rustls/crypto/aws_lc_rs/
ticketer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::fmt;
use core::fmt::{Debug, Formatter};
use core::sync::atomic::{AtomicUsize, Ordering};

use aws_lc_rs::cipher::{
    DecryptionContext, PaddedBlockDecryptingKey, PaddedBlockEncryptingKey, UnboundCipherKey,
    AES_256, AES_256_KEY_LEN, AES_CBC_IV_LEN,
};
use aws_lc_rs::{hmac, iv};

use super::ring_like::rand::{SecureRandom, SystemRandom};
use super::unspecified_err;
use crate::error::Error;
#[cfg(debug_assertions)]
use crate::log::debug;
use crate::polyfill::try_split_at;
use crate::rand::GetRandomFailed;
use crate::server::ProducesTickets;
use crate::sync::Arc;

/// A concrete, safe ticket creation mechanism.
pub struct Ticketer {}

impl Ticketer {
    /// Make the recommended `Ticketer`.  This produces tickets
    /// with a 12 hour life and randomly generated keys.
    ///
    /// The `Ticketer` uses the [RFC 5077 §4] "Recommended Ticket Construction",
    /// using AES 256 for encryption and HMAC-SHA256 for ciphertext authentication.
    ///
    /// [RFC 5077 §4]: https://www.rfc-editor.org/rfc/rfc5077#section-4
    #[cfg(feature = "std")]
    pub fn new() -> Result<Arc<dyn ProducesTickets>, Error> {
        Ok(Arc::new(crate::ticketer::TicketRotator::new(
            6 * 60 * 60,
            make_ticket_generator,
        )?))
    }

    /// Make the recommended `Ticketer`.  This produces tickets
    /// with a 12 hour life and randomly generated keys.
    ///
    /// The `Ticketer` uses the [RFC 5077 §4] "Recommended Ticket Construction",
    /// using AES 256 for encryption and HMAC-SHA256 for ciphertext authentication.
    ///
    /// [RFC 5077 §4]: https://www.rfc-editor.org/rfc/rfc5077#section-4
    #[cfg(not(feature = "std"))]
    pub fn new<M: crate::lock::MakeMutex>(
        time_provider: &'static dyn TimeProvider,
    ) -> Result<Arc<dyn ProducesTickets>, Error> {
        Ok(Arc::new(crate::ticketer::TicketSwitcher::new::<M>(
            6 * 60 * 60,
            make_ticket_generator,
            time_provider,
        )?))
    }
}

fn make_ticket_generator() -> Result<Box<dyn ProducesTickets>, GetRandomFailed> {
    // NOTE(XXX): Unconditionally mapping errors to `GetRandomFailed` here is slightly
    //   misleading in some cases (e.g. failure to construct a padded block cipher encrypting key).
    //   However, we can't change the return type expected from a `TicketSwitcher` `generator`
    //   without breaking semver.
    //   Tracking in https://github.com/rustls/rustls/issues/2074
    Ok(Box::new(
        Rfc5077Ticketer::new().map_err(|_| GetRandomFailed)?,
    ))
}

/// An RFC 5077 "Recommended Ticket Construction" implementation of a [`Ticketer`].
struct Rfc5077Ticketer {
    aes_encrypt_key: PaddedBlockEncryptingKey,
    aes_decrypt_key: PaddedBlockDecryptingKey,
    hmac_key: hmac::Key,
    key_name: [u8; 16],
    lifetime: u32,
    maximum_ciphertext_len: AtomicUsize,
}

impl Rfc5077Ticketer {
    fn new() -> Result<Self, Error> {
        let rand = SystemRandom::new();

        // Generate a random AES 256 key to use for AES CBC encryption.
        let mut aes_key = [0u8; AES_256_KEY_LEN];
        rand.fill(&mut aes_key)
            .map_err(|_| GetRandomFailed)?;

        // Convert the raw AES 256 key bytes into encrypting and decrypting keys using CBC mode and
        // PKCS#7 padding. We don't want to store just the raw key bytes as constructing the
        // cipher keys has some setup overhead. We can't store just the `UnboundCipherKey` since
        // constructing the padded encrypt/decrypt specific types consume the `UnboundCipherKey`.
        let aes_encrypt_key =
            UnboundCipherKey::new(&AES_256, &aes_key[..]).map_err(unspecified_err)?;
        let aes_encrypt_key =
            PaddedBlockEncryptingKey::cbc_pkcs7(aes_encrypt_key).map_err(unspecified_err)?;

        // Convert the raw AES 256 key bytes into a decrypting key using CBC PKCS#7 padding.
        let aes_decrypt_key =
            UnboundCipherKey::new(&AES_256, &aes_key[..]).map_err(unspecified_err)?;
        let aes_decrypt_key =
            PaddedBlockDecryptingKey::cbc_pkcs7(aes_decrypt_key).map_err(unspecified_err)?;

