1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */


use api::units::*;
use api::{ColorF, LineOrientation, BorderStyle};
use crate::batch::{AlphaBatchBuilder, AlphaBatchContainer, BatchTextures};
use crate::batch::{ClipBatcher, BatchBuilder, INVALID_SEGMENT_INDEX, ClipMaskInstanceList};
use crate::command_buffer::{CommandBufferList, QuadFlags};
use crate::pattern::{Pattern, PatternKind, PatternShaderInput};
use crate::segment::EdgeAaSegmentMask;
use crate::spatial_tree::SpatialTree;
use crate::clip::{ClipStore, ClipItemKind};
use crate::frame_builder::FrameGlobalResources;
use crate::gpu_cache::{GpuCache, GpuCacheAddress};
use crate::gpu_types::{BorderInstance, SvgFilterInstance, SVGFEFilterInstance, BlurDirection, BlurInstance, PrimitiveHeaders, ScalingInstance};
use crate::gpu_types::{TransformPalette, ZBufferIdGenerator, MaskInstance, ClipSpace};
use crate::gpu_types::{ZBufferId, QuadSegment, PrimitiveInstanceData, TransformPaletteId};
use crate::internal_types::{FastHashMap, TextureSource, CacheTextureId, FilterGraphOp};
use crate::picture::{SliceId, SurfaceInfo, ResolvedSurfaceTexture, TileCacheInstance};
use crate::quad;
use crate::prim_store::{PrimitiveInstance, PrimitiveStore, PrimitiveScratchBuffer};
use crate::prim_store::gradient::{
    FastLinearGradientInstance, LinearGradientInstance, RadialGradientInstance,
    ConicGradientInstance,
};
use crate::renderer::{GpuBufferAddress, GpuBufferBuilder};
use crate::render_backend::DataStores;
use crate::render_task::{RenderTaskKind, RenderTaskAddress, SubPass};
use crate::render_task::{RenderTask, ScalingTask, SvgFilterInfo, MaskSubPass, SVGFEFilterTask};
use crate::render_task_graph::{RenderTaskGraph, RenderTaskId};
use crate::resource_cache::ResourceCache;
use crate::spatial_tree::SpatialNodeIndex;
use crate::util::ScaleOffset;


const STYLE_SOLID: i32 = ((BorderStyle::Solid as i32) << 8) | ((BorderStyle::Solid as i32) << 16);
const STYLE_MASK: i32 = 0x00FF_FF00;

/// A tag used to identify the output format of a `RenderTarget`.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum RenderTargetKind {
    Color, // RGBA8
    Alpha, // R8
}

pub struct RenderTargetContext<'a, 'rc> {
    pub global_device_pixel_scale: DevicePixelScale,
    pub prim_store: &'a PrimitiveStore,
    pub clip_store: &'a ClipStore,
    pub resource_cache: &'rc mut ResourceCache,
    pub use_dual_source_blending: bool,
    pub use_advanced_blending: bool,
    pub break_advanced_blend_batches: bool,
    pub batch_lookback_count: usize,
    pub spatial_tree: &'a SpatialTree,
    pub data_stores: &'a DataStores,
    pub surfaces: &'a [SurfaceInfo],
    pub scratch: &'a PrimitiveScratchBuffer,
    pub screen_world_rect: WorldRect,
    pub globals: &'a FrameGlobalResources,
    pub tile_caches: &'a FastHashMap<SliceId, Box<TileCacheInstance>>,
    pub root_spatial_node_index: SpatialNodeIndex,
}

/// Represents a number of rendering operations on a surface.
///
/// In graphics parlance, a "render target" usually means "a surface (texture or
/// framebuffer) bound to the output of a shader". This trait has a slightly
/// different meaning, in that it represents the operations on that surface
/// _before_ it's actually bound and rendered. So a `RenderTarget` is built by
/// the `RenderBackend` by inserting tasks, and then shipped over to the
/// `Renderer` where a device surface is resolved and the tasks are transformed
/// into draw commands on that surface.
///
/// We express this as a trait to generalize over color and alpha surfaces.
/// a given `RenderTask` will draw to one or the other, depending on its type
/// and sometimes on its parameters. See `RenderTask::target_kind`.
pub trait RenderTarget {
    /// Creates a new RenderTarget of the given type.
    fn new(
        texture_id: CacheTextureId,
        screen_size: DeviceIntSize,
        gpu_supports_fast_clears: bool,
        used_rect: DeviceIntRect,
    ) -> Self;

    /// Optional hook to provide additional processing for the target at the
    /// end of the build phase.
    fn build(
        &mut self,
        _ctx: &mut RenderTargetContext,
        _gpu_cache: &mut GpuCache,
        _render_tasks: &RenderTaskGraph,
        _prim_headers: &mut PrimitiveHeaders,
        _transforms: &mut TransformPalette,
        _z_generator: &mut ZBufferIdGenerator,
        _prim_instances: &[PrimitiveInstance],
        _cmd_buffers: &CommandBufferList,
        _gpu_buffer_builder: &mut GpuBufferBuilder,
    ) {
    }

    /// Associates a `RenderTask` with this target. That task must be assigned
    /// to a region returned by invoking `allocate()` on this target.
    ///
    /// TODO(gw): It's a bit odd that we need the deferred resolves and mutable
    /// GPU cache here. They are typically used by the build step above. They
    /// are used for the blit jobs to allow resolve_image to be called. It's a
    /// bit of extra overhead to store the image key here and the resolve them
    /// in the build step separately.  BUT: if/when we add more texture cache
    /// target jobs, we might want to tidy this up.
    fn add_task(
        &mut self,
        task_id: RenderTaskId,
        ctx: &RenderTargetContext,
        gpu_cache: &mut GpuCache,
        gpu_buffer_builder: &mut GpuBufferBuilder,
        render_tasks: &RenderTaskGraph,
        clip_store: &ClipStore,
        transforms: &mut TransformPalette,
    );

    fn needs_depth(&self) -> bool;
    fn texture_id(&self) -> CacheTextureId;
}

/// A series of `RenderTarget` instances, serving as the high-level container
/// into which `RenderTasks` are assigned.
///
/// During the build phase, we iterate over the tasks in each `RenderPass`. For
/// each task, we invoke `allocate()` on the `RenderTargetList`, which in turn
/// attempts to allocate an output region in the last `RenderTarget` in the
/// list. If allocation fails (or if the list is empty), a new `RenderTarget` is
/// created and appended to the list. The build phase then assign the task into
/// the target associated with the final allocation.
///
/// The result is that each `RenderPass` is associated with one or two
/// `RenderTargetLists`, depending on whether we have all our tasks have the
/// same `RenderTargetKind`. The lists are then shipped to the `Renderer`, which
/// allocates a device texture array, with one slice per render target in the
/// list.
///
/// The upshot of this scheme is that it maximizes batching. In a given pass,
/// we need to do a separate batch for each individual render target. But with
/// the texture array, we can expose the entirety of the previous pass to each
/// task in the current pass in a single batch, which generally allows each
/// task to be drawn in a single batch regardless of how many results from the
/// previous pass it depends on.
///
/// Note that in some cases (like drop-shadows), we can depend on the output of
/// a pass earlier than the immediately-preceding pass.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderTargetList<T> {
    pub targets: Vec<T>,
}

