsets. This is used
1512 /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1513 ///
1514 /// This is a convenience routine for
1515 /// `Captures::all(re.group_info().clone())`. Callers may build other types
1516 /// of `Captures` values that record less information (and thus require
1517 /// less work from the regex engine) using [`Captures::matches`] and
1518 /// [`Captures::empty`].
1519 ///
1520 /// # Example
1521 ///
1522 /// This shows some alternatives to [`Regex::create_captures`]:
1523 ///
1524 /// ```
1525 /// use regex_automata::{
1526 /// meta::Regex,
1527 /// util::captures::Captures,
1528 /// Match, PatternID, Span,
1529 /// };
1530 ///
1531 /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1532 ///
1533 /// // This is equivalent to Regex::create_captures. It stores matching
1534 /// // offsets for all groups in the regex.
1535 /// let mut all = Captures::all(re.group_info().clone());
1536 /// re.captures("Bruce Springsteen", &mut all);
1537 /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1538 /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1539 /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1540 ///
1541 /// // In this version, we only care about the implicit groups, which
1542 /// // means offsets for the explicit groups will be unavailable. It can
1543 /// // sometimes be faster to ask for fewer groups, since the underlying
1544 /// // regex engine needs to do less work to keep track of them.
1545 /// let mut matches = Captures::matches(re.group_info().clone());
1546 /// re.captures("Bruce Springsteen", &mut matches);
1547 /// // We still get the overall match info.
1548 /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1549 /// // But now the explicit groups are unavailable.
1550 /// assert_eq!(None, matches.get_group_by_name("first"));
1551 /// assert_eq!(None, matches.get_group_by_name("last"));
1552 ///
1553 /// // Finally, in this version, we don't ask to keep track of offsets for
1554 /// // *any* groups. All we get back is whether a match occurred, and if
1555 /// // so, the ID of the pattern that matched.
1556 /// let mut empty = Captures::empty(re.group_info().clone());
1557 /// re.captures("Bruce Springsteen", &mut empty);
1558 /// // it's a match!
1559 /// assert!(empty.is_match());
1560 /// // for pattern ID 0
1561 /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1562 /// // Match offsets are unavailable.
1563 /// assert_eq!(None, empty.get_match());
1564 /// // And of course, explicit groups are unavailable too.
1565 /// assert_eq!(None, empty.get_group_by_name("first"));
1566 /// assert_eq!(None, empty.get_group_by_name("last"));
1567 ///
1568 /// # Ok::<(), Box<dyn std::error::Error>>(())
1569 /// ```
1570 pub fn create_captures(&self) -> Captures {
1571 Captures::all(self.group_info().clone())
1572 }
1573
1574 /// Creates a new cache for use with lower level search APIs like
1575 /// [`Regex::search_with`].
1576 ///
1577 /// The cache returned should only be used for searches for this `Regex`.
1578 /// If you want to reuse the cache for another `Regex`, then you must call
1579 /// [`Cache::reset`] with that `Regex`.
1580 ///
1581 /// This is a convenience routine for [`Cache::new`].
1582 ///
1583 /// # Example
1584 ///
1585 /// ```
1586 /// use regex_automata::{meta::Regex, Input, Match};
1587 ///
1588 /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1589 /// let mut cache = re.create_cache();
1590 /// let input = Input::new("crazy janey and her mission man");
1591 /// assert_eq!(
1592 /// Some(Match::must(0, 20..31)),
1593 /// re.search_with(&mut cache, &input),
1594 /// );
1595 ///
1596 /// # Ok::<(), Box<dyn std::error::Error>>(())
1597 /// ```
1598 pub fn create_cache(&self) -> Cache {
1599 self.imp.strat.create_cache()
1600 }
1601
1602 /// Returns the total number of patterns in this regex.
1603 ///
1604 /// The standard [`Regex::new`] constructor always results in a `Regex`
1605 /// with a single pattern, but [`Regex::new_many`] permits building a
1606 /// multi-pattern regex.
1607 ///
1608 /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1609 /// any match is `Regex::pattern_len() - 1`. In the case where the number
1610 /// of patterns is `0`, a match is impossible.
1611 ///
1612 /// # Example
1613 ///
1614 /// ```
1615 /// use regex_automata::meta::Regex;
1616 ///
1617 /// let re = Regex::new(r"(?m)^[a-z]$")?;
1618 /// assert_eq!(1, re.pattern_len());
1619 ///
1620 /// let re = Regex::new_many::<&str>(&[])?;
1621 /// assert_eq!(0, re.pattern_len());
1622 ///
1623 /// let re = Regex::new_many(&["a", "b", "c"])?;
1624 /// assert_eq!(3, re.pattern_len());
1625 ///
1626 /// # Ok::<(), Box<dyn std::error::Error>>(())
1627 /// ```
1628 pub fn pattern_len(&self) -> usize {
1629 self.imp.info.pattern_len()
1630 }
1631
1632 /// Returns the total number of capturing groups.
1633 ///
1634 /// This includes the implicit capturing group corresponding to the
1635 /// entire match. Therefore, the minimum value returned is `1`.
1636 ///
1637 /// # Example
1638 ///
1639 /// This shows a few patterns and how many capture groups they have.
1640 ///
1641 /// ```
1642 /// use regex_automata::meta::Regex;
1643 ///
1644 /// let len = |pattern| {
1645 /// Regex::new(pattern).map(|re| re.captures_len())
1646 /// };
1647 ///
1648 /// assert_eq!(1, len("a")?);
1649 /// assert_eq!(2, len("(a)")?);
1650 /// assert_eq!(3, len("(a)|(b)")?);
1651 /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1652 /// assert_eq!(2, len("(a)|b")?);
1653 /// assert_eq!(2, len("a|(b)")?);
1654 /// assert_eq!(2, len("(b)*")?);
1655 /// assert_eq!(2, len("(b)+")?);
1656 ///
1657 /// # Ok::<(), Box<dyn std::error::Error>>(())
1658 /// ```
1659 ///
1660 /// # Example: multiple patterns
1661 ///
1662 /// This routine also works for multiple patterns. The total number is
1663 /// the sum of the capture groups of each pattern.
1664 ///
1665 /// ```
1666 /// use regex_automata::meta::Regex;
1667 ///
1668 /// let len = |patterns| {
1669 /// Regex::new_many(patterns).map(|re| re.captures_len())
1670 /// };
1671 ///
1672 /// assert_eq!(2, len(&["a", "b"])?);
1673 /// assert_eq!(4, len(&["(a)", "(b)"])?);
1674 /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1675 /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1676 /// assert_eq!(3, len(&["(a)", "b"])?);
1677 /// assert_eq!(3, len(&["a", "(b)"])?);
1678 /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1679 /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1680 ///
1681 /// # Ok::<(), Box<dyn std::error::Error>>(())
1682 /// ```
1683 pub fn captures_len(&self) -> usize {
1684 self.imp
1685 .info
1686 .props_union()
1687 .explicit_captures_len()
1688 .saturating_add(self.pattern_len())
1689 }
1690
1691 /// Returns the total number of capturing groups that appear in every
1692 /// possible match.
1693 ///
1694 /// If the number of capture groups can vary depending on the match, then
1695 /// this returns `None`. That is, a value is only returned when the number
1696 /// of matching groups is invariant or "static."
1697 ///
1698 /// Note that like [`Regex::captures_len`], this **does** include the
1699 /// implicit capturing group corresponding to the entire match. Therefore,
1700 /// when a non-None value is returned, it is guaranteed to be at least `1`.
1701 /// Stated differently, a return value of `Some(0)` is impossible.
1702 ///
1703 /// # Example
1704 ///
1705 /// This shows a few cases where a static number of capture groups is
1706 /// available and a few cases where it is not.
1707 ///
1708 /// ```
1709 /// use regex_automata::meta::Regex;
1710 ///
1711 /// let len = |pattern| {
1712 /// Regex::new(pattern).map(|re| re.static_captures_len())
1713 /// };
1714 ///
1715 /// assert_eq!(Some(1), len("a")?);
1716 /// assert_eq!(Some(2), len("(a)")?);
1717 /// assert_eq!(Some(2), len("(a)|(b)")?);
1718 /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1719 /// assert_eq!(None, len("(a)|b")?);
1720 /// assert_eq!(None, len("a|(b)")?);
1721 /// assert_eq!(None, len("(b)*")?);
1722 /// assert_eq!(Some(2), len("(b)+")?);
1723 ///
1724 /// # Ok::<(), Box<dyn std::error::Error>>(())
1725 /// ```
1726 ///
1727 /// # Example: multiple patterns
1728 ///
1729 /// This property extends to regexes with multiple patterns as well. In
1730 /// order for their to be a static number of capture groups in this case,
1731 /// every pattern must have the same static number.
1732 ///
1733 /// ```
1734 /// use regex_automata::meta::Regex;
1735 ///
1736 /// let len = |patterns| {
1737 /// Regex::new_many(patterns).map(|re| re.static_captures_len())
1738 /// };
1739 ///
1740 /// assert_eq!(Some(1), len(&["a", "b"])?);
1741 /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1742 /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1743 /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1744 /// assert_eq!(None, len(&["(a)", "b"])?);
1745 /// assert_eq!(None, len(&["a", "(b)"])?);
1746 /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1747 /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1748 ///
1749 /// # Ok::<(), Box<dyn std::error::Error>>(())
1750 /// ```
1751 #[inline]
1752 pub fn static_captures_len(&self) -> Option<usize> {
1753 self.imp
1754 .info
1755 .props_union()
1756 .static_explicit_captures_len()
1757 .map(|len| len.saturating_add(1))
1758 }
1759
1760 /// Return information about the capture groups in this `Regex`.
1761 ///
1762 /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1763 /// is responsible for maintaining a mapping between the capture groups
1764 /// in the concrete syntax of zero or more regex patterns and their
1765 /// internal representation used by some of the regex matchers. It is also
1766 /// responsible for maintaining a mapping between the name of each group
1767 /// (if one exists) and its corresponding group index.
1768 ///
1769 /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1770 /// which is some mutable space where group offsets are stored as a result
1771 /// of a search.
1772 ///
1773 /// # Example
1774 ///
1775 /// This shows some alternatives to [`Regex::create_captures`]:
1776 ///
1777 /// ```
1778 /// use regex_automata::{
1779 /// meta::Regex,
1780 /// util::captures::Captures,
1781 /// Match, PatternID, Span,
1782 /// };
1783 ///
1784 /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1785 ///
1786 /// // This is equivalent to Regex::create_captures. It stores matching
1787 /// // offsets for all groups in the regex.