        // Generate a random HMAC SHA256 key to use for HMAC authentication.
        let hmac_key = hmac::Key::generate(hmac::HMAC_SHA256, &rand).map_err(unspecified_err)?;

        // Generate a random key name.
        let mut key_name = [0u8; 16];
        rand.fill(&mut key_name)
            .map_err(|_| GetRandomFailed)?;

        Ok(Self {
            aes_encrypt_key,
            aes_decrypt_key,
            hmac_key,
            key_name,
            lifetime: 60 * 60 * 12,
            maximum_ciphertext_len: AtomicUsize::new(0),
        })
    }
}

impl ProducesTickets for Rfc5077Ticketer {
    fn enabled(&self) -> bool {
        true
    }

    fn lifetime(&self) -> u32 {
        self.lifetime
    }

    /// Encrypt `message` and return the ciphertext.
    fn encrypt(&self, message: &[u8]) -> Option<Vec<u8>> {
        // Encrypt the ticket state - the cipher module handles generating a random IV of
        // appropriate size, returning it in the `DecryptionContext`.
        let mut encrypted_state = Vec::from(message);
        let dec_ctx = self
            .aes_encrypt_key
            .encrypt(&mut encrypted_state)
            .ok()?;
        let iv: &[u8] = (&dec_ctx).try_into().ok()?;

        // Produce the MAC tag over the relevant context & encrypted state.
        // Quoting RFC 5077:
        //   "The Message Authentication Code (MAC) is calculated using HMAC-SHA-256 over
        //    key_name (16 octets) and IV (16 octets), followed by the length of
        //    the encrypted_state field (2 octets) and its contents (variable
        //    length)."
        let mut hmac_data =
            Vec::with_capacity(self.key_name.len() + iv.len() + 2 + encrypted_state.len());
        hmac_data.extend(&self.key_name);
        hmac_data.extend(iv);
        hmac_data.extend(
            u16::try_from(encrypted_state.len())
                .ok()?
                .to_be_bytes(),
        );
        hmac_data.extend(&encrypted_state);
        let tag = hmac::sign(&self.hmac_key, &hmac_data);
        let tag = tag.as_ref();

        // Combine the context, the encrypted state, and the tag to produce the final ciphertext.
        // Ciphertext structure is:
        //   key_name: [u8; 16]
        //   iv: [u8; 16]
        //   encrypted_state: [u8, _]
        //   mac tag: [u8; 32]
        let mut ciphertext =
            Vec::with_capacity(self.key_name.len() + iv.len() + encrypted_state.len() + tag.len());
        ciphertext.extend(self.key_name);
        ciphertext.extend(iv);
        ciphertext.extend(encrypted_state);
        ciphertext.extend(tag);

        self.maximum_ciphertext_len
            .fetch_max(ciphertext.len(), Ordering::SeqCst);

        Some(ciphertext)
    }

    fn decrypt(&self, ciphertext: &[u8]) -> Option<Vec<u8>> {
        if ciphertext.len()
            > self
                .maximum_ciphertext_len
                .load(Ordering::SeqCst)
        {
            #[cfg(debug_assertions)]
            debug!("rejected over-length ticket");
            return None;
        }

        // Split off the key name from the remaining ciphertext.
        let (alleged_key_name, ciphertext) = try_split_at(ciphertext, self.key_name.len())?;

        // Split off the IV from the remaining ciphertext.
        let (iv, ciphertext) = try_split_at(ciphertext, AES_CBC_IV_LEN)?;

        // And finally, split the encrypted state from the tag.
        let tag_len = self
            .hmac_key
            .algorithm()
            .digest_algorithm()
            .output_len();
        let (enc_state, mac) = try_split_at(ciphertext, ciphertext.len() - tag_len)?;

        // Reconstitute the HMAC data to verify the tag.
        let mut hmac_data =
            Vec::with_capacity(alleged_key_name.len() + iv.len() + 2 + enc_state.len());
        hmac_data.extend(alleged_key_name);
        hmac_data.extend(iv);
        hmac_data.extend(
            u16::try_from(enc_state.len())
                .ok()?
                .to_be_bytes(),
        );
        hmac_data.extend(enc_state);
        hmac::verify(&self.hmac_key, &hmac_data, mac).ok()?;

        // Convert the raw IV back into an appropriate decryption context.
        let iv = iv::FixedLength::try_from(iv).ok()?;
        let dec_context = DecryptionContext::Iv128(iv);

        // And finally, decrypt the encrypted state.
        let mut out = Vec::from(enc_state);
        let plaintext = self
            .aes_decrypt_key
            .decrypt(&mut out, dec_context)
            .ok()?;

        Some(plaintext.into())
    }
}

impl Debug for Rfc5077Ticketer {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        // Note: we deliberately omit keys from the debug output.
        f.debug_struct("Rfc5077Ticketer")
            .field("lifetime", &self.lifetime)
            .finish()
    }
}