impl<T: RenderTarget> RenderTargetList<T> {
    pub fn new() -> Self {
        RenderTargetList {
            targets: Vec::new(),
        }
    }

    pub fn build(
        &mut self,
        ctx: &mut RenderTargetContext,
        gpu_cache: &mut GpuCache,
        render_tasks: &RenderTaskGraph,
        prim_headers: &mut PrimitiveHeaders,
        transforms: &mut TransformPalette,
        z_generator: &mut ZBufferIdGenerator,
        prim_instances: &[PrimitiveInstance],
        cmd_buffers: &CommandBufferList,
        gpu_buffer_builder: &mut GpuBufferBuilder,
    ) {
        if self.targets.is_empty() {
            return;
        }

        for target in &mut self.targets {
            target.build(
                ctx,
                gpu_cache,
                render_tasks,
                prim_headers,
                transforms,
                z_generator,
                prim_instances,
                cmd_buffers,
                gpu_buffer_builder,
            );
        }
    }

    pub fn needs_depth(&self) -> bool {
        self.targets.iter().any(|target| target.needs_depth())
    }
}

const NUM_PATTERNS: usize = crate::pattern::NUM_PATTERNS as usize;

/// Contains the work (in the form of instance arrays) needed to fill a color
/// color output surface (RGBA8).
///
/// See `RenderTarget`.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ColorRenderTarget {
    pub alpha_batch_containers: Vec<AlphaBatchContainer>,
    // List of blur operations to apply for this render target.
    pub vertical_blurs: FastHashMap<TextureSource, Vec<BlurInstance>>,
    pub horizontal_blurs: FastHashMap<TextureSource, Vec<BlurInstance>>,
    pub scalings: FastHashMap<TextureSource, Vec<ScalingInstance>>,
    pub svg_filters: Vec<(BatchTextures, Vec<SvgFilterInstance>)>,
    pub svg_nodes: Vec<(BatchTextures, Vec<SVGFEFilterInstance>)>,
    pub blits: Vec<BlitJob>,
    alpha_tasks: Vec<RenderTaskId>,
    screen_size: DeviceIntSize,
    pub texture_id: CacheTextureId,
    // Track the used rect of the render target, so that
    // we can set a scissor rect and only clear to the
    // used portion of the target as an optimization.
    pub used_rect: DeviceIntRect,
    pub resolve_ops: Vec<ResolveOp>,
    pub clear_color: Option<ColorF>,

    pub prim_instances: [FastHashMap<TextureSource, Vec<PrimitiveInstanceData>>; NUM_PATTERNS],
    pub prim_instances_with_scissor: FastHashMap<(DeviceIntRect, PatternKind), FastHashMap<TextureSource, Vec<PrimitiveInstanceData>>>,
    
    pub clip_masks: ClipMaskInstanceList,
}

impl RenderTarget for ColorRenderTarget {
    fn new(
        texture_id: CacheTextureId,
        screen_size: DeviceIntSize,
        _: bool,
        used_rect: DeviceIntRect,
    ) -> Self {
        ColorRenderTarget {
            alpha_batch_containers: Vec::new(),
            vertical_blurs: FastHashMap::default(),
            horizontal_blurs: FastHashMap::default(),
            scalings: FastHashMap::default(),
            svg_filters: Vec::new(),
            svg_nodes: Vec::new(),
            blits: Vec::new(),
            alpha_tasks: Vec::new(),
            screen_size,
            texture_id,
            used_rect,
            resolve_ops: Vec::new(),
            clear_color: Some(ColorF::TRANSPARENT),
            prim_instances: [FastHashMap::default(), FastHashMap::default(), FastHashMap::default(), FastHashMap::default()],
            prim_instances_with_scissor: FastHashMap::default(),
            clip_masks: ClipMaskInstanceList::new(),
        }
    }

    fn build(
        &mut self,
        ctx: &mut RenderTargetContext,
        gpu_cache: &mut GpuCache,
        render_tasks: &RenderTaskGraph,
        prim_headers: &mut PrimitiveHeaders,
        transforms: &mut TransformPalette,
        z_generator: &mut ZBufferIdGenerator,
        prim_instances: &[PrimitiveInstance],
        cmd_buffers: &CommandBufferList,
        gpu_buffer_builder: &mut GpuBufferBuilder,
    ) {
        profile_scope!("build");
        let mut merged_batches = AlphaBatchContainer::new(None);

        for task_id in &self.alpha_tasks {
            profile_scope!("alpha_task");
            let task = &render_tasks[*task_id];

            match task.kind {
                RenderTaskKind::Picture(ref pic_task) => {
                    let target_rect = task.get_target_rect();

                    let scissor_rect = if pic_task.can_merge {
                        None
                    } else {
                        Some(target_rect)
                    };

                    if !pic_task.can_use_shared_surface {
                        self.clear_color = pic_task.clear_color;
                    }

                    // TODO(gw): The type names of AlphaBatchBuilder and BatchBuilder
                    //           are still confusing. Once more of the picture caching
                    //           improvement code lands, the AlphaBatchBuilder and
                    //           AlphaBatchList types will be collapsed into one, which
                    //           should simplify coming up with better type names.
                    let alpha_batch_builder = AlphaBatchBuilder::new(
                        self.screen_size,
                        ctx.break_advanced_blend_batches,
                        ctx.batch_lookback_count,
                        *task_id,
                        (*task_id).into(),
                    );

                    let mut batch_builder = BatchBuilder::new(alpha_batch_builder);
                    let cmd_buffer = cmd_buffers.get(pic_task.cmd_buffer_index);

                    cmd_buffer.iter_prims(&mut |cmd, spatial_node_index, segments| {
                        batch_builder.add_prim_to_batch(
                            cmd,
                            spatial_node_index,
                            ctx,
                            gpu_cache,
                            render_tasks,
                            prim_headers,
                            transforms,
                            pic_task.raster_spatial_node_index,
                            pic_task.surface_spatial_node_index,
                            z_generator,
                            prim_instances,
                            gpu_buffer_builder,
                            segments,
                        );
                    });

                    let alpha_batch_builder = batch_builder.finalize();

                    alpha_batch_builder.build(
                        &mut self.alpha_batch_containers,
                        &mut merged_batches,
                        target_rect,
                        scissor_rect,
                    );
                }
                _ => {
                    unreachable!();
                }
            }
        }

        if !merged_batches.is_empty() {
            self.alpha_batch_containers.push(merged_batches);
        }
    }