1788 /// let mut all = Captures::all(re.group_info().clone());
1789 /// re.captures("Bruce Springsteen", &mut all);
1790 /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1791 /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1792 /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1793 ///
1794 /// // In this version, we only care about the implicit groups, which
1795 /// // means offsets for the explicit groups will be unavailable. It can
1796 /// // sometimes be faster to ask for fewer groups, since the underlying
1797 /// // regex engine needs to do less work to keep track of them.
1798 /// let mut matches = Captures::matches(re.group_info().clone());
1799 /// re.captures("Bruce Springsteen", &mut matches);
1800 /// // We still get the overall match info.
1801 /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1802 /// // But now the explicit groups are unavailable.
1803 /// assert_eq!(None, matches.get_group_by_name("first"));
1804 /// assert_eq!(None, matches.get_group_by_name("last"));
1805 ///
1806 /// // Finally, in this version, we don't ask to keep track of offsets for
1807 /// // *any* groups. All we get back is whether a match occurred, and if
1808 /// // so, the ID of the pattern that matched.
1809 /// let mut empty = Captures::empty(re.group_info().clone());
1810 /// re.captures("Bruce Springsteen", &mut empty);
1811 /// // it's a match!
1812 /// assert!(empty.is_match());
1813 /// // for pattern ID 0
1814 /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1815 /// // Match offsets are unavailable.
1816 /// assert_eq!(None, empty.get_match());
1817 /// // And of course, explicit groups are unavailable too.
1818 /// assert_eq!(None, empty.get_group_by_name("first"));
1819 /// assert_eq!(None, empty.get_group_by_name("last"));
1820 ///
1821 /// # Ok::<(), Box<dyn std::error::Error>>(())
1822 /// ```
1823 #[inline]
1824 pub fn group_info(&self) -> &GroupInfo {
1825 self.imp.strat.group_info()
1826 }
1827
1828 /// Returns the configuration object used to build this `Regex`.
1829 ///
1830 /// If no configuration object was explicitly passed, then the
1831 /// configuration returned represents the default.
1832 #[inline]
1833 pub fn get_config(&self) -> &Config {
1834 self.imp.info.config()
1835 }
1836
1837 /// Returns true if this regex has a high chance of being "accelerated."
1838 ///
1839 /// The precise meaning of "accelerated" is specifically left unspecified,
1840 /// but the general meaning is that the search is a high likelihood of
1841 /// running faster than a character-at-a-time loop inside a standard
1842 /// regex engine.
1843 ///
1844 /// When a regex is accelerated, it is only a *probabilistic* claim. That
1845 /// is, just because the regex is believed to be accelerated, that doesn't
1846 /// mean it will definitely execute searches very fast. Similarly, if a
1847 /// regex is *not* accelerated, that is also a probabilistic claim. That
1848 /// is, a regex for which `is_accelerated` returns `false` could still run
1849 /// searches more quickly than a regex for which `is_accelerated` returns
1850 /// `true`.
1851 ///
1852 /// Whether a regex is marked as accelerated or not is dependent on
1853 /// implementations details that may change in a semver compatible release.
1854 /// That is, a regex that is accelerated in a `x.y.1` release might not be
1855 /// accelerated in a `x.y.2` release.
1856 ///
1857 /// Basically, the value of acceleration boils down to a hedge: a hodge
1858 /// podge of internal heuristics combine to make a probabilistic guess
1859 /// that this regex search may run "fast." The value in knowing this from
1860 /// a caller's perspective is that it may act as a signal that no further
1861 /// work should be done to accelerate a search. For example, a grep-like
1862 /// tool might try to do some extra work extracting literals from a regex
1863 /// to create its own heuristic acceleration strategies. But it might
1864 /// choose to defer to this crate's acceleration strategy if one exists.
1865 /// This routine permits querying whether such a strategy is active for a
1866 /// particular regex.
1867 ///
1868 /// # Example
1869 ///
1870 /// ```
1871 /// use regex_automata::meta::Regex;
1872 ///
1873 /// // A simple literal is very likely to be accelerated.
1874 /// let re = Regex::new(r"foo")?;
1875 /// assert!(re.is_accelerated());
1876 ///
1877 /// // A regex with no literals is likely to not be accelerated.
1878 /// let re = Regex::new(r"\w")?;
1879 /// assert!(!re.is_accelerated());
1880 ///
1881 /// # Ok::<(), Box<dyn std::error::Error>>(())
1882 /// ```
1883 #[inline]
1884 pub fn is_accelerated(&self) -> bool {
1885 self.imp.strat.is_accelerated()
1886 }
1887
1888 /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1889 ///
1890 /// Note that currently, there is no high level configuration for setting
1891 /// a limit on the specific value returned by this routine. Instead, the
1892 /// following routines can be used to control heap memory at a bit of a
1893 /// lower level:
1894 ///
1895 /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1896 /// allowed to be.
1897 /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1898 /// allowed to be.
1899 /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1900 /// DFA is permitted to allocate to store its transition table.
1901 /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1902 /// allowed to be.
1903 /// * [`Config::dfa_state_limit`] controls the conditions under which the
1904 /// meta regex engine will even attempt to build a fully compiled DFA.
1905 #[inline]
1906 pub fn memory_usage(&self) -> usize {
1907 self.imp.strat.memory_usage()
1908 }
1909}
1910
1911impl Clone for Regex {
1912 fn clone(&self) -> Regex {
1913 let imp = Arc::clone(&self.imp);
1914 let pool = {
1915 let strat = Arc::clone(&imp.strat);
1916 let create: CachePoolFn = Box::new(move || strat.create_cache());
1917 Pool::new(create)
1918 };
1919 Regex { imp, pool }
1920 }
1921}
1922
1923#[derive(Clone, Debug)]
1924pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1925
1926#[derive(Clone, Debug)]
1927struct RegexInfoI {
1928 config: Config,
1929 props: Vec<hir::Properties>,
1930 props_union: hir::Properties,
1931}
1932
1933impl RegexInfo {
1934 fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1935 // Collect all of the properties from each of the HIRs, and also
1936 // union them into one big set of properties representing all HIRs
1937 // as if they were in one big alternation.
1938 let mut props = vec![];
1939 for hir in hirs.iter() {
1940 props.push(hir.properties().clone());
1941 }
1942 let props_union = hir::Properties::union(&props);
1943
1944 RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1945 }
1946
1947 pub(crate) fn config(&self) -> &Config {
1948 &self.0.config
1949 }
1950
1951 pub(crate) fn props(&self) -> &[hir::Properties] {
1952 &self.0.props
1953 }
1954
1955 pub(crate) fn props_union(&self) -> &hir::Properties {
1956 &self.0.props_union
1957 }
1958
1959 pub(crate) fn pattern_len(&self) -> usize {
1960 self.props().len()
1961 }
1962
1963 pub(crate) fn memory_usage(&self) -> usize {
1964 self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
1965 + self.props_union().memory_usage()
1966 }
1967
1968 /// Returns true when the search is guaranteed to be anchored. That is,
1969 /// when a match is reported, its offset is guaranteed to correspond to
1970 /// the start of the search.
1971 ///
1972 /// This includes returning true when `input` _isn't_ anchored but the
1973 /// underlying regex is.
1974 #[cfg_attr(feature = "perf-inline", inline(always))]
1975 pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1976 input.get_anchored().is_anchored() || self.is_always_anchored_start()
1977 }
1978
1979 /// Returns true when this regex is always anchored to the start of a
1980 /// search. And in particular, that regardless of an `Input` configuration,
1981 /// if any match is reported it must start at `0`.
1982 #[cfg_attr(feature = "perf-inline", inline(always))]
1983 pub(crate) fn is_always_anchored_start(&self) -> bool {
1984 use regex_syntax::hir::Look;
1985 self.props_union().look_set_prefix().contains(Look::Start)
1986 }
1987
1988 /// Returns true when this regex is always anchored to the end of a
1989 /// search. And in particular, that regardless of an `Input` configuration,
1990 /// if any match is reported it must end at the end of the haystack.
1991 #[cfg_attr(feature = "perf-inline", inline(always))]
1992 pub(crate) fn is_always_anchored_end(&self) -> bool {
1993 use regex_syntax::hir::Look;
1994 self.props_union().look_set_suffix().contains(Look::End)
1995 }
1996
1997 /// Returns true when the regex's NFA lacks capture states.
1998 ///
1999 /// In this case, some regex engines (like the PikeVM) are unable to report
2000 /// match offsets, while some (like the lazy DFA can). To avoid whether a
2001 /// match or not is reported based on engine selection, routines that
2002 /// return match offsets will _always_ report `None` when this is true.
2003 ///
2004 /// Yes, this is a weird case and it's a little fucked up. But
2005 /// `WhichCaptures::None` comes with an appropriate warning.
2006 fn captures_disabled(&self) -> bool {
2007 matches!(self.config().get_which_captures(), WhichCaptures::None)
2008 }
2009
2010 /// Returns true if and only if it is known that a match is impossible
2011 /// for the given input. This is useful for short-circuiting and avoiding
2012 /// running the regex engine if it's known no match can be reported.
2013 ///
2014 /// Note that this doesn't necessarily detect every possible case. For
2015 /// example, when `pattern_len() == 0`, a match is impossible, but that
2016 /// case is so rare that it's fine to be handled by the regex engine
2017 /// itself. That is, it's not worth the cost of adding it here in order to
2018 /// make it a little faster. The reason is that this is called for every
2019 /// search. so there is some cost to adding checks here. Arguably, some of
2020 /// the checks that are here already probably shouldn't be here...
2021 #[cfg_attr(feature = "perf-inline", inline(always))]
2022 fn is_impossible(&self, input: &Input<'_>) -> bool {
2023 // The underlying regex is anchored, so if we don't start the search
2024 // at position 0, a match is impossible, because the anchor can only
2025 // match at position 0.
2026 if input.start() > 0 && self.is_always_anchored_start() {
2027 return true;
2028 }
2029 // Same idea, but for the end anchor.
2030 if input.end() < input.haystack().len()
2031 && self.is_always_anchored_end()
2032 {
2033 return true;
2034 }
2035 // If the haystack is smaller than the minimum length required, then
2036 // we know there can be no match.