#[cfg(test)]
mod tests {
    use core::time::Duration;

    use pki_types::UnixTime;

    use super::*;

    #[test]
    fn basic_pairwise_test() {
        let t = Ticketer::new().unwrap();
        assert!(t.enabled());
        let cipher = t.encrypt(b"hello world").unwrap();
        let plain = t.decrypt(&cipher).unwrap();
        assert_eq!(plain, b"hello world");
    }

    #[test]
    fn refuses_decrypt_before_encrypt() {
        let t = Ticketer::new().unwrap();
        assert_eq!(t.decrypt(b"hello"), None);
    }

    #[test]
    fn refuses_decrypt_larger_than_largest_encryption() {
        let t = Ticketer::new().unwrap();
        let mut cipher = t.encrypt(b"hello world").unwrap();
        assert_eq!(t.decrypt(&cipher), Some(b"hello world".to_vec()));

        // obviously this would never work anyway, but this
        // and `cannot_decrypt_before_encrypt` exercise the
        // first branch in `decrypt()`
        cipher.push(0);
        assert_eq!(t.decrypt(&cipher), None);
    }

    #[test]
    fn ticketrotator_switching_test() {
        let t = Arc::new(crate::ticketer::TicketRotator::new(1, make_ticket_generator).unwrap());
        let now = UnixTime::now();
        let cipher1 = t.encrypt(b"ticket 1").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        {
            // Trigger new ticketer
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 10,
            )));
        }
        let cipher2 = t.encrypt(b"ticket 2").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        {
            // Trigger new ticketer
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 20,
            )));
        }
        let cipher3 = t.encrypt(b"ticket 3").unwrap();
        assert!(t.decrypt(&cipher1).is_none());
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
    }

    #[test]
    fn ticketrotator_remains_usable_over_temporary_ticketer_creation_failure() {
        let mut t = crate::ticketer::TicketRotator::new(1, make_ticket_generator).unwrap();
        let now = UnixTime::now();
        let cipher1 = t.encrypt(b"ticket 1").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        t.generator = fail_generator;
        {
            // Failed new ticketer; this means we still need to
            // rotate.
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 10,
            )));
        }

        // check post-failure encryption/decryption still works
        let cipher2 = t.encrypt(b"ticket 2").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");

        // do the rotation for real
        t.generator = make_ticket_generator;
        {
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 20,
            )));
        }
        let cipher3 = t.encrypt(b"ticket 3").unwrap();
        assert!(t.decrypt(&cipher1).is_some());
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
    }

    #[test]
    fn ticketswitcher_switching_test() {
        #[expect(deprecated)]
        let t = Arc::new(crate::ticketer::TicketSwitcher::new(1, make_ticket_generator).unwrap());
        let now = UnixTime::now();
        let cipher1 = t.encrypt(b"ticket 1").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        {
            // Trigger new ticketer
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 10,
            )));
        }
        let cipher2 = t.encrypt(b"ticket 2").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        {
            // Trigger new ticketer
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 20,
            )));
        }
        let cipher3 = t.encrypt(b"ticket 3").unwrap();
        assert!(t.decrypt(&cipher1).is_none());
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
    }

    #[test]
    fn ticketswitcher_recover_test() {
        #[expect(deprecated)]
        let mut t = crate::ticketer::TicketSwitcher::new(1, make_ticket_generator).unwrap();
        let now = UnixTime::now();
        let cipher1 = t.encrypt(b"ticket 1").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        t.generator = fail_generator;
        {
            // Failed new ticketer
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 10,
            )));
        }
        t.generator = make_ticket_generator;
        let cipher2 = t.encrypt(b"ticket 2").unwrap();
        assert_eq!(t.decrypt(&cipher1).unwrap(), b"ticket 1");
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        {
            // recover
            t.maybe_roll(UnixTime::since_unix_epoch(Duration::from_secs(
                now.as_secs() + 20,
            )));
        }
        let cipher3 = t.encrypt(b"ticket 3").unwrap();
        assert!(t.decrypt(&cipher1).is_none());
        assert_eq!(t.decrypt(&cipher2).unwrap(), b"ticket 2");
        assert_eq!(t.decrypt(&cipher3).unwrap(), b"ticket 3");
    }

    #[test]
    fn rfc5077ticketer_is_debug_and_producestickets() {
        use alloc::format;

        use super::*;

        let t = make_ticket_generator().unwrap();

        assert_eq!(format!("{:?}", t), "Rfc5077Ticketer { lifetime: 43200 }");
        assert!(t.enabled());
        assert_eq!(t.lifetime(), 43200);
    }

    fn fail_generator() -> Result<Box<dyn ProducesTickets>, GetRandomFailed> {
        Err(GetRandomFailed)
    }
}