1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
use byte_slice_cast::*;
use euclid::default::Vector3D;
use graph::{PortIndex, PortKind};
use node::ChannelInterpretation;
use smallvec::SmallVec;
use std::f32::consts::SQRT_2;
use std::mem;
use std::ops::*;
// defined by spec
// https://webaudio.github.io/web-audio-api/#render-quantum
pub const FRAMES_PER_BLOCK: Tick = Tick(128);
pub const FRAMES_PER_BLOCK_USIZE: usize = FRAMES_PER_BLOCK.0 as usize;
/// A tick, i.e. the time taken for a single frame
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct Tick(pub u64);
/// A collection of blocks received as input by a node
/// or outputted by a node.
///
/// This will usually be a single block.
///
/// Some nodes have multiple inputs or outputs, which is
/// where this becomes useful. Source nodes have an input
/// of an empty chunk.
pub struct Chunk {
pub blocks: SmallVec<[Block; 1]>,
}
impl Default for Chunk {
fn default() -> Self {
Chunk {
blocks: SmallVec::new(),
}
}
}
impl Chunk {
pub fn len(&self) -> usize {
self.blocks.len()
}
pub fn explicit_silence() -> Chunk {
let blocks: SmallVec<[Block; 1]> = SmallVec::new();
Chunk {
blocks: blocks
.as_slice()
.iter()
.map(|_| {
let mut block = Block::default();
block.explicit_silence();
block
})
.collect(),
}
}
}
/// We render audio in blocks of size FRAMES_PER_BLOCK
///
/// A single block may contain multiple channels
#[derive(Clone, Serialize, Deserialize, Debug)]
pub struct Block {
/// The number of channels in this block
channels: u8,
/// This is an optimization which means that the buffer is representing multiple channels with the
/// same content at once. Happens when audio is upmixed or when a source like
/// an oscillator node has multiple channel outputs
repeat: bool,
/// If this vector is empty, it is a shorthand for "silence"
/// It is possible to obtain an explicitly silent buffer via .explicit_silence()
///
/// This must be of length channels * FRAMES_PER_BLOCK, unless `repeat` is true,
/// in which case it will be of length FRAMES_PER_BLOCK
buffer: Vec<f32>,
}
impl Default for Block {
fn default() -> Self {
Block {
channels: 1,
repeat: false,
buffer: Vec::new(),
}
}
}
impl Block {
/// Empty block with no channels, for pushing
/// new channels to.
///
/// Must be used with push_chan
pub fn empty() -> Self {
Block {
channels: 0,
..Default::default()
}
}
pub fn for_channels_explicit(channels: u8) -> Self {
Block {
channels,
repeat: false,
buffer: vec![0.; FRAMES_PER_BLOCK_USIZE * channels as usize],
}
}
/// This provides the entire buffer as a mutable slice of u8
pub fn as_mut_byte_slice(&mut self) -> &mut [u8] {
self.data_mut().as_mut_byte_slice().expect("casting failed")
}
pub fn for_vec(buffer: Vec<f32>) -> Self {
assert!(buffer.len() % FRAMES_PER_BLOCK_USIZE == 0);
Block {
channels: (buffer.len() / FRAMES_PER_BLOCK_USIZE) as u8,
repeat: false,
buffer,
}
}
/// Zero-gain sum with another buffer
///
/// Used after mixing multiple inputs to a single port
pub fn sum(mut self, mut other: Self) -> Self {
if self.is_silence() {
other
} else if other.is_silence() {
self
} else {
debug_assert_eq!(self.channels, other.channels);
if self.repeat ^ other.repeat {
self.explicit_repeat();
other.explicit_repeat();
}
debug_assert_eq!(self.buffer.len(), other.buffer.len());
for (a, b) in self.buffer.iter_mut().zip(other.buffer.iter()) {
*a += b
}
self
}
}
/// If this is in "silence" mode without a buffer, allocate a silent buffer
pub fn explicit_silence(&mut self) {
if self.buffer.is_empty() {
self.buffer.resize(FRAMES_PER_BLOCK_USIZE, 0.);
self.repeat = true;
}
}
/// This provides the entire buffer as a mutable slice of f32
pub fn data_mut(&mut self) -> &mut [f32] {
self.explicit_silence();