    fn texture_id(&self) -> CacheTextureId {
        self.texture_id
    }

    fn add_task(
        &mut self,
        task_id: RenderTaskId,
        ctx: &RenderTargetContext,
        gpu_cache: &mut GpuCache,
        gpu_buffer_builder: &mut GpuBufferBuilder,
        render_tasks: &RenderTaskGraph,
        _: &ClipStore,
        transforms: &mut TransformPalette,
    ) {
        profile_scope!("add_task");
        let task = &render_tasks[task_id];

        match task.kind {
            RenderTaskKind::Prim(ref info) => {
                let render_task_address = task_id.into();
                let target_rect = task.get_target_rect();

                quad::add_to_batch(
                    info.pattern,
                    info.pattern_input,
                    render_task_address,
                    info.transform_id,
                    info.prim_address_f,
                    info.quad_flags,
                    info.edge_flags,
                    INVALID_SEGMENT_INDEX as u8,
                    info.texture_input,
                    ZBufferId(0),
                    render_tasks,
                    gpu_buffer_builder,
                    |key, instance| {
                        if info.prim_needs_scissor_rect {
                            self.prim_instances_with_scissor
                                .entry((target_rect, info.pattern))
                                .or_insert(FastHashMap::default())
                                .entry(key.textures.input.colors[0])
                                .or_insert(Vec::new())
                                .push(instance);
                        } else {
                            self.prim_instances[info.pattern as usize]
                                .entry(key.textures.input.colors[0])
                                .or_insert(Vec::new())
                                .push(instance);
                        }
                    }
                );
            }
            RenderTaskKind::VerticalBlur(ref info) => {
                add_blur_instances(
                    &mut self.vertical_blurs,
                    BlurDirection::Vertical,
                    info.blur_std_deviation,
                    info.blur_region,
                    task_id.into(),
                    task.children[0],
                    render_tasks,
                );
            }
            RenderTaskKind::HorizontalBlur(ref info) => {
                add_blur_instances(
                    &mut self.horizontal_blurs,
                    BlurDirection::Horizontal,
                    info.blur_std_deviation,
                    info.blur_region,
                    task_id.into(),
                    task.children[0],
                    render_tasks,
                );
            }
            RenderTaskKind::Picture(ref pic_task) => {
                if let Some(ref resolve_op) = pic_task.resolve_op {
                    self.resolve_ops.push(resolve_op.clone());
                }
                self.alpha_tasks.push(task_id);
            }
            RenderTaskKind::SvgFilter(ref task_info) => {
                add_svg_filter_instances(
                    &mut self.svg_filters,
                    render_tasks,
                    &task_info.info,
                    task_id,
                    task.children.get(0).cloned(),
                    task.children.get(1).cloned(),
                    task_info.extra_gpu_cache_handle.map(|handle| gpu_cache.get_address(&handle)),
                )
            }
            RenderTaskKind::SVGFENode(ref task_info) => {
                add_svg_filter_node_instances(
                    &mut self.svg_nodes,
                    render_tasks,
                    &task_info,
                    task,
                    task.children.get(0).cloned(),
                    task.children.get(1).cloned(),
                    task_info.extra_gpu_cache_handle.map(|handle| gpu_cache.get_address(&handle)),
                )
            }
            RenderTaskKind::Image(..) |
            RenderTaskKind::Cached(..) |
            RenderTaskKind::ClipRegion(..) |
            RenderTaskKind::Border(..) |
            RenderTaskKind::CacheMask(..) |
            RenderTaskKind::FastLinearGradient(..) |
            RenderTaskKind::LinearGradient(..) |
            RenderTaskKind::RadialGradient(..) |
            RenderTaskKind::ConicGradient(..) |
            RenderTaskKind::TileComposite(..) |
            RenderTaskKind::Empty(..) |
            RenderTaskKind::LineDecoration(..) => {
                panic!("Should not be added to color target!");
            }
            RenderTaskKind::Readback(..) => {}
            RenderTaskKind::Scaling(ref info) => {
                add_scaling_instances(
                    info,
                    &mut self.scalings,
                    task,
                    task.children.first().map(|&child| &render_tasks[child]),
                );
            }
            RenderTaskKind::Blit(ref task_info) => {
                let target_rect = task.get_target_rect();
                self.blits.push(BlitJob {
                    source: task_info.source,
                    source_rect: task_info.source_rect,
                    target_rect,
                });
            }
            #[cfg(test)]
            RenderTaskKind::Test(..) => {}
        }

        build_sub_pass(
            task_id,
            task,
            gpu_buffer_builder,
            render_tasks,
            transforms,
            ctx,
            &mut self.clip_masks,
        );
    }

    fn needs_depth(&self) -> bool {
        self.alpha_batch_containers.iter().any(|ab| {
            !ab.opaque_batches.is_empty()
        })
    }
}

/// Contains the work (in the form of instance arrays) needed to fill an alpha
/// output surface (R8).
///
/// See `RenderTarget`.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct AlphaRenderTarget {
    pub clip_batcher: ClipBatcher,
    // List of blur operations to apply for this render target.
    pub vertical_blurs: FastHashMap<TextureSource, Vec<BlurInstance>>,
    pub horizontal_blurs: FastHashMap<TextureSource, Vec<BlurInstance>>,
    pub scalings: FastHashMap<TextureSource, Vec<ScalingInstance>>,
    pub zero_clears: Vec<RenderTaskId>,
    pub one_clears: Vec<RenderTaskId>,
    pub texture_id: CacheTextureId,
    pub clip_masks: ClipMaskInstanceList,
}

impl RenderTarget for AlphaRenderTarget {
    fn new(
        texture_id: CacheTextureId,
        _: DeviceIntSize,
        gpu_supports_fast_clears: bool,
        _: DeviceIntRect,
    ) -> Self {
        AlphaRenderTarget {
            clip_batcher: ClipBatcher::new(gpu_supports_fast_clears),
            vertical_blurs: FastHashMap::default(),
            horizontal_blurs: FastHashMap::default(),
            scalings: FastHashMap::default(),
            zero_clears: Vec::new(),
            one_clears: Vec::new(),
            texture_id,
            clip_masks: ClipMaskInstanceList::new(),
        }
    }

    fn texture_id(&self) -> CacheTextureId {
        self.texture_id
    }

    fn add_task(
        &mut self,
        task_id: RenderTaskId,
        ctx: &RenderTargetContext,
        gpu_cache: &mut GpuCache,
        gpu_buffer_builder: &mut GpuBufferBuilder,
        render_tasks: &RenderTaskGraph,
        clip_store: &ClipStore,
        transforms: &mut TransformPalette,
    ) {
        profile_scope!("add_task");
        let task = &render_tasks[task_id];
        let target_rect = task.get_target_rect();