2037 let minlen = match self.props_union().minimum_len() {
2038 None => return false,
2039 Some(minlen) => minlen,
2040 };
2041 if input.get_span().len() < minlen {
2042 return true;
2043 }
2044 // Same idea as minimum, but for maximum. This is trickier. We can
2045 // only apply the maximum when we know the entire span that we're
2046 // searching *has* to match according to the regex (and possibly the
2047 // input configuration). If we know there is too much for the regex
2048 // to match, we can bail early.
2049 //
2050 // I don't think we can apply the maximum otherwise unfortunately.
2051 if self.is_anchored_start(input) && self.is_always_anchored_end() {
2052 let maxlen = match self.props_union().maximum_len() {
2053 None => return false,
2054 Some(maxlen) => maxlen,
2055 };
2056 if input.get_span().len() > maxlen {
2057 return true;
2058 }
2059 }
2060 false
2061 }
2062}
2063
2064/// An iterator over all non-overlapping matches.
2065///
2066/// The iterator yields a [`Match`] value until no more matches could be found.
2067///
2068/// The lifetime parameters are as follows:
2069///
2070/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2071/// * `'h` represents the lifetime of the haystack being searched.
2072///
2073/// This iterator can be created with the [`Regex::find_iter`] method.
2074#[derive(Debug)]
2075pub struct FindMatches<'r, 'h> {
2076 re: &'r Regex,
2077 cache: CachePoolGuard<'r>,
2078 it: iter::Searcher<'h>,
2079}
2080
2081impl<'r, 'h> FindMatches<'r, 'h> {
2082 /// Returns the `Regex` value that created this iterator.
2083 #[inline]
2084 pub fn regex(&self) -> &'r Regex {
2085 self.re
2086 }
2087
2088 /// Returns the current `Input` associated with this iterator.
2089 ///
2090 /// The `start` position on the given `Input` may change during iteration,
2091 /// but all other values are guaranteed to remain invariant.
2092 #[inline]
2093 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2094 self.it.input()
2095 }
2096}
2097
2098impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
2099 type Item = Match;
2100
2101 #[inline]
2102 fn next(&mut self) -> Option<Match> {
2103 let FindMatches { re, ref mut cache, ref mut it } = *self;
2104 it.advance(|input| Ok(re.search_with(cache, input)))
2105 }
2106
2107 #[inline]
2108 fn count(self) -> usize {
2109 // If all we care about is a count of matches, then we only need to
2110 // find the end position of each match. This can give us a 2x perf
2111 // boost in some cases, because it avoids needing to do a reverse scan
2112 // to find the start of a match.
2113 let FindMatches { re, mut cache, it } = self;
2114 // This does the deref for PoolGuard once instead of every iter.
2115 let cache = &mut *cache;
2116 it.into_half_matches_iter(
2117 |input| Ok(re.search_half_with(cache, input)),
2118 )
2119 .count()
2120 }
2121}
2122
2123impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}
2124
2125/// An iterator over all non-overlapping leftmost matches with their capturing
2126/// groups.
2127///
2128/// The iterator yields a [`Captures`] value until no more matches could be
2129/// found.
2130///
2131/// The lifetime parameters are as follows:
2132///
2133/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2134/// * `'h` represents the lifetime of the haystack being searched.
2135///
2136/// This iterator can be created with the [`Regex::captures_iter`] method.
2137#[derive(Debug)]
2138pub struct CapturesMatches<'r, 'h> {
2139 re: &'r Regex,
2140 cache: CachePoolGuard<'r>,
2141 caps: Captures,
2142 it: iter::Searcher<'h>,
2143}
2144
2145impl<'r, 'h> CapturesMatches<'r, 'h> {
2146 /// Returns the `Regex` value that created this iterator.
2147 #[inline]
2148 pub fn regex(&self) -> &'r Regex {
2149 self.re
2150 }
2151
2152 /// Returns the current `Input` associated with this iterator.
2153 ///
2154 /// The `start` position on the given `Input` may change during iteration,
2155 /// but all other values are guaranteed to remain invariant.
2156 #[inline]
2157 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2158 self.it.input()
2159 }
2160}
2161
2162impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
2163 type Item = Captures;
2164
2165 #[inline]
2166 fn next(&mut self) -> Option<Captures> {
2167 // Splitting 'self' apart seems necessary to appease borrowck.
2168 let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
2169 *self;
2170 let _ = it.advance(|input| {
2171 re.search_captures_with(cache, input, caps);
2172 Ok(caps.get_match())
2173 });
2174 if caps.is_match() {
2175 Some(caps.clone())
2176 } else {
2177 None
2178 }
2179 }
2180
2181 #[inline]
2182 fn count(self) -> usize {
2183 let CapturesMatches { re, mut cache, it, .. } = self;
2184 // This does the deref for PoolGuard once instead of every iter.
2185 let cache = &mut *cache;
2186 it.into_half_matches_iter(
2187 |input| Ok(re.search_half_with(cache, input)),
2188 )
2189 .count()
2190 }
2191}
2192
2193impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}
2194
2195/// Yields all substrings delimited by a regular expression match.
2196///
2197/// The spans correspond to the offsets between matches.
2198///
2199/// The lifetime parameters are as follows:
2200///
2201/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2202/// * `'h` represents the lifetime of the haystack being searched.
2203///
2204/// This iterator can be created with the [`Regex::split`] method.
2205#[derive(Debug)]
2206pub struct Split<'r, 'h> {
2207 finder: FindMatches<'r, 'h>,
2208 last: usize,
2209}
2210
2211impl<'r, 'h> Split<'r, 'h> {
2212 /// Returns the current `Input` associated with this iterator.
2213 ///
2214 /// The `start` position on the given `Input` may change during iteration,
2215 /// but all other values are guaranteed to remain invariant.
2216 #[inline]
2217 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2218 self.finder.input()
2219 }
2220}
2221
2222impl<'r, 'h> Iterator for Split<'r, 'h> {
2223 type Item = Span;
2224
2225 fn next(&mut self) -> Option<Span> {
2226 match self.finder.next() {
2227 None => {
2228 let len = self.finder.it.input().haystack().len();
2229 if self.last > len {
2230 None
2231 } else {
2232 let span = Span::from(self.last..len);
2233 self.last = len + 1; // Next call will return None
2234 Some(span)
2235 }
2236 }
2237 Some(m) => {
2238 let span = Span::from(self.last..m.start());
2239 self.last = m.end();
2240 Some(span)
2241 }
2242 }
2243 }
2244}
2245
2246impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2247
2248/// Yields at most `N` spans delimited by a regular expression match.
2249///
2250/// The spans correspond to the offsets between matches. The last span will be
2251/// whatever remains after splitting.
2252///
2253/// The lifetime parameters are as follows:
2254///
2255/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2256/// * `'h` represents the lifetime of the haystack being searched.
2257///
2258/// This iterator can be created with the [`Regex::splitn`] method.
2259#[derive(Debug)]
2260pub struct SplitN<'r, 'h> {
2261 splits: Split<'r, 'h>,
2262 limit: usize,
2263}
2264
2265impl<'r, 'h> SplitN<'r, 'h> {
2266 /// Returns the current `Input` associated with this iterator.
2267 ///
2268 /// The `start` position on the given `Input` may change during iteration,
2269 /// but all other values are guaranteed to remain invariant.
2270 #[inline]
2271 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2272 self.splits.input()
2273 }
2274}
2275
2276impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2277 type Item = Span;
2278
2279 fn next(&mut self) -> Option<Span> {
2280 if self.limit == 0 {
2281 return None;
2282 }
2283
2284 self.limit -= 1;
2285 if self.limit > 0 {
2286 return self.splits.next();
2287 }
2288
2289 let len = self.splits.finder.it.input().haystack().len();
2290 if self.splits.last > len {
2291 // We've already returned all substrings.
2292 None
2293 } else {
2294 // self.n == 0, so future calls will return None immediately
2295 Some(Span::from(self.splits.last..len))
2296 }
2297 }
2298
2299 fn size_hint(&self) -> (usize, Option<usize>) {
2300 (0, Some(self.limit))
2301 }
2302}
2303
2304impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2305
2306/// Represents mutable scratch space used by regex engines during a search.
2307///
2308/// Most of the regex engines in this crate require some kind of
2309/// mutable state in order to execute a search. This mutable state is
2310/// explicitly separated from the core regex object (such as a
2311/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2312/// object can be shared across multiple threads simultaneously without any
2313/// synchronization. Conversely, a `Cache` must either be duplicated if using
2314/// the same `Regex` from multiple threads, or else there must be some kind of
2315/// synchronization that guarantees exclusive access while it's in use by one
2316/// thread.
2317///
2318/// A `Regex` attempts to do this synchronization for you by using a thread
2319/// pool internally. Its size scales roughly with the number of simultaneous
2320/// regex searches.
2321///
2322/// For cases where one does not want to rely on a `Regex`'s internal thread
2323/// pool, lower level routines such as [`Regex::search_with`] are provided
2324/// that permit callers to pass a `Cache` into the search routine explicitly.
2325///
2326/// General advice is that the thread pool is often more than good enough.
2327/// However, it may be possible to observe the effects of its latency,
2328/// especially when searching many small haystacks from many threads
2329/// simultaneously.
2330///
2331/// Caches can be created from their corresponding `Regex` via
2332/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2333/// that created it, or the `Regex` that was most recently used to reset it
2334/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2335/// panics or incorrect results.
2336///
2337/// # Example
2338///
2339/// ```
2340/// use regex_automata::{meta::Regex, Input, Match};
2341///
2342/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2343/// let mut cache = re.create_cache();
2344/// let input = Input::new("crazy janey and her mission man");
2345/// assert_eq!(
2346/// Some(Match::must(0, 20..31)),
2347/// re.search_with(&mut cache, &input),
2348/// );
2349///
2350/// # Ok::<(), Box<dyn std::error::Error>>(())
2351/// ```
2352#[derive(Debug, Clone)]
2353pub struct Cache {
2354 pub(crate) capmatches: Captures,
2355 pub(crate) pikevm: wrappers::PikeVMCache,
2356 pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2357 pub(crate) onepass: wrappers::OnePassCache,
2358 pub(crate) hybrid: wrappers::HybridCache,
2359 pub(crate) revhybrid: wrappers::ReverseHybridCache,
2360}
2361
2362impl Cache {
2363 /// Creates a new `Cache` for use with this regex.
2364 ///
2365 /// The cache returned should only be used for searches for the given
2366 /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2367 /// must call [`Cache::reset`] with that `Regex`.
2368 pub fn new(re: &Regex) -> Cache {
2369 re.create_cache()
2370 }
2371
2372 /// Reset this cache such that it can be used for searching with the given
2373 /// `Regex` (and only that `Regex`).
2374 ///
2375 /// A cache reset permits potentially reusing memory already allocated in
2376 /// this cache with a different `Regex`.
2377 ///
2378 /// # Example
2379 ///
2380 /// This shows how to re-purpose a cache for use with a different `Regex`.
2381 ///
2382 /// ```
2383 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2384 /// use regex_automata::{meta::Regex, Match, Input};
2385 ///
2386 /// let re1 = Regex::new(r"\w")?;
2387 /// let re2 = Regex::new(r"\W")?;
2388 ///
2389 /// let mut cache = re1.create_cache();
2390 /// assert_eq!(
2391 /// Some(Match::must(0, 0..2)),
2392 /// re1.search_with(&mut cache, &Input::new("Δ")),
2393 /// );
2394 ///
2395 /// // Using 'cache' with re2 is not allowed. It may result in panics or
2396 /// // incorrect results. In order to re-purpose the cache, we must reset
2397 /// // it with the Regex we'd like to use it with.
2398 /// //
2399 /// // Similarly, after this reset, using the cache with 're1' is also not
2400 /// // allowed.
2401 /// cache.reset(&re2);
2402 /// assert_eq!(
2403 /// Some(Match::must(0, 0..3)),
2404 /// re2.search_with(&mut cache, &Input::new("☃")),
2405 /// );
2406 ///
2407 /// # Ok::<(), Box<dyn std::error::Error>>(())
2408 /// ```
2409 pub fn reset(&mut self, re: &Regex) {
2410 re.imp.strat.reset_cache(self)
2411 }
2412
2413 /// Returns the heap memory usage, in bytes, of this cache.
2414 ///
2415 /// This does **not** include the stack size used up by this cache. To
2416 /// compute that, use `std::mem::size_of::<Cache>()`.
2417 pub fn memory_usage(&self) -> usize {
2418 let mut bytes = 0;
2419 bytes += self.pikevm.memory_usage();
2420 bytes += self.backtrack.memory_usage();
2421 bytes += self.onepass.memory_usage();
2422 bytes += self.hybrid.memory_usage();
2423 bytes += self.revhybrid.memory_usage();
2424 bytes
2425 }
2426}
2427
2428/// An object describing the configuration of a `Regex`.
2429///
2430/// This configuration only includes options for the
2431/// non-syntax behavior of a `Regex`, and can be applied via the
2432/// [`Builder::configure`] method. For configuring the syntax options, see
2433/// [`util::syntax::Config`](crate::util::syntax::Config).
2434///
2435/// # Example: lower the NFA size limit
2436///
2437/// In some cases, the default size limit might be too big. The size limit can
2438/// be lowered, which will prevent large regex patterns from compiling.
2439///
2440/// ```
2441/// # if cfg!(miri) { return Ok(()); } // miri takes too long
2442/// use regex_automata::meta::Regex;
2443///
2444/// let result = Regex::builder()
2445/// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2446/// // Not even 20KB is enough to build a single large Unicode class!
2447/// .build(r"\pL");
2448/// assert!(result.is_err());
2449///
2450/// # Ok::<(), Box<dyn std::error::Error>>(())
2451/// ```
2452#[derive(Clone, Debug, Default)]
2453pub struct Config {
2454 // As with other configuration types in this crate, we put all our knobs
2455 // in options so that we can distinguish between "default" and "not set."
2456 // This makes it possible to easily combine multiple configurations
2457 // without default values overwriting explicitly specified values. See the
2458 // 'overwrite' method.
2459 //
2460 // For docs on the fields below, see the corresponding method setters.
2461 match_kind: Option<MatchKind>,
2462 utf8_empty: Option<bool>,
2463 autopre: Option<bool>,
2464 pre: Option<Option<Prefilter>>,
2465 which_captures: Option<WhichCaptures>,
2466 nfa_size_limit: Option<Option<usize>>,
2467 onepass_size_limit: Option<Option<usize>>,
2468 hybrid_cache_capacity: Option<usize>,
2469 hybrid: Option<bool>,
2470 dfa: Option<bool>,
2471 dfa_size_limit: Option<Option<usize>>,
2472 dfa_state_limit: Option<Option<usize>>,
2473 onepass: Option<bool>,
2474 backtrack: Option<bool>,
2475 byte_classes: Option<bool>,
2476 line_terminator: Option<u8>,
2477}
2478
2479impl Config {
2480 /// Create a new configuration object for a `Regex`.
2481 pub fn new() -> Config {
2482 Config::default()
2483 }
2484
2485 /// Set the match semantics for a `Regex`.
2486 ///
2487 /// The default value is [`MatchKind::LeftmostFirst`].
2488 ///
2489 /// # Example
2490 ///
2491 /// ```
2492 /// use regex_automata::{meta::Regex, Match, MatchKind};
2493 ///
2494 /// // By default, leftmost-first semantics are used, which
2495 /// // disambiguates matches at the same position by selecting
2496 /// // the one that corresponds earlier in the pattern.
2497 /// let re = Regex::new("sam|samwise")?;
2498 /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2499 ///
2500 /// // But with 'all' semantics, match priority is ignored
2501 /// // and all match states are included. When coupled with
2502 /// // a leftmost search, the search will report the last
2503 /// // possible match.
2504 /// let re = Regex::builder()
2505 /// .configure(Regex::config().match_kind(MatchKind::All))
2506 /// .build("sam|samwise")?;
2507 /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2508 /// // Beware that this can lead to skipping matches!
2509 /// // Usually 'all' is used for anchored reverse searches
2510 /// // only, or for overlapping searches.
2511 /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2512 ///
2513 /// # Ok::<(), Box<dyn std::error::Error>>(())
2514 /// ```
2515 pub fn match_kind(self, kind: MatchKind) -> Config {
2516 Config { match_kind: Some(kind), ..self }
2517 }
2518
2519 /// Toggles whether empty matches are permitted to occur between the code
2520 /// units of a UTF-8 encoded codepoint.
2521 ///
2522 /// This should generally be enabled when search a `&str` or anything that
2523 /// you otherwise know is valid UTF-8. It should be disabled in all other
2524 /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2525 /// then behavior is unspecified.
2526 ///
2527 /// By default, this is enabled.
2528 ///
2529 /// # Example
2530 ///
2531 /// ```
2532 /// use regex_automata::{meta::Regex, Match};
2533 ///
2534 /// let re = Regex::new("")?;
2535 /// let got: Vec<Match> = re.find_iter("☃").collect();
2536 /// // Matches only occur at the beginning and end of the snowman.
2537 /// assert_eq!(got, vec![
2538 /// Match::must(0, 0..0),
2539 /// Match::must(0, 3..3),
2540 /// ]);
2541 ///
2542 /// let re = Regex::builder()
2543 /// .configure(Regex::config().utf8_empty(false))
2544 /// .build("")?;
2545 /// let got: Vec<Match> = re.find_iter("☃").collect();
2546 /// // Matches now occur at every position!
2547 /// assert_eq!(got, vec![
2548 /// Match::must(0, 0..0),
2549 /// Match::must(0, 1..1),
2550 /// Match::must(0, 2..2),
2551 /// Match::must(0, 3..3),
2552 /// ]);
2553 ///
2554 /// Ok::<(), Box<dyn std::error::Error>>(())
2555 /// ```
2556 pub fn utf8_empty(self, yes: bool) -> Config {
2557 Config { utf8_empty: Some(yes), ..self }
2558 }
2559
2560 /// Toggles whether automatic prefilter support is enabled.
2561 ///
2562 /// If this is disabled and [`Config::prefilter`] is not set, then the
2563 /// meta regex engine will not use any prefilters. This can sometimes
2564 /// be beneficial in cases where you know (or have measured) that the
2565 /// prefilter leads to overall worse search performance.
2566 ///
2567 /// By default, this is enabled.
2568 ///
2569 /// # Example
2570 ///
2571 /// ```
2572 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2573 /// use regex_automata::{meta::Regex, Match};
2574 ///
2575 /// let re = Regex::builder()
2576 /// .configure(Regex::config().auto_prefilter(false))
2577 /// .build(r"Bruce \w+")?;
2578 /// let hay = "Hello Bruce Springsteen!";
2579 /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2580 ///
2581 /// Ok::<(), Box<dyn std::error::Error>>(())
2582 /// ```
2583 pub fn auto_prefilter(self, yes: bool) -> Config {
2584 Config { autopre: Some(yes), ..self }
2585 }
2586
2587 /// Overrides and sets the prefilter to use inside a `Regex`.
2588 ///
2589 /// This permits one to forcefully set a prefilter in cases where the
2590 /// caller knows better than whatever the automatic prefilter logic is
2591 /// capable of.
2592 ///
2593 /// By default, this is set to `None` and an automatic prefilter will be
2594 /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2595 /// enabled, which it is by default.)
2596 ///
2597 /// # Example
2598 ///
2599 /// This example shows how to set your own prefilter. In the case of a
2600 /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2601 /// constructed in a way that it will look for occurrences of `Bruce `.
2602 /// In most cases, this is the best choice. But in some cases, it may be
2603 /// the case that running `memchr` on `B` is the best choice. One can
2604 /// achieve that behavior by overriding the automatic prefilter logic
2605 /// and providing a prefilter that just matches `B`.
2606 ///
2607 /// ```
2608 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2609 /// use regex_automata::{
2610 /// meta::Regex,
2611 /// util::prefilter::Prefilter,
2612 /// Match, MatchKind,
2613 /// };
2614 ///
2615 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2616 /// .expect("a prefilter");
2617 /// let re = Regex::builder()
2618 /// .configure(Regex::config().prefilter(Some(pre)))
2619 /// .build(r"Bruce \w+")?;
2620 /// let hay = "Hello Bruce Springsteen!";
2621 /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2622 ///
2623 /// # Ok::<(), Box<dyn std::error::Error>>(())
2624 /// ```
2625 ///
2626 /// # Example: incorrect prefilters can lead to incorrect results!
2627 ///
2628 /// Be warned that setting an incorrect prefilter can lead to missed
2629 /// matches. So if you use this option, ensure your prefilter can _never_
2630 /// report false negatives. (A false positive is, on the other hand, quite
2631 /// okay and generally unavoidable.)