        match task.kind {
            RenderTaskKind::Image(..) |
            RenderTaskKind::Cached(..) |
            RenderTaskKind::Readback(..) |
            RenderTaskKind::Picture(..) |
            RenderTaskKind::Blit(..) |
            RenderTaskKind::Border(..) |
            RenderTaskKind::LineDecoration(..) |
            RenderTaskKind::FastLinearGradient(..) |
            RenderTaskKind::LinearGradient(..) |
            RenderTaskKind::RadialGradient(..) |
            RenderTaskKind::ConicGradient(..) |
            RenderTaskKind::TileComposite(..) |
            RenderTaskKind::Prim(..) |
            RenderTaskKind::SvgFilter(..) |
            RenderTaskKind::SVGFENode(..) => {
                panic!("BUG: should not be added to alpha target!");
            }
            RenderTaskKind::Empty(..) => {
                // TODO(gw): Could likely be more efficient by choosing to clear to 0 or 1
                //           based on the clip chain, or even skipping clear and masking the
                //           prim region with blend disabled.
                self.one_clears.push(task_id);
            }
            RenderTaskKind::VerticalBlur(ref info) => {
                self.zero_clears.push(task_id);
                add_blur_instances(
                    &mut self.vertical_blurs,
                    BlurDirection::Vertical,
                    info.blur_std_deviation,
                    info.blur_region,
                    task_id.into(),
                    task.children[0],
                    render_tasks,
                );
            }
            RenderTaskKind::HorizontalBlur(ref info) => {
                self.zero_clears.push(task_id);
                add_blur_instances(
                    &mut self.horizontal_blurs,
                    BlurDirection::Horizontal,
                    info.blur_std_deviation,
                    info.blur_region,
                    task_id.into(),
                    task.children[0],
                    render_tasks,
                );
            }
            RenderTaskKind::CacheMask(ref task_info) => {
                let clear_to_one = self.clip_batcher.add(
                    task_info.clip_node_range,
                    task_info.root_spatial_node_index,
                    render_tasks,
                    gpu_cache,
                    clip_store,
                    transforms,
                    task_info.actual_rect,
                    task_info.device_pixel_scale,
                    target_rect.min.to_f32(),
                    task_info.actual_rect.min,
                    ctx,
                );
                if task_info.clear_to_one || clear_to_one {
                    self.one_clears.push(task_id);
                }
            }
            RenderTaskKind::ClipRegion(ref region_task) => {
                if region_task.clear_to_one {
                    self.one_clears.push(task_id);
                }
                let device_rect = DeviceRect::from_size(
                    target_rect.size().to_f32(),
                );
                self.clip_batcher.add_clip_region(
                    region_task.local_pos,
                    device_rect,
                    region_task.clip_data.clone(),
                    target_rect.min.to_f32(),
                    DevicePoint::zero(),
                    region_task.device_pixel_scale.0,
                );
            }
            RenderTaskKind::Scaling(ref info) => {
                add_scaling_instances(
                    info,
                    &mut self.scalings,
                    task,
                    task.children.first().map(|&child| &render_tasks[child]),
                );
            }
            #[cfg(test)]
            RenderTaskKind::Test(..) => {}
        }

        build_sub_pass(
            task_id,
            task,
            gpu_buffer_builder,
            render_tasks,
            transforms,
            ctx,
            &mut self.clip_masks,
        );
    }

    fn needs_depth(&self) -> bool {
        false
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, PartialEq, Clone)]
pub struct ResolveOp {
    pub src_task_ids: Vec<RenderTaskId>,
    pub dest_task_id: RenderTaskId,
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum PictureCacheTargetKind {
    Draw {
        alpha_batch_container: AlphaBatchContainer,
    },
    Blit {
        task_id: RenderTaskId,
        sub_rect_offset: DeviceIntVector2D,
    },
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PictureCacheTarget {
    pub surface: ResolvedSurfaceTexture,
    pub kind: PictureCacheTargetKind,
    pub clear_color: Option<ColorF>,
    pub dirty_rect: DeviceIntRect,
    pub valid_rect: DeviceIntRect,
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextureCacheRenderTarget {
    pub target_kind: RenderTargetKind,
    pub horizontal_blurs: FastHashMap<TextureSource, Vec<BlurInstance>>,
    pub blits: Vec<BlitJob>,
    pub border_segments_complex: Vec<BorderInstance>,
    pub border_segments_solid: Vec<BorderInstance>,
    pub clears: Vec<DeviceIntRect>,
    pub line_decorations: Vec<LineDecorationJob>,
    pub fast_linear_gradients: Vec<FastLinearGradientInstance>,
    pub linear_gradients: Vec<LinearGradientInstance>,
    pub radial_gradients: Vec<RadialGradientInstance>,
    pub conic_gradients: Vec<ConicGradientInstance>,
}

impl TextureCacheRenderTarget {
    pub fn new(target_kind: RenderTargetKind) -> Self {
        TextureCacheRenderTarget {
            target_kind,
            horizontal_blurs: FastHashMap::default(),
            blits: vec![],
            border_segments_complex: vec![],
            border_segments_solid: vec![],
            clears: vec![],
            line_decorations: vec![],
            fast_linear_gradients: vec![],
            linear_gradients: vec![],
            radial_gradients: vec![],
            conic_gradients: vec![],
        }
    }

    pub fn add_task(
        &mut self,
        task_id: RenderTaskId,
        render_tasks: &RenderTaskGraph,
    ) {
        profile_scope!("add_task");
        let task_address = task_id.into();

        let task = &render_tasks[task_id];
        let target_rect = task.get_target_rect();

        match task.kind {
            RenderTaskKind::LineDecoration(ref info) => {
                self.clears.push(target_rect);

                self.line_decorations.push(LineDecorationJob {
                    task_rect: target_rect.to_f32(),
                    local_size: info.local_size,
                    style: info.style as i32,
                    axis_select: match info.orientation {
                        LineOrientation::Horizontal => 0.0,
                        LineOrientation::Vertical => 1.0,
                    },
                    wavy_line_thickness: info.wavy_line_thickness,
                });
            }
            RenderTaskKind::HorizontalBlur(ref info) => {
                add_blur_instances(
                    &mut self.horizontal_blurs,
                    BlurDirection::Horizontal,
                    info.blur_std_deviation,
                    info.blur_region,
                    task_address,
                    task.children[0],
                    render_tasks,
                );
            }
            RenderTaskKind::Blit(ref task_info) => {
                // Add a blit job to copy from an existing render
                // task to this target.
                self.blits.push(BlitJob {
                    source: task_info.source,
                    source_rect: task_info.source_rect,
                    target_rect,
                });
            }
            RenderTaskKind::Border(ref task_info) => {
                self.clears.push(target_rect);

                let task_origin = target_rect.min.to_f32();
                // TODO(gw): Clone here instead of a move of this vec, since the frame
                //           graph is immutable by this point. It's rare that borders
                //           are drawn since they are persisted in the texture cache,
                //           but perhaps this could be improved in future.
                let instances = task_info.instances.clone();
                for mut instance in instances {
                    // TODO(gw): It may be better to store the task origin in
                    //           the render task data instead of per instance.
                    instance.task_origin = task_origin;
                    if instance.flags & STYLE_MASK == STYLE_SOLID {
                        self.border_segments_solid.push(instance);
                    } else {
                        self.border_segments_complex.push(instance);
                    }
                }
            }
            RenderTaskKind::FastLinearGradient(ref task_info) => {
                self.fast_linear_gradients.push(task_info.to_instance(&target_rect));
            }
            RenderTaskKind::LinearGradient(ref task_info) => {
                self.linear_gradients.push(task_info.to_instance(&target_rect));
            }
            RenderTaskKind::RadialGradient(ref task_info) => {
                self.radial_gradients.push(task_info.to_instance(&target_rect));
            }
            RenderTaskKind::ConicGradient(ref task_info) => {
                self.conic_gradients.push(task_info.to_instance(&target_rect));
            }
            RenderTaskKind::Prim(..) |
            RenderTaskKind::Image(..) |
            RenderTaskKind::Cached(..) |
            RenderTaskKind::VerticalBlur(..) |
            RenderTaskKind::Picture(..) |
            RenderTaskKind::ClipRegion(..) |
            RenderTaskKind::CacheMask(..) |
            RenderTaskKind::Readback(..) |
            RenderTaskKind::Scaling(..) |
            RenderTaskKind::TileComposite(..) |
            RenderTaskKind::Empty(..) |
            RenderTaskKind::SvgFilter(..) |
            RenderTaskKind::SVGFENode(..) => {
                panic!("BUG: unexpected task kind for texture cache target");
            }
            #[cfg(test)]
            RenderTaskKind::Test(..) => {}
        }
    }
}

fn add_blur_instances(
    instances: &mut FastHashMap<TextureSource, Vec<BlurInstance>>,
    blur_direction: BlurDirection,
    blur_std_deviation: f32,
    blur_region: DeviceIntSize,
    task_address: RenderTaskAddress,
    src_task_id: RenderTaskId,
    render_tasks: &RenderTaskGraph,
) {
    let source = render_tasks[src_task_id].get_texture_source();

    let instance = BlurInstance {
        task_address,
        src_task_address: src_task_id.into(),
        blur_direction: blur_direction.as_int(),
        blur_std_deviation,
        blur_region: blur_region.to_f32(),
    };

    instances
        .entry(source)
        .or_insert(Vec::new())
        .push(instance);
}

fn add_scaling_instances(
    task: &ScalingTask,
    instances: &mut FastHashMap<TextureSource, Vec<ScalingInstance>>,
    target_task: &RenderTask,
    source_task: Option<&RenderTask>,
) {
    let target_rect = target_task
        .get_target_rect()
        .inner_box(task.padding)
        .to_f32();

    let source = source_task.unwrap().get_texture_source();

    let source_rect = source_task.unwrap().get_target_rect().to_f32();

    instances
        .entry(source)
        .or_insert(Vec::new())
        .push(ScalingInstance {
            target_rect,
            source_rect,
        });
}

fn add_svg_filter_instances(
    instances: &mut Vec<(BatchTextures, Vec<SvgFilterInstance>)>,
    render_tasks: &RenderTaskGraph,
    filter: &SvgFilterInfo,
    task_id: RenderTaskId,
    input_1_task: Option<RenderTaskId>,
    input_2_task: Option<RenderTaskId>,
    extra_data_address: Option<GpuCacheAddress>,
) {
    let mut textures = BatchTextures::empty();

    if let Some(id) = input_1_task {
        textures.input.colors[0] = render_tasks[id].get_texture_source();
    }

    if let Some(id) = input_2_task {
        textures.input.colors[1] = render_tasks[id].get_texture_source();
    }

    let kind = match filter {
        SvgFilterInfo::Blend(..) => 0,
        SvgFilterInfo::Flood(..) => 1,
        SvgFilterInfo::LinearToSrgb => 2,
        SvgFilterInfo::SrgbToLinear => 3,
        SvgFilterInfo::Opacity(..) => 4,
        SvgFilterInfo::ColorMatrix(..) => 5,
        SvgFilterInfo::DropShadow(..) => 6,
        SvgFilterInfo::Offset(..) => 7,
        SvgFilterInfo::ComponentTransfer(..) => 8,
        SvgFilterInfo::Identity => 9,
        SvgFilterInfo::Composite(..) => 10,
    };

    let input_count = match filter {
        SvgFilterInfo::Flood(..) => 0,

        SvgFilterInfo::LinearToSrgb |
        SvgFilterInfo::SrgbToLinear |
        SvgFilterInfo::Opacity(..) |
        SvgFilterInfo::ColorMatrix(..) |
        SvgFilterInfo::Offset(..) |
        SvgFilterInfo::ComponentTransfer(..) |
        SvgFilterInfo::Identity => 1,

        // Not techincally a 2 input filter, but we have 2 inputs here: original content & blurred content.
        SvgFilterInfo::DropShadow(..) |
        SvgFilterInfo::Blend(..) |
        SvgFilterInfo::Composite(..) => 2,
    };

    let generic_int = match filter {
        SvgFilterInfo::Blend(mode) => *mode as u16,
        SvgFilterInfo::ComponentTransfer(data) =>
            (data.r_func.to_int() << 12 |
             data.g_func.to_int() << 8 |
             data.b_func.to_int() << 4 |
             data.a_func.to_int()) as u16,
        SvgFilterInfo::Composite(operator) =>
            operator.as_int() as u16,
        SvgFilterInfo::LinearToSrgb |
        SvgFilterInfo::SrgbToLinear |
        SvgFilterInfo::Flood(..) |
        SvgFilterInfo::Opacity(..) |
        SvgFilterInfo::ColorMatrix(..) |
        SvgFilterInfo::DropShadow(..) |
        SvgFilterInfo::Offset(..) |
        SvgFilterInfo::Identity => 0,
    };

    let instance = SvgFilterInstance {
        task_address: task_id.into(),
        input_1_task_address: input_1_task.map(|id| id.into()).unwrap_or(RenderTaskAddress(0)),
        input_2_task_address: input_2_task.map(|id| id.into()).unwrap_or(RenderTaskAddress(0)),
        kind,
        input_count,
        generic_int,
        padding: 0,
        extra_data_address: extra_data_address.unwrap_or(GpuCacheAddress::INVALID),
    };

    for (ref mut batch_textures, ref mut batch) in instances.iter_mut() {
        if let Some(combined_textures) = batch_textures.combine_textures(textures) {
            batch.push(instance);
            // Update the batch textures to the newly combined batch textures
            *batch_textures = combined_textures;
            return;
        }
    }

    instances.push((textures, vec![instance]));
}

/// Generates SVGFEFilterInstances from a single SVGFEFilterTask, this is what
/// prepares vertex data for the shader, and adds it to the appropriate batch.
///
/// The interesting parts of the handling of SVG filters are:
/// * scene_building.rs : wrap_prim_with_filters
/// * picture.rs : get_coverage_svgfe
/// * render_task.rs : new_svg_filter_graph
/// * render_target.rs : add_svg_filter_node_instances (you are here)
fn add_svg_filter_node_instances(
    instances: &mut Vec<(BatchTextures, Vec<SVGFEFilterInstance>)>,
    render_tasks: &RenderTaskGraph,
    task_info: &SVGFEFilterTask,
    target_task: &RenderTask,
    input_1_task: Option<RenderTaskId>,
    input_2_task: Option<RenderTaskId>,
    extra_data_address: Option<GpuCacheAddress>,
) {
    let node = &task_info.node;
    let op = &task_info.op;
    let mut textures = BatchTextures::empty();