2632 ///
2633 /// ```
2634 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2635 /// use regex_automata::{
2636 /// meta::Regex,
2637 /// util::prefilter::Prefilter,
2638 /// Match, MatchKind,
2639 /// };
2640 ///
2641 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2642 /// .expect("a prefilter");
2643 /// let re = Regex::builder()
2644 /// .configure(Regex::config().prefilter(Some(pre)))
2645 /// .build(r"Bruce \w+")?;
2646 /// let hay = "Hello Bruce Springsteen!";
2647 /// // Oops! No match found, but there should be one!
2648 /// assert_eq!(None, re.find(hay));
2649 ///
2650 /// # Ok::<(), Box<dyn std::error::Error>>(())
2651 /// ```
2652 pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2653 Config { pre: Some(pre), ..self }
2654 }
2655
2656 /// Configures what kinds of groups are compiled as "capturing" in the
2657 /// underlying regex engine.
2658 ///
2659 /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2660 /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2661 /// overhead of capture states for explicit groups.
2662 ///
2663 /// Note that another approach to avoiding the overhead of capture groups
2664 /// is by using non-capturing groups in the regex pattern. That is,
2665 /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2666 /// the concrete syntax but know that you don't need the underlying capture
2667 /// states. For example, using `WhichCaptures::Implicit` will behave as if
2668 /// all explicit capturing groups in the pattern were non-capturing.
2669 ///
2670 /// Setting this to `WhichCaptures::None` is usually not the right thing to
2671 /// do. When no capture states are compiled, some regex engines (such as
2672 /// the `PikeVM`) won't be able to report match offsets. This will manifest
2673 /// as no match being found. Indeed, in order to enforce consistent
2674 /// behavior, the meta regex engine will always report `None` for routines
2675 /// that return match offsets even if one of its regex engines could
2676 /// service the request. This avoids "match or not" behavior from being
2677 /// influenced by user input (since user input can influence the selection
2678 /// of the regex engine).
2679 ///
2680 /// # Example
2681 ///
2682 /// This example demonstrates how the results of capture groups can change
2683 /// based on this option. First we show the default (all capture groups in
2684 /// the pattern are capturing):
2685 ///
2686 /// ```
2687 /// use regex_automata::{meta::Regex, Match, Span};
2688 ///
2689 /// let re = Regex::new(r"foo([0-9]+)bar")?;
2690 /// let hay = "foo123bar";
2691 ///
2692 /// let mut caps = re.create_captures();
2693 /// re.captures(hay, &mut caps);
2694 /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2695 /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2696 ///
2697 /// Ok::<(), Box<dyn std::error::Error>>(())
2698 /// ```
2699 ///
2700 /// And now we show the behavior when we only include implicit capture
2701 /// groups. In this case, we can only find the overall match span, but the
2702 /// spans of any other explicit group don't exist because they are treated
2703 /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2704 /// there is no real point in using [`Regex::captures`] since it will never
2705 /// be able to report more information than [`Regex::find`].)
2706 ///
2707 /// ```
2708 /// use regex_automata::{
2709 /// meta::Regex,
2710 /// nfa::thompson::WhichCaptures,
2711 /// Match,
2712 /// Span,
2713 /// };
2714 ///
2715 /// let re = Regex::builder()
2716 /// .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2717 /// .build(r"foo([0-9]+)bar")?;
2718 /// let hay = "foo123bar";
2719 ///
2720 /// let mut caps = re.create_captures();
2721 /// re.captures(hay, &mut caps);
2722 /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2723 /// assert_eq!(None, caps.get_group(1));
2724 ///
2725 /// Ok::<(), Box<dyn std::error::Error>>(())
2726 /// ```
2727 ///
2728 /// # Example: strange `Regex::find` behavior
2729 ///
2730 /// As noted above, when using [`WhichCaptures::None`], this means that
2731 /// `Regex::is_match` could return `true` while `Regex::find` returns
2732 /// `None`:
2733 ///
2734 /// ```
2735 /// use regex_automata::{
2736 /// meta::Regex,
2737 /// nfa::thompson::WhichCaptures,
2738 /// Input,
2739 /// Match,
2740 /// Span,
2741 /// };
2742 ///
2743 /// let re = Regex::builder()
2744 /// .configure(Regex::config().which_captures(WhichCaptures::None))
2745 /// .build(r"foo([0-9]+)bar")?;
2746 /// let hay = "foo123bar";
2747 ///
2748 /// assert!(re.is_match(hay));
2749 /// assert_eq!(re.find(hay), None);
2750 /// assert_eq!(re.search_half(&Input::new(hay)), None);
2751 ///
2752 /// Ok::<(), Box<dyn std::error::Error>>(())
2753 /// ```
2754 pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2755 self.which_captures = Some(which_captures);
2756 self
2757 }
2758
2759 /// Sets the size limit, in bytes, to enforce on the construction of every
2760 /// NFA build by the meta regex engine.
2761 ///
2762 /// Setting it to `None` disables the limit. This is not recommended if
2763 /// you're compiling untrusted patterns.
2764 ///
2765 /// Note that this limit is applied to _each_ NFA built, and if any of
2766 /// them exceed the limit, then construction will fail. This limit does
2767 /// _not_ correspond to the total memory used by all NFAs in the meta regex
2768 /// engine.
2769 ///
2770 /// This defaults to some reasonable number that permits most reasonable
2771 /// patterns.
2772 ///
2773 /// # Example
2774 ///
2775 /// ```
2776 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2777 /// use regex_automata::meta::Regex;
2778 ///
2779 /// let result = Regex::builder()
2780 /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2781 /// // Not even 20KB is enough to build a single large Unicode class!
2782 /// .build(r"\pL");
2783 /// assert!(result.is_err());
2784 ///
2785 /// // But notice that building such a regex with the exact same limit
2786 /// // can succeed depending on other aspects of the configuration. For
2787 /// // example, a single *forward* NFA will (at time of writing) fit into
2788 /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2789 /// // So if one configures a meta regex such that a reverse NFA is never
2790 /// // needed and thus never built, then the 20KB limit will be enough for
2791 /// // a pattern like \pL!
2792 /// let result = Regex::builder()
2793 /// .configure(Regex::config()
2794 /// .nfa_size_limit(Some(20 * (1<<10)))
2795 /// // The DFAs are the only thing that (currently) need a reverse
2796 /// // NFA. So if both are disabled, the meta regex engine will
2797 /// // skip building the reverse NFA. Note that this isn't an API
2798 /// // guarantee. A future semver compatible version may introduce
2799 /// // new use cases for a reverse NFA.
2800 /// .hybrid(false)
2801 /// .dfa(false)
2802 /// )
2803 /// // Not even 20KB is enough to build a single large Unicode class!
2804 /// .build(r"\pL");
2805 /// assert!(result.is_ok());
2806 ///
2807 /// # Ok::<(), Box<dyn std::error::Error>>(())
2808 /// ```
2809 pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2810 Config { nfa_size_limit: Some(limit), ..self }
2811 }
2812
2813 /// Sets the size limit, in bytes, for the one-pass DFA.
2814 ///
2815 /// Setting it to `None` disables the limit. Disabling the limit is
2816 /// strongly discouraged when compiling untrusted patterns. Even if the
2817 /// patterns are trusted, it still may not be a good idea, since a one-pass
2818 /// DFA can use a lot of memory. With that said, as the size of a regex
2819 /// increases, the likelihood of it being one-pass likely decreases.
2820 ///
2821 /// This defaults to some reasonable number that permits most reasonable
2822 /// one-pass patterns.
2823 ///
2824 /// # Example
2825 ///
2826 /// This shows how to set the one-pass DFA size limit. Note that since
2827 /// a one-pass DFA is an optional component of the meta regex engine,
2828 /// this size limit only impacts what is built internally and will never
2829 /// determine whether a `Regex` itself fails to build.
2830 ///
2831 /// ```
2832 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2833 /// use regex_automata::meta::Regex;
2834 ///
2835 /// let result = Regex::builder()
2836 /// .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2837 /// .build(r"\pL{5}");
2838 /// assert!(result.is_ok());
2839 /// # Ok::<(), Box<dyn std::error::Error>>(())
2840 /// ```
2841 pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2842 Config { onepass_size_limit: Some(limit), ..self }
2843 }
2844
2845 /// Set the cache capacity, in bytes, for the lazy DFA.
2846 ///
2847 /// The cache capacity of the lazy DFA determines approximately how much
2848 /// heap memory it is allowed to use to store its state transitions. The
2849 /// state transitions are computed at search time, and if the cache fills
2850 /// up it, it is cleared. At this point, any previously generated state
2851 /// transitions are lost and are re-generated if they're needed again.
2852 ///
2853 /// This sort of cache filling and clearing works quite well _so long as
2854 /// cache clearing happens infrequently_. If it happens too often, then the
2855 /// meta regex engine will stop using the lazy DFA and switch over to a
2856 /// different regex engine.
2857 ///
2858 /// In cases where the cache is cleared too often, it may be possible to
2859 /// give the cache more space and reduce (or eliminate) how often it is
2860 /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2861 /// used at all if its cache capacity isn't big enough.
2862 ///
2863 /// The capacity set here is a _limit_ on how much memory is used. The
2864 /// actual memory used is only allocated as it's needed.
2865 ///
2866 /// Determining the right value for this is a little tricky and will likely
2867 /// required some profiling. Enabling the `logging` feature and setting the
2868 /// log level to `trace` will also tell you how often the cache is being
2869 /// cleared.
2870 ///
2871 /// # Example
2872 ///
2873 /// ```
2874 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2875 /// use regex_automata::meta::Regex;
2876 ///
2877 /// let result = Regex::builder()
2878 /// .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2879 /// .build(r"\pL{5}");
2880 /// assert!(result.is_ok());
2881 /// # Ok::<(), Box<dyn std::error::Error>>(())
2882 /// ```
2883 pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2884 Config { hybrid_cache_capacity: Some(limit), ..self }
2885 }
2886
2887 /// Sets the size limit, in bytes, for heap memory used for a fully
2888 /// compiled DFA.
2889 ///
2890 /// **NOTE:** If you increase this, you'll likely also need to increase
2891 /// [`Config::dfa_state_limit`].
2892 ///
2893 /// In contrast to the lazy DFA, building a full DFA requires computing
2894 /// all of its state transitions up front. This can be a very expensive
2895 /// process, and runs in worst case `2^n` time and space (where `n` is
2896 /// proportional to the size of the regex). However, a full DFA unlocks
2897 /// some additional optimization opportunities.
2898 ///
2899 /// Because full DFAs can be so expensive, the default limits for them are
2900 /// incredibly small. Generally speaking, if your regex is moderately big
2901 /// or if you're using Unicode features (`\w` is Unicode-aware by default
2902 /// for example), then you can expect that the meta regex engine won't even
2903 /// attempt to build a DFA for it.
2904 ///
2905 /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2906 /// meta regex will not use any sort of limits when deciding whether to
2907 /// build a DFA. This in turn makes construction of a `Regex` take
2908 /// worst case exponential time and space. Even short patterns can result
2909 /// in huge space blow ups. So it is strongly recommended to keep some kind
2910 /// of limit set!
2911 ///
2912 /// The default is set to a small number that permits some simple regexes
2913 /// to get compiled into DFAs in reasonable time.
2914 ///
2915 /// # Example
2916 ///
2917 /// ```
2918 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2919 /// use regex_automata::meta::Regex;
2920 ///
2921 /// let result = Regex::builder()
2922 /// // 100MB is much bigger than the default.
2923 /// .configure(Regex::config()
2924 /// .dfa_size_limit(Some(100 * (1<<20)))
2925 /// // We don't care about size too much here, so just
2926 /// // remove the NFA state limit altogether.
2927 /// .dfa_state_limit(None))
2928 /// .build(r"\pL{5}");
2929 /// assert!(result.is_ok());
2930 /// # Ok::<(), Box<dyn std::error::Error>>(())
2931 /// ```
2932 pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2933 Config { dfa_size_limit: Some(limit), ..self }
2934 }
2935
2936 /// Sets a limit on the total number of NFA states, beyond which, a full
2937 /// DFA is not attempted to be compiled.
2938 ///
2939 /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2940 /// where as `Config::dfa_size_limit` is applied by attempting to construct
2941 /// a DFA, this limit is used to avoid the attempt in the first place. This
2942 /// is useful to avoid hefty initialization costs associated with building
2943 /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2944 ///
2945 /// By default, this is set to a very small number.
2946 ///
2947 /// # Example
2948 ///
2949 /// ```
2950 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2951 /// use regex_automata::meta::Regex;
2952 ///
2953 /// let result = Regex::builder()
2954 /// .configure(Regex::config()
2955 /// // Sometimes the default state limit rejects DFAs even
2956 /// // if they would fit in the size limit. Here, we disable
2957 /// // the check on the number of NFA states and just rely on
2958 /// // the size limit.
2959 /// .dfa_state_limit(None))
2960 /// .build(r"(?-u)\w{30}");
2961 /// assert!(result.is_ok());
2962 /// # Ok::<(), Box<dyn std::error::Error>>(())
2963 /// ```
2964 pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2965 Config { dfa_state_limit: Some(limit), ..self }
2966 }
2967
2968 /// Whether to attempt to shrink the size of the alphabet for the regex
2969 /// pattern or not. When enabled, the alphabet is shrunk into a set of
2970 /// equivalence classes, where every byte in the same equivalence class
2971 /// cannot discriminate between a match or non-match.
2972 ///
2973 /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2974 /// does not yield any speed advantages. Indeed, disabling it can result
2975 /// in much higher memory usage. Disabling byte classes is useful for
2976 /// debugging the actual generated transitions because it lets one see the
2977 /// transitions defined on actual bytes instead of the equivalence classes.
2978 ///
2979 /// This option is enabled by default and should never be disabled unless
2980 /// one is debugging the meta regex engine's internals.
2981 ///
2982 /// # Example
2983 ///
2984 /// ```
2985 /// use regex_automata::{meta::Regex, Match};
2986 ///
2987 /// let re = Regex::builder()
2988 /// .configure(Regex::config().byte_classes(false))
2989 /// .build(r"[a-z]+")?;
2990 /// let hay = "!!quux!!";
2991 /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2992 ///
2993 /// # Ok::<(), Box<dyn std::error::Error>>(())
2994 /// ```
2995 pub fn byte_classes(self, yes: bool) -> Config {
2996 Config { byte_classes: Some(yes), ..self }
2997 }
2998
2999 /// Set the line terminator to be used by the `^` and `$` anchors in
3000 /// multi-line mode.
3001 ///
3002 /// This option has no effect when CRLF mode is enabled. That is,
3003 /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
3004 /// `\r` and `\n` as line terminators (and will never match between a `\r`
3005 /// and a `\n`).
3006 ///
3007 /// By default, `\n` is the line terminator.
3008 ///
3009 /// **Warning**: This does not change the behavior of `.`. To do that,
3010 /// you'll need to configure the syntax option
3011 /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
3012 /// in addition to this. Otherwise, `.` will continue to match any
3013 /// character other than `\n`.
3014 ///
3015 /// # Example
3016 ///
3017 /// ```
3018 /// use regex_automata::{meta::Regex, util::syntax, Match};
3019 ///
3020 /// let re = Regex::builder()
3021 /// .syntax(syntax::Config::new().multi_line(true))
3022 /// .configure(Regex::config().line_terminator(b'\x00'))
3023 /// .build(r"^foo$")?;
3024 /// let hay = "\x00foo\x00";
3025 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3026 ///
3027 /// # Ok::<(), Box<dyn std::error::Error>>(())
3028 /// ```
3029 pub fn line_terminator(self, byte: u8) -> Config {
3030 Config { line_terminator: Some(byte), ..self }
3031 }
3032
3033 /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
3034 /// be available for use by the meta regex engine.
3035 ///
3036 /// Enabling this does not necessarily mean that the lazy DFA will
3037 /// definitely be used. It just means that it will be _available_ for use
3038 /// if the meta regex engine thinks it will be useful.
3039 ///
3040 /// When the `hybrid` crate feature is enabled, then this is enabled by
3041 /// default. Otherwise, if the crate feature is disabled, then this is
3042 /// always disabled, regardless of its setting by the caller.
3043 pub fn hybrid(self, yes: bool) -> Config {
3044 Config { hybrid: Some(yes), ..self }
3045 }
3046
3047 /// Toggle whether a fully compiled DFA should be available for use by the
3048 /// meta regex engine.
3049 ///
3050 /// Enabling this does not necessarily mean that a DFA will definitely be
3051 /// used. It just means that it will be _available_ for use if the meta
3052 /// regex engine thinks it will be useful.
3053 ///
3054 /// When the `dfa-build` crate feature is enabled, then this is enabled by
3055 /// default. Otherwise, if the crate feature is disabled, then this is
3056 /// always disabled, regardless of its setting by the caller.
3057 pub fn dfa(self, yes: bool) -> Config {
3058 Config { dfa: Some(yes), ..self }
3059 }
3060
3061 /// Toggle whether a one-pass DFA should be available for use by the meta
3062 /// regex engine.
3063 ///
3064 /// Enabling this does not necessarily mean that a one-pass DFA will
3065 /// definitely be used. It just means that it will be _available_ for
3066 /// use if the meta regex engine thinks it will be useful. (Indeed, a
3067 /// one-pass DFA can only be used when the regex is one-pass. See the
3068 /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
3069 ///
3070 /// When the `dfa-onepass` crate feature is enabled, then this is enabled
3071 /// by default. Otherwise, if the crate feature is disabled, then this is
3072 /// always disabled, regardless of its setting by the caller.
3073 pub fn onepass(self, yes: bool) -> Config {
3074 Config { onepass: Some(yes), ..self }
3075 }
3076
3077 /// Toggle whether a bounded backtracking regex engine should be available
3078 /// for use by the meta regex engine.
3079 ///
3080 /// Enabling this does not necessarily mean that a bounded backtracker will
3081 /// definitely be used. It just means that it will be _available_ for use
3082 /// if the meta regex engine thinks it will be useful.
3083 ///
3084 /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
3085 /// by default. Otherwise, if the crate feature is disabled, then this is
3086 /// always disabled, regardless of its setting by the caller.
3087 pub fn backtrack(self, yes: bool) -> Config {
3088 Config { backtrack: Some(yes), ..self }
3089 }
3090
3091 /// Returns the match kind on this configuration, as set by
3092 /// [`Config::match_kind`].
3093 ///
3094 /// If it was not explicitly set, then a default value is returned.
3095 pub fn get_match_kind(&self) -> MatchKind {
3096 self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3097 }
3098
3099 /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
3100 /// set by [`Config::utf8_empty`].
3101 ///
3102 /// If it was not explicitly set, then a default value is returned.
3103 pub fn get_utf8_empty(&self) -> bool {
3104 self.utf8_empty.unwrap_or(true)
3105 }
3106
3107 /// Returns whether automatic prefilters are enabled, as set by
3108 /// [`Config::auto_prefilter`].
3109 ///
3110 /// If it was not explicitly set, then a default value is returned.
3111 pub fn get_auto_prefilter(&self) -> bool {
3112 self.autopre.unwrap_or(true)
3113 }
3114
3115 /// Returns a manually set prefilter, if one was set by
3116 /// [`Config::prefilter`].
3117 ///
3118 /// If it was not explicitly set, then a default value is returned.
3119 pub fn get_prefilter(&self) -> Option<&Prefilter> {
3120 self.pre.as_ref().unwrap_or(&None).as_ref()
3121 }
3122
3123 /// Returns the capture configuration, as set by
3124 /// [`Config::which_captures`].
3125 ///
3126 /// If it was not explicitly set, then a default value is returned.
3127 pub fn get_which_captures(&self) -> WhichCaptures {
3128 self.which_captures.unwrap_or(WhichCaptures::All)
3129 }
3130
3131 /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
3132 ///
3133 /// If it was not explicitly set, then a default value is returned.
3134 pub fn get_nfa_size_limit(&self) -> Option<usize> {
3135 self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3136 }
3137
3138 /// Returns one-pass DFA size limit, as set by
3139 /// [`Config::onepass_size_limit`].
3140 ///
3141 /// If it was not explicitly set, then a default value is returned.
3142 pub fn get_onepass_size_limit(&self) -> Option<usize> {
3143 self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3144 }
3145
3146 /// Returns hybrid NFA/DFA cache capacity, as set by
3147 /// [`Config::hybrid_cache_capacity`].
3148 ///
3149 /// If it was not explicitly set, then a default value is returned.
3150 pub fn get_hybrid_cache_capacity(&self) -> usize {
3151 self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3152 }
3153
3154 /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3155 ///
3156 /// If it was not explicitly set, then a default value is returned.
3157 pub fn get_dfa_size_limit(&self) -> Option<usize> {
3158 // The default for this is VERY small because building a full DFA is
3159 // ridiculously costly. But for regexes that are very small, it can be
3160 // beneficial to use a full DFA. In particular, a full DFA can enable
3161 // additional optimizations via something called "accelerated" states.