    // We have to undo the inflate here as the inflated target rect is meant to
    // have a blank border
    let target_rect = target_task
        .get_target_rect()
        .inner_box(DeviceIntSideOffsets::new(node.inflate as i32, node.inflate as i32, node.inflate as i32, node.inflate as i32))
        .to_f32();

    let mut instance = SVGFEFilterInstance {
        target_rect,
        input_1_content_scale_and_offset: [0.0; 4],
        input_2_content_scale_and_offset: [0.0; 4],
        input_1_task_address: RenderTaskId::INVALID.into(),
        input_2_task_address: RenderTaskId::INVALID.into(),
        kind: 0,
        input_count: node.inputs.len() as u16,
        extra_data_address: extra_data_address.unwrap_or(GpuCacheAddress::INVALID),
    };

    // Must match FILTER_* in cs_svg_filter_node.glsl
    instance.kind = match op {
        // Identity does not modify color, no linear case
        FilterGraphOp::SVGFEIdentity => 0,
        // SourceGraphic does not have its own shader mode, it uses Identity.
        FilterGraphOp::SVGFESourceGraphic => 0,
        // SourceAlpha does not have its own shader mode, it uses ToAlpha.
        FilterGraphOp::SVGFESourceAlpha => 4,
        // Opacity scales the entire rgba color, so it does not need a linear
        // case as the rgb / a ratio does not change (sRGB is a curve on the RGB
        // before alpha multiply, not after)
        FilterGraphOp::SVGFEOpacity{..} => 2,
        FilterGraphOp::SVGFEToAlpha => 4,
        FilterGraphOp::SVGFEBlendColor => {match node.linear {false => 6, true => 7}},
        FilterGraphOp::SVGFEBlendColorBurn => {match node.linear {false => 8, true => 9}},
        FilterGraphOp::SVGFEBlendColorDodge => {match node.linear {false => 10, true => 11}},
        FilterGraphOp::SVGFEBlendDarken => {match node.linear {false => 12, true => 13}},
        FilterGraphOp::SVGFEBlendDifference => {match node.linear {false => 14, true => 15}},
        FilterGraphOp::SVGFEBlendExclusion => {match node.linear {false => 16, true => 17}},
        FilterGraphOp::SVGFEBlendHardLight => {match node.linear {false => 18, true => 19}},
        FilterGraphOp::SVGFEBlendHue => {match node.linear {false => 20, true => 21}},
        FilterGraphOp::SVGFEBlendLighten => {match node.linear {false => 22, true => 23}},
        FilterGraphOp::SVGFEBlendLuminosity => {match node.linear {false => 24, true => 25}},
        FilterGraphOp::SVGFEBlendMultiply => {match node.linear {false => 26, true => 27}},
        FilterGraphOp::SVGFEBlendNormal => {match node.linear {false => 28, true => 29}},
        FilterGraphOp::SVGFEBlendOverlay => {match node.linear {false => 30, true => 31}},
        FilterGraphOp::SVGFEBlendSaturation => {match node.linear {false => 32, true => 33}},
        FilterGraphOp::SVGFEBlendScreen => {match node.linear {false => 34, true => 35}},
        FilterGraphOp::SVGFEBlendSoftLight => {match node.linear {false => 36, true => 37}},
        FilterGraphOp::SVGFEColorMatrix{..} => {match node.linear {false => 38, true => 39}},
        FilterGraphOp::SVGFEComponentTransfer => unreachable!(),
        FilterGraphOp::SVGFEComponentTransferInterned{..} => {match node.linear {false => 40, true => 41}},
        FilterGraphOp::SVGFECompositeArithmetic{..} => {match node.linear {false => 42, true => 43}},
        FilterGraphOp::SVGFECompositeATop => {match node.linear {false => 44, true => 45}},
        FilterGraphOp::SVGFECompositeIn => {match node.linear {false => 46, true => 47}},
        FilterGraphOp::SVGFECompositeLighter => {match node.linear {false => 48, true => 49}},
        FilterGraphOp::SVGFECompositeOut => {match node.linear {false => 50, true => 51}},
        FilterGraphOp::SVGFECompositeOver => {match node.linear {false => 52, true => 53}},
        FilterGraphOp::SVGFECompositeXOR => {match node.linear {false => 54, true => 55}},
        FilterGraphOp::SVGFEConvolveMatrixEdgeModeDuplicate{..} => {match node.linear {false => 56, true => 57}},
        FilterGraphOp::SVGFEConvolveMatrixEdgeModeNone{..} => {match node.linear {false => 58, true => 59}},
        FilterGraphOp::SVGFEConvolveMatrixEdgeModeWrap{..} => {match node.linear {false => 60, true => 61}},
        FilterGraphOp::SVGFEDiffuseLightingDistant{..} => {match node.linear {false => 62, true => 63}},
        FilterGraphOp::SVGFEDiffuseLightingPoint{..} => {match node.linear {false => 64, true => 65}},
        FilterGraphOp::SVGFEDiffuseLightingSpot{..} => {match node.linear {false => 66, true => 67}},
        FilterGraphOp::SVGFEDisplacementMap{..} => {match node.linear {false => 68, true => 69}},
        FilterGraphOp::SVGFEDropShadow{..} => {match node.linear {false => 70, true => 71}},
        // feFlood takes an sRGB color and does no math on it, no linear case
        FilterGraphOp::SVGFEFlood{..} => 72,
        FilterGraphOp::SVGFEGaussianBlur{..} => {match node.linear {false => 74, true => 75}},
        // feImage does not meaningfully modify the color of its input, though a
        // case could be made for gamma-correct image scaling, that's a bit out
        // of scope for now
        FilterGraphOp::SVGFEImage{..} => 76,
        FilterGraphOp::SVGFEMorphologyDilate{..} => {match node.linear {false => 80, true => 81}},
        FilterGraphOp::SVGFEMorphologyErode{..} => {match node.linear {false => 82, true => 83}},
        FilterGraphOp::SVGFESpecularLightingDistant{..} => {match node.linear {false => 86, true => 87}},
        FilterGraphOp::SVGFESpecularLightingPoint{..} => {match node.linear {false => 88, true => 89}},
        FilterGraphOp::SVGFESpecularLightingSpot{..} => {match node.linear {false => 90, true => 91}},
        // feTile does not modify color, no linear case
        FilterGraphOp::SVGFETile => 92,
        FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithNoStitching{..} => {match node.linear {false => 94, true => 95}},
        FilterGraphOp::SVGFETurbulenceWithFractalNoiseWithStitching{..} => {match node.linear {false => 96, true => 97}},
        FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithNoStitching{..} => {match node.linear {false => 98, true => 99}},
        FilterGraphOp::SVGFETurbulenceWithTurbulenceNoiseWithStitching{..} => {match node.linear {false => 100, true => 101}},
    };

    // This is a bit of an ugly way to do this, but avoids code duplication.
    let mut resolve_input = |index: usize, src_task: Option<RenderTaskId>| -> (RenderTaskAddress, [f32; 4]) {
        let mut src_task_id = RenderTaskId::INVALID;
        let mut resolved_scale_and_offset: [f32; 4] = [0.0; 4];
        if let Some(input) = node.inputs.get(index) {
            src_task_id = src_task.unwrap();
            let src_task = &render_tasks[src_task_id];

            textures.input.colors[index] = src_task.get_texture_source();
            let src_task_size = src_task.location.size();
            let src_scale_x = (src_task_size.width as f32 - input.inflate as f32 * 2.0) / input.subregion.width();
            let src_scale_y = (src_task_size.height as f32 - input.inflate as f32 * 2.0) / input.subregion.height();
            let scale_x = src_scale_x * node.subregion.width();
            let scale_y = src_scale_y * node.subregion.height();
            let offset_x = src_scale_x * (node.subregion.min.x - input.subregion.min.x) + input.inflate as f32;
            let offset_y = src_scale_y * (node.subregion.min.y - input.subregion.min.y) + input.inflate as f32;
            resolved_scale_and_offset = [
                scale_x,
                scale_y,
                offset_x,
                offset_y];
        }
        let address: RenderTaskAddress = src_task_id.into();
        (address, resolved_scale_and_offset)
    };
    (instance.input_1_task_address, instance.input_1_content_scale_and_offset) = resolve_input(0, input_1_task);
    (instance.input_2_task_address, instance.input_2_content_scale_and_offset) = resolve_input(1, input_2_task);

    // Additional instance modifications for certain filters
    match op {
        FilterGraphOp::SVGFEOpacity { valuebinding: _, value } => {
            // opacity only has one input so we can use the other
            // components to store the opacity value
            instance.input_2_content_scale_and_offset = [*value, 0.0, 0.0, 0.0];
        },
        FilterGraphOp::SVGFEMorphologyDilate { radius_x, radius_y } |
        FilterGraphOp::SVGFEMorphologyErode { radius_x, radius_y } => {
            // morphology filters only use one input, so we use the
            // second offset coord to store the radius values.
            instance.input_2_content_scale_and_offset = [*radius_x, *radius_y, 0.0, 0.0];
        },
        FilterGraphOp::SVGFEFlood { color } => {
            // flood filters don't use inputs, so we store color here.
            // We can't do the same trick on DropShadow because it does have two
            // inputs.
            instance.input_2_content_scale_and_offset = [color.r, color.g, color.b, color.a];
        },
        _ => {},
    }

    for (ref mut batch_textures, ref mut batch) in instances.iter_mut() {
        if let Some(combined_textures) = batch_textures.combine_textures(textures) {
            batch.push(instance);
            // Update the batch textures to the newly combined batch textures
            *batch_textures = combined_textures;
            // is this really the intended behavior?
            return;
        }
    }

    instances.push((textures, vec![instance]));
}

// Information required to do a blit from a source to a target.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BlitJob {
    pub source: RenderTaskId,
    // Normalized region within the source task to blit from
    pub source_rect: DeviceIntRect,
    pub target_rect: DeviceIntRect,
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
#[derive(Clone, Debug)]
pub struct LineDecorationJob {
    pub task_rect: DeviceRect,
    pub local_size: LayoutSize,
    pub wavy_line_thickness: f32,
    pub style: i32,
    pub axis_select: f32,
}

fn build_mask_tasks(
    info: &MaskSubPass,
    render_task_address: RenderTaskAddress,
    task_world_rect: WorldRect,
    target_rect: DeviceIntRect,
    main_prim_address: GpuBufferAddress,
    prim_spatial_node_index: SpatialNodeIndex,
    raster_spatial_node_index: SpatialNodeIndex,
    clip_store: &ClipStore,
    data_stores: &DataStores,
    spatial_tree: &SpatialTree,
    gpu_buffer_builder: &mut GpuBufferBuilder,
    transforms: &mut TransformPalette,
    render_tasks: &RenderTaskGraph,
    results: &mut ClipMaskInstanceList,
) {
    for i in 0 .. info.clip_node_range.count {
        let clip_instance = clip_store.get_instance_from_range(&info.clip_node_range, i);
        let clip_node = &data_stores.clip[clip_instance.handle];

        let (clip_address, fast_path) = match clip_node.item.kind {
            ClipItemKind::RoundedRectangle { rect, radius, mode } => {
                let (fast_path, clip_address) = if radius.is_uniform().is_some() {
                    let mut writer = gpu_buffer_builder.f32.write_blocks(3);
                    writer.push_one(rect);
                    writer.push_one([radius.top_left.width, 0.0, 0.0, 0.0]);
                    writer.push_one([mode as i32 as f32, 0.0, 0.0, 0.0]);
                    let clip_address = writer.finish();

                    (true, clip_address)
                } else {
                    let mut writer = gpu_buffer_builder.f32.write_blocks(4);
                    writer.push_one(rect);
                    writer.push_one([
                        radius.top_left.width,
                        radius.top_left.height,
                        radius.top_right.width,
                        radius.top_right.height,
                    ]);
                    writer.push_one([
                        radius.bottom_left.width,
                        radius.bottom_left.height,
                        radius.bottom_right.width,
                        radius.bottom_right.height,
                    ]);
                    writer.push_one([mode as i32 as f32, 0.0, 0.0, 0.0]);
                    let clip_address = writer.finish();

                    (false, clip_address)
                };

                (clip_address, fast_path)
            }
            ClipItemKind::Rectangle { rect, mode, .. } => {
                let mut writer = gpu_buffer_builder.f32.write_blocks(3);
                writer.push_one(rect);
                writer.push_one([0.0, 0.0, 0.0, 0.0]);
                writer.push_one([mode as i32 as f32, 0.0, 0.0, 0.0]);
                let clip_address = writer.finish();