3162 // Namely, when there's a state with only a few outgoing transitions,
3163 // we can temporary suspend walking the transition table and use memchr
3164 // for just those outgoing transitions to skip ahead very quickly.
3165 //
3166 // Generally speaking, if Unicode is enabled in your regex and you're
3167 // using some kind of Unicode feature, then it's going to blow this
3168 // size limit. Moreover, Unicode tends to defeat the "accelerated"
3169 // state optimization too, so it's a double whammy.
3170 //
3171 // We also use a limit on the number of NFA states to avoid even
3172 // starting the DFA construction process. Namely, DFA construction
3173 // itself could make lots of initial allocs proportional to the size
3174 // of the NFA, and if the NFA is large, it doesn't make sense to pay
3175 // that cost if we know it's likely to be blown by a large margin.
3176 self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3177 }
3178
3179 /// Returns DFA size limit in terms of the number of states in the NFA, as
3180 /// set by [`Config::dfa_state_limit`].
3181 ///
3182 /// If it was not explicitly set, then a default value is returned.
3183 pub fn get_dfa_state_limit(&self) -> Option<usize> {
3184 // Again, as with the size limit, we keep this very small.
3185 self.dfa_state_limit.unwrap_or(Some(30))
3186 }
3187
3188 /// Returns whether byte classes are enabled, as set by
3189 /// [`Config::byte_classes`].
3190 ///
3191 /// If it was not explicitly set, then a default value is returned.
3192 pub fn get_byte_classes(&self) -> bool {
3193 self.byte_classes.unwrap_or(true)
3194 }
3195
3196 /// Returns the line terminator for this configuration, as set by
3197 /// [`Config::line_terminator`].
3198 ///
3199 /// If it was not explicitly set, then a default value is returned.
3200 pub fn get_line_terminator(&self) -> u8 {
3201 self.line_terminator.unwrap_or(b'\n')
3202 }
3203
3204 /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3205 /// [`Config::hybrid`].
3206 ///
3207 /// If it was not explicitly set, then a default value is returned.
3208 pub fn get_hybrid(&self) -> bool {
3209 #[cfg(feature = "hybrid")]
3210 {
3211 self.hybrid.unwrap_or(true)
3212 }
3213 #[cfg(not(feature = "hybrid"))]
3214 {
3215 false
3216 }
3217 }
3218
3219 /// Returns whether the DFA regex engine may be used, as set by
3220 /// [`Config::dfa`].
3221 ///
3222 /// If it was not explicitly set, then a default value is returned.
3223 pub fn get_dfa(&self) -> bool {
3224 #[cfg(feature = "dfa-build")]
3225 {
3226 self.dfa.unwrap_or(true)
3227 }
3228 #[cfg(not(feature = "dfa-build"))]
3229 {
3230 false
3231 }
3232 }
3233
3234 /// Returns whether the one-pass DFA regex engine may be used, as set by
3235 /// [`Config::onepass`].
3236 ///
3237 /// If it was not explicitly set, then a default value is returned.
3238 pub fn get_onepass(&self) -> bool {
3239 #[cfg(feature = "dfa-onepass")]
3240 {
3241 self.onepass.unwrap_or(true)
3242 }
3243 #[cfg(not(feature = "dfa-onepass"))]
3244 {
3245 false
3246 }
3247 }
3248
3249 /// Returns whether the bounded backtracking regex engine may be used, as
3250 /// set by [`Config::backtrack`].
3251 ///
3252 /// If it was not explicitly set, then a default value is returned.
3253 pub fn get_backtrack(&self) -> bool {
3254 #[cfg(feature = "nfa-backtrack")]
3255 {
3256 self.backtrack.unwrap_or(true)
3257 }
3258 #[cfg(not(feature = "nfa-backtrack"))]
3259 {
3260 false
3261 }
3262 }
3263
3264 /// Overwrite the default configuration such that the options in `o` are
3265 /// always used. If an option in `o` is not set, then the corresponding
3266 /// option in `self` is used. If it's not set in `self` either, then it
3267 /// remains not set.
3268 pub(crate) fn overwrite(&self, o: Config) -> Config {
3269 Config {
3270 match_kind: o.match_kind.or(self.match_kind),
3271 utf8_empty: o.utf8_empty.or(self.utf8_empty),
3272 autopre: o.autopre.or(self.autopre),
3273 pre: o.pre.or_else(|| self.pre.clone()),
3274 which_captures: o.which_captures.or(self.which_captures),
3275 nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3276 onepass_size_limit: o
3277 .onepass_size_limit
3278 .or(self.onepass_size_limit),
3279 hybrid_cache_capacity: o
3280 .hybrid_cache_capacity
3281 .or(self.hybrid_cache_capacity),
3282 hybrid: o.hybrid.or(self.hybrid),
3283 dfa: o.dfa.or(self.dfa),
3284 dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3285 dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3286 onepass: o.onepass.or(self.onepass),
3287 backtrack: o.backtrack.or(self.backtrack),
3288 byte_classes: o.byte_classes.or(self.byte_classes),
3289 line_terminator: o.line_terminator.or(self.line_terminator),
3290 }
3291 }
3292}
3293
3294/// A builder for configuring and constructing a `Regex`.
3295///
3296/// The builder permits configuring two different aspects of a `Regex`:
3297///
3298/// * [`Builder::configure`] will set high-level configuration options as
3299/// described by a [`Config`].
3300/// * [`Builder::syntax`] will set the syntax level configuration options
3301/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3302/// This only applies when building a `Regex` from pattern strings.
3303///
3304/// Once configured, the builder can then be used to construct a `Regex` from
3305/// one of 4 different inputs:
3306///
3307/// * [`Builder::build`] creates a regex from a single pattern string.
3308/// * [`Builder::build_many`] creates a regex from many pattern strings.
3309/// * [`Builder::build_from_hir`] creates a regex from a
3310/// [`regex-syntax::Hir`](Hir) expression.
3311/// * [`Builder::build_many_from_hir`] creates a regex from many
3312/// [`regex-syntax::Hir`](Hir) expressions.
3313///
3314/// The latter two methods in particular provide a way to construct a fully
3315/// feature regular expression matcher directly from an `Hir` expression
3316/// without having to first convert it to a string. (This is in contrast to the
3317/// top-level `regex` crate which intentionally provides no such API in order
3318/// to avoid making `regex-syntax` a public dependency.)
3319///
3320/// As a convenience, this builder may be created via [`Regex::builder`], which
3321/// may help avoid an extra import.
3322///
3323/// # Example: change the line terminator
3324///
3325/// This example shows how to enable multi-line mode by default and change the
3326/// line terminator to the NUL byte:
3327///
3328/// ```
3329/// use regex_automata::{meta::Regex, util::syntax, Match};
3330///
3331/// let re = Regex::builder()
3332/// .syntax(syntax::Config::new().multi_line(true))
3333/// .configure(Regex::config().line_terminator(b'\x00'))
3334/// .build(r"^foo$")?;
3335/// let hay = "\x00foo\x00";
3336/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3337///
3338/// # Ok::<(), Box<dyn std::error::Error>>(())
3339/// ```
3340///
3341/// # Example: disable UTF-8 requirement
3342///
3343/// By default, regex patterns are required to match UTF-8. This includes
3344/// regex patterns that can produce matches of length zero. In the case of an
3345/// empty match, by default, matches will not appear between the code units of
3346/// a UTF-8 encoded codepoint.
3347///
3348/// However, it can be useful to disable this requirement, particularly if
3349/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3350///
3351/// ```
3352/// use regex_automata::{meta::Regex, util::syntax, Match};
3353///
3354/// let mut builder = Regex::builder();
3355/// // Disables the requirement that non-empty matches match UTF-8.
3356/// builder.syntax(syntax::Config::new().utf8(false));
3357/// // Disables the requirement that empty matches match UTF-8 boundaries.
3358/// builder.configure(Regex::config().utf8_empty(false));
3359///
3360/// // We can match raw bytes via \xZZ syntax, but we need to disable
3361/// // Unicode mode to do that. We could disable it everywhere, or just
3362/// // selectively, as shown here.
3363/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3364/// let hay = b"\xFFfoo\xFF";
3365/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3366///
3367/// // We can also match between code units.
3368/// let re = builder.build(r"")?;
3369/// let hay = "☃";
3370/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3371/// Match::must(0, 0..0),
3372/// Match::must(0, 1..1),
3373/// Match::must(0, 2..2),
3374/// Match::must(0, 3..3),
3375/// ]);
3376///
3377/// # Ok::<(), Box<dyn std::error::Error>>(())
3378/// ```
3379#[derive(Clone, Debug)]
3380pub struct Builder {
3381 config: Config,
3382 ast: ast::parse::ParserBuilder,
3383 hir: hir::translate::TranslatorBuilder,
3384}
3385
3386impl Builder {
3387 /// Creates a new builder for configuring and constructing a [`Regex`].
3388 pub fn new() -> Builder {
3389 Builder {
3390 config: Config::default(),
3391 ast: ast::parse::ParserBuilder::new(),
3392 hir: hir::translate::TranslatorBuilder::new(),
3393 }
3394 }
3395
3396 /// Builds a `Regex` from a single pattern string.
3397 ///
3398 /// If there was a problem parsing the pattern or a problem turning it into
3399 /// a regex matcher, then an error is returned.
3400 ///
3401 /// # Example
3402 ///
3403 /// This example shows how to configure syntax options.
3404 ///
3405 /// ```
3406 /// use regex_automata::{meta::Regex, util::syntax, Match};
3407 ///
3408 /// let re = Regex::builder()
3409 /// .syntax(syntax::Config::new().crlf(true).multi_line(true))
3410 /// .build(r"^foo$")?;
3411 /// let hay = "\r\nfoo\r\n";
3412 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3413 ///
3414 /// # Ok::<(), Box<dyn std::error::Error>>(())
3415 /// ```
3416 pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3417 self.build_many(&[pattern])
3418 }
3419
3420 /// Builds a `Regex` from many pattern strings.
3421 ///
3422 /// If there was a problem parsing any of the patterns or a problem turning
3423 /// them into a regex matcher, then an error is returned.
3424 ///
3425 /// # Example: finding the pattern that caused an error
3426 ///
3427 /// When a syntax error occurs, it is possible to ask which pattern
3428 /// caused the syntax error.