                (clip_address, true)
            }
            ClipItemKind::BoxShadow { .. } => {
                panic!("bug: box-shadow clips not expected on non-legacy rect/quads");
            }
            ClipItemKind::Image { rect, .. } => {
                let clip_transform_id = transforms.get_id(
                    clip_node.item.spatial_node_index,
                    raster_spatial_node_index,
                    spatial_tree,
                );

                let is_same_coord_system = spatial_tree.is_matching_coord_system(
                    prim_spatial_node_index,
                    raster_spatial_node_index,
                );

                let pattern = Pattern::color(ColorF::WHITE);
                let clip_needs_scissor_rect = !is_same_coord_system;
                let mut quad_flags = QuadFlags::IS_MASK;

                if is_same_coord_system {
                    quad_flags |= QuadFlags::APPLY_RENDER_TASK_CLIP;
                }

                for tile in clip_store.visible_mask_tiles(&clip_instance) {
                    let clip_prim_address = quad::write_prim_blocks(
                        &mut gpu_buffer_builder.f32,
                        rect,
                        rect,
                        &pattern,
                        &[QuadSegment {
                            rect: tile.tile_rect,
                            task_id: tile.task_id,
                        }],
                        ScaleOffset::identity(),
                    );

                    let texture = render_tasks
                        .resolve_texture(tile.task_id)
                        .expect("bug: texture not found for tile");

                    quad::add_to_batch(
                        PatternKind::ColorOrTexture,
                        PatternShaderInput::default(),
                        render_task_address,
                        clip_transform_id,
                        clip_prim_address,
                        quad_flags,
                        EdgeAaSegmentMask::empty(),
                        0,
                        tile.task_id,
                        ZBufferId(0),
                        render_tasks,
                        gpu_buffer_builder,
                        |_, prim| {
                            if clip_needs_scissor_rect {
                                results
                                    .image_mask_instances_with_scissor
                                    .entry((target_rect, texture))
                                    .or_insert(Vec::new())
                                    .push(prim);
                            } else {
                                results
                                    .image_mask_instances
                                    .entry(texture)
                                    .or_insert(Vec::new())
                                    .push(prim);
                            }
                        }
                    );
                }

                // TODO(gw): For now, we skip the main mask prim below for image masks. Perhaps
                //           we can better merge the logic together?
                // TODO(gw): How to efficiently handle if the image-mask rect doesn't cover local prim rect?
                continue;
            }
        };

        let prim_spatial_node = spatial_tree.get_spatial_node(prim_spatial_node_index);
        let clip_spatial_node = spatial_tree.get_spatial_node(clip_node.item.spatial_node_index);
        let raster_spatial_node = spatial_tree.get_spatial_node(raster_spatial_node_index);
        let raster_clip = raster_spatial_node.coordinate_system_id == clip_spatial_node.coordinate_system_id;

        let (clip_space, clip_transform_id, main_prim_address, prim_transform_id, is_same_coord_system) = if raster_clip {
            let prim_transform_id = TransformPaletteId::IDENTITY;
            let pattern = Pattern::color(ColorF::WHITE);

            let clip_transform_id = transforms.get_id(
                raster_spatial_node_index,
                clip_node.item.spatial_node_index,
                spatial_tree,
            );

            let main_prim_address = quad::write_prim_blocks(
                &mut gpu_buffer_builder.f32,
                task_world_rect.cast_unit(),
                task_world_rect.cast_unit(),
                &pattern,
                &[],
                ScaleOffset::identity(),
            );

            (ClipSpace::Raster, clip_transform_id, main_prim_address, prim_transform_id, true)
        } else {
            let prim_transform_id = transforms.get_id(
                prim_spatial_node_index,
                raster_spatial_node_index,
                spatial_tree,
            );

            let clip_transform_id = if prim_spatial_node.coordinate_system_id < clip_spatial_node.coordinate_system_id {
                transforms.get_id(
                    clip_node.item.spatial_node_index,
                    prim_spatial_node_index,
                    spatial_tree,
                )
            } else {
                transforms.get_id(
                    prim_spatial_node_index,
                    clip_node.item.spatial_node_index,
                    spatial_tree,
                )
            };

            let is_same_coord_system = spatial_tree.is_matching_coord_system(
                prim_spatial_node_index,
                raster_spatial_node_index,
            );

            (ClipSpace::Primitive, clip_transform_id, main_prim_address, prim_transform_id, is_same_coord_system)
        };

        let clip_needs_scissor_rect = !is_same_coord_system;

        let quad_flags = if is_same_coord_system {
            QuadFlags::APPLY_RENDER_TASK_CLIP
        } else {
            QuadFlags::empty()
        };

        quad::add_to_batch(
            PatternKind::Mask,
            PatternShaderInput::default(),
            render_task_address,
            prim_transform_id,
            main_prim_address,
            quad_flags,
            EdgeAaSegmentMask::all(),
            INVALID_SEGMENT_INDEX as u8,
            RenderTaskId::INVALID,
            ZBufferId(0),
            render_tasks,
            gpu_buffer_builder,
            |_, prim| {
                let instance = MaskInstance {
                    prim,
                    clip_transform_id,
                    clip_address: clip_address.as_int(),
                    clip_space: clip_space.as_int(),
                    unused: 0,
                };

                if clip_needs_scissor_rect {
                    if fast_path {
                        results.mask_instances_fast_with_scissor
                               .entry(target_rect)
                               .or_insert(Vec::new())
                               .push(instance);
                    } else {
                        results.mask_instances_slow_with_scissor
                               .entry(target_rect)
                               .or_insert(Vec::new())
                               .push(instance);
                    }
                } else {
                    if fast_path {
                        results.mask_instances_fast.push(instance);
                    } else {
                        results.mask_instances_slow.push(instance);
                    }
                }
            }
        );
    }
}

fn build_sub_pass(
    task_id: RenderTaskId,
    task: &RenderTask,
    gpu_buffer_builder: &mut GpuBufferBuilder,
    render_tasks: &RenderTaskGraph,
    transforms: &mut TransformPalette,
    ctx: &RenderTargetContext,
    output: &mut ClipMaskInstanceList,
) {
    if let Some(ref sub_pass) = task.sub_pass {
        match sub_pass {
            SubPass::Masks { ref masks } => {
                let render_task_address = task_id.into();
                let target_rect = task.get_target_rect();

                let (device_pixel_scale, content_origin, raster_spatial_node_index) = match task.kind {
                    RenderTaskKind::Picture(ref info) => {
                        (info.device_pixel_scale, info.content_origin, info.raster_spatial_node_index)
                    }
                    RenderTaskKind::Empty(ref info) => {
                        (info.device_pixel_scale, info.content_origin, info.raster_spatial_node_index)
                    }
                    RenderTaskKind::Prim(ref info) => {
                        (info.device_pixel_scale, info.content_origin, info.raster_spatial_node_index)
                    }
                    _ => panic!("unexpected: {}", task.kind.as_str()),
                };

                let content_rect = DeviceRect::new(
                    content_origin,
                    content_origin + target_rect.size().to_f32(),
                );

                build_mask_tasks(
                    masks,
                    render_task_address,
                    content_rect / device_pixel_scale,
                    target_rect,
                    masks.prim_address_f,
                    masks.prim_spatial_node_index,
                    raster_spatial_node_index,
                    ctx.clip_store,
                    ctx.data_stores,
                    ctx.spatial_tree,
                    gpu_buffer_builder,
                    transforms,
                    render_tasks,
                    output,
                );
            }
        }
    }
}