3429 ///
3430 /// ```
3431 /// use regex_automata::{meta::Regex, PatternID};
3432 ///
3433 /// let err = Regex::builder()
3434 /// .build_many(&["a", "b", r"\p{Foo}", "c"])
3435 /// .unwrap_err();
3436 /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3437 /// ```
3438 ///
3439 /// # Example: zero patterns is valid
3440 ///
3441 /// Building a regex with zero patterns results in a regex that never
3442 /// matches anything. Because this routine is generic, passing an empty
3443 /// slice usually requires a turbo-fish (or something else to help type
3444 /// inference).
3445 ///
3446 /// ```
3447 /// use regex_automata::{meta::Regex, util::syntax, Match};
3448 ///
3449 /// let re = Regex::builder()
3450 /// .build_many::<&str>(&[])?;
3451 /// assert_eq!(None, re.find(""));
3452 ///
3453 /// # Ok::<(), Box<dyn std::error::Error>>(())
3454 /// ```
3455 pub fn build_many<P: AsRef<str>>(
3456 &self,
3457 patterns: &[P],
3458 ) -> Result<Regex, BuildError> {
3459 use crate::util::primitives::IteratorIndexExt;
3460 log! {
3461 debug!("building meta regex with {} patterns:", patterns.len());
3462 for (pid, p) in patterns.iter().with_pattern_ids() {
3463 let p = p.as_ref();
3464 // We might split a grapheme with this truncation logic, but
3465 // that's fine. We at least avoid splitting a codepoint.
3466 let maxoff = p
3467 .char_indices()
3468 .map(|(i, ch)| i + ch.len_utf8())
3469 .take(1000)
3470 .last()
3471 .unwrap_or(0);
3472 if maxoff < p.len() {
3473 debug!("{pid:?}: {}[... snip ...]", &p[..maxoff]);
3474 } else {
3475 debug!("{pid:?}: {p}");
3476 }
3477 }
3478 }
3479 let (mut asts, mut hirs) = (vec![], vec![]);
3480 for (pid, p) in patterns.iter().with_pattern_ids() {
3481 let ast = self
3482 .ast
3483 .build()
3484 .parse(p.as_ref())
3485 .map_err(|err| BuildError::ast(pid, err))?;
3486 asts.push(ast);
3487 }
3488 for ((pid, p), ast) in
3489 patterns.iter().with_pattern_ids().zip(asts.iter())
3490 {
3491 let hir = self
3492 .hir
3493 .build()
3494 .translate(p.as_ref(), ast)
3495 .map_err(|err| BuildError::hir(pid, err))?;
3496 hirs.push(hir);
3497 }
3498 self.build_many_from_hir(&hirs)
3499 }
3500
3501 /// Builds a `Regex` directly from an `Hir` expression.
3502 ///
3503 /// This is useful if you needed to parse a pattern string into an `Hir`
3504 /// for other reasons (such as analysis or transformations). This routine
3505 /// permits building a `Regex` directly from the `Hir` expression instead
3506 /// of first converting the `Hir` back to a pattern string.
3507 ///
3508 /// When using this method, any options set via [`Builder::syntax`] are
3509 /// ignored. Namely, the syntax options only apply when parsing a pattern
3510 /// string, which isn't relevant here.
3511 ///
3512 /// If there was a problem building the underlying regex matcher for the
3513 /// given `Hir`, then an error is returned.
3514 ///
3515 /// # Example
3516 ///
3517 /// This example shows how one can hand-construct an `Hir` expression and
3518 /// build a regex from it without doing any parsing at all.
3519 ///
3520 /// ```
3521 /// use {
3522 /// regex_automata::{meta::Regex, Match},
3523 /// regex_syntax::hir::{Hir, Look},
3524 /// };
3525 ///
3526 /// // (?Rm)^foo$
3527 /// let hir = Hir::concat(vec![
3528 /// Hir::look(Look::StartCRLF),
3529 /// Hir::literal("foo".as_bytes()),
3530 /// Hir::look(Look::EndCRLF),
3531 /// ]);
3532 /// let re = Regex::builder()
3533 /// .build_from_hir(&hir)?;
3534 /// let hay = "\r\nfoo\r\n";
3535 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3536 ///
3537 /// Ok::<(), Box<dyn std::error::Error>>(())
3538 /// ```
3539 pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
3540 self.build_many_from_hir(&[hir])
3541 }
3542
3543 /// Builds a `Regex` directly from many `Hir` expressions.
3544 ///
3545 /// This is useful if you needed to parse pattern strings into `Hir`
3546 /// expressions for other reasons (such as analysis or transformations).
3547 /// This routine permits building a `Regex` directly from the `Hir`
3548 /// expressions instead of first converting the `Hir` expressions back to
3549 /// pattern strings.
3550 ///
3551 /// When using this method, any options set via [`Builder::syntax`] are
3552 /// ignored. Namely, the syntax options only apply when parsing a pattern
3553 /// string, which isn't relevant here.
3554 ///
3555 /// If there was a problem building the underlying regex matcher for the
3556 /// given `Hir` expressions, then an error is returned.
3557 ///
3558 /// Note that unlike [`Builder::build_many`], this can only fail as a
3559 /// result of building the underlying matcher. In that case, there is
3560 /// no single `Hir` expression that can be isolated as a reason for the
3561 /// failure. So if this routine fails, it's not possible to determine which
3562 /// `Hir` expression caused the failure.
3563 ///
3564 /// # Example
3565 ///
3566 /// This example shows how one can hand-construct multiple `Hir`
3567 /// expressions and build a single regex from them without doing any
3568 /// parsing at all.
3569 ///
3570 /// ```
3571 /// use {
3572 /// regex_automata::{meta::Regex, Match},
3573 /// regex_syntax::hir::{Hir, Look},
3574 /// };
3575 ///
3576 /// // (?Rm)^foo$
3577 /// let hir1 = Hir::concat(vec![
3578 /// Hir::look(Look::StartCRLF),
3579 /// Hir::literal("foo".as_bytes()),
3580 /// Hir::look(Look::EndCRLF),
3581 /// ]);
3582 /// // (?Rm)^bar$
3583 /// let hir2 = Hir::concat(vec![
3584 /// Hir::look(Look::StartCRLF),
3585 /// Hir::literal("bar".as_bytes()),
3586 /// Hir::look(Look::EndCRLF),
3587 /// ]);
3588 /// let re = Regex::builder()
3589 /// .build_many_from_hir(&[&hir1, &hir2])?;
3590 /// let hay = "\r\nfoo\r\nbar";
3591 /// let got: Vec<Match> = re.find_iter(hay).collect();
3592 /// let expected = vec![
3593 /// Match::must(0, 2..5),
3594 /// Match::must(1, 7..10),
3595 /// ];
3596 /// assert_eq!(expected, got);
3597 ///
3598 /// Ok::<(), Box<dyn std::error::Error>>(())
3599 /// ```
3600 pub fn build_many_from_hir<H: Borrow<Hir>>(
3601 &self,
3602 hirs: &[H],
3603 ) -> Result<Regex, BuildError> {
3604 let config = self.config.clone();
3605 // We collect the HIRs into a vec so we can write internal routines
3606 // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3607 // bloat down..
3608 let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3609 let info = RegexInfo::new(config, &hirs);
3610 let strat = strategy::new(&info, &hirs)?;
3611 let pool = {
3612 let strat = Arc::clone(&strat);
3613 let create: CachePoolFn = Box::new(move || strat.create_cache());
3614 Pool::new(create)
3615 };
3616 Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3617 }
3618
3619 /// Configure the behavior of a `Regex`.
3620 ///
3621 /// This configuration controls non-syntax options related to the behavior
3622 /// of a `Regex`. This includes things like whether empty matches can split
3623 /// a codepoint, prefilters, line terminators and a long list of options
3624 /// for configuring which regex engines the meta regex engine will be able
3625 /// to use internally.
3626 ///
3627 /// # Example
3628 ///
3629 /// This example shows how to disable UTF-8 empty mode. This will permit
3630 /// empty matches to occur between the UTF-8 encoding of a codepoint.
3631 ///
3632 /// ```
3633 /// use regex_automata::{meta::Regex, Match};
3634 ///
3635 /// let re = Regex::new("")?;
3636 /// let got: Vec<Match> = re.find_iter("☃").collect();
3637 /// // Matches only occur at the beginning and end of the snowman.
3638 /// assert_eq!(got, vec![
3639 /// Match::must(0, 0..0),
3640 /// Match::must(0, 3..3),
3641 /// ]);
3642 ///
3643 /// let re = Regex::builder()
3644 /// .configure(Regex::config().utf8_empty(false))
3645 /// .build("")?;
3646 /// let got: Vec<Match> = re.find_iter("☃").collect();
3647 /// // Matches now occur at every position!
3648 /// assert_eq!(got, vec![
3649 /// Match::must(0, 0..0),
3650 /// Match::must(0, 1..1),
3651 /// Match::must(0, 2..2),
3652 /// Match::must(0, 3..3),
3653 /// ]);
3654 ///
3655 /// Ok::<(), Box<dyn std::error::Error>>(())
3656 /// ```
3657 pub fn configure(&mut self, config: Config) -> &mut Builder {
3658 self.config = self.config.overwrite(config);
3659 self
3660 }
3661
3662 /// Configure the syntax options when parsing a pattern string while
3663 /// building a `Regex`.
3664 ///
3665 /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3666 /// are used. The other build methods accept `Hir` values, which have
3667 /// already been parsed.
3668 ///
3669 /// # Example
3670 ///
3671 /// This example shows how to enable case insensitive mode.
3672 ///
3673 /// ```
3674 /// use regex_automata::{meta::Regex, util::syntax, Match};
3675 ///
3676 /// let re = Regex::builder()
3677 /// .syntax(syntax::Config::new().case_insensitive(true))
3678 /// .build(r"δ")?;
3679 /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3680 ///
3681 /// Ok::<(), Box<dyn std::error::Error>>(())
3682 /// ```
3683 pub fn syntax(
3684 &mut self,
3685 config: crate::util::syntax::Config,
3686 ) -> &mut Builder {
3687 config.apply_ast(&mut self.ast);
3688 config.apply_hir(&mut self.hir);
3689 self
3690 }
3691}
3692
3693#[cfg(test)]
3694mod tests {
3695 use super::*;
3696
3697 // I found this in the course of building out the benchmark suite for
3698 // rebar.
3699 #[test]
3700 fn regression_suffix_literal_count() {
3701 let _ = env_logger::try_init();
3702
3703 let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3704 assert_eq!(1, re.find_iter("tingling").count());
3705 }
3706}