&mut self.buffer
}
pub fn explicit_repeat(&mut self) {
if self.repeat {
debug_assert!(self.buffer.len() == FRAMES_PER_BLOCK_USIZE);
if self.channels > 1 {
let mut new = Vec::with_capacity(FRAMES_PER_BLOCK_USIZE * self.channels as usize);
for _ in 0..self.channels {
new.extend(&self.buffer)
}
self.buffer = new;
}
self.repeat = false;
} else if self.is_silence() {
self.buffer
.resize(FRAMES_PER_BLOCK_USIZE * self.channels as usize, 0.);
}
}
pub fn data_chan_mut(&mut self, chan: u8) -> &mut [f32] {
self.explicit_repeat();
let start = chan as usize * FRAMES_PER_BLOCK_USIZE;
&mut self.buffer[start..start + FRAMES_PER_BLOCK_USIZE]
}
#[inline]
pub fn data_chan(&self, chan: u8) -> &[f32] {
debug_assert!(
!self.is_silence(),
"data_chan doesn't work with silent buffers"
);
let offset = if self.repeat {
0
} else {
chan as usize * FRAMES_PER_BLOCK_USIZE
};
&self.buffer[offset..offset + FRAMES_PER_BLOCK_USIZE]
}
pub fn take(&mut self) -> Block {
let mut new = Block::default();
new.channels = self.channels;
mem::replace(self, new)
}
pub fn chan_count(&self) -> u8 {
self.channels
}
pub fn iter(&mut self) -> FrameIterator {
FrameIterator::new(self)
}
pub fn is_silence(&self) -> bool {
self.buffer.is_empty()
}
pub fn is_repeat(&self) -> bool {
self.repeat
}
pub fn data_chan_frame(&self, frame: usize, chan: u8) -> f32 {
if self.is_silence() {
0.
} else {
self.data_chan(chan)[frame]
}
}
pub fn push_chan(&mut self, data: &[f32]) {
assert!(!self.repeat);
assert!(!self.is_silence() || self.channels == 0);
assert!(data.len() == FRAMES_PER_BLOCK_USIZE);
self.buffer.extend(data);
self.channels += 1;
}
/// upmix/downmix the channels if necessary
///
/// Currently only supports upmixing from 1
pub fn mix(&mut self, channels: u8, interpretation: ChannelInterpretation) {
// If we're not changing the number of channels, we
// don't actually need to mix
if self.channels == channels {
return;
}
// Silent buffers stay silent
if self.is_silence() {
self.channels = channels;
return;
}
if interpretation == ChannelInterpretation::Discrete {
// discrete downmixes by truncation, upmixes by adding
// silent channels
// If we're discrete, have a repeat, and are downmixing,
// just truncate by changing the channel value
if self.repeat && self.channels > channels {
self.channels = channels;
} else {
// otherwise resize the buffer, silent-filling when necessary
self.resize_silence(channels);
}
} else {
// For speakers, we have to do special things based on the
// interpretation of the channels for each kind of speakers
// The layout of each speaker kind is:
//
// - Mono: [The mono channel]
// - Stereo: [L, R]
// - Quad: [L, R, SL, SR]
// - 5.1: [L, R, C, LFE, SL, SR]
match (self.channels, channels) {
// Upmixing
// https://webaudio.github.io/web-audio-api/#UpMix-sub
// mono
(1, 2) => {
// output.{L, R} = input
self.repeat(2);
}
(1, 4) => {
// output.{L, R} = input
self.repeat(2);
// output.{SL, SR} = 0
self.resize_silence(4);
}
(1, 6) => {
let mut v = Vec::with_capacity(channels as usize * FRAMES_PER_BLOCK_USIZE);
// output.{L, R} = 0
v.resize(2 * FRAMES_PER_BLOCK_USIZE, 0.);
// output.C = input
v.extend(&self.buffer);
self.buffer = v;
// output.{LFE, SL, SR} = 0
self.resize_silence(6);
}
// stereo
(2, 4) | (2, 6) => {
// output.{L, R} = input.{L, R}
// (5.1) output.{C, LFE} = 0
// output.{SL, SR} = 0
self.resize_silence(channels);
}
// quad
(4, 6) => {
// we can avoid this and instead calculate offsets
// based off whether or not this is `repeat`, but
// a `repeat` quad block should be rare
self.explicit_repeat();
let mut v = Vec::with_capacity(6 * FRAMES_PER_BLOCK_USIZE);
// output.{L, R} = input.{L, R}
v.extend(&self.buffer[0..2 * FRAMES_PER_BLOCK_USIZE]);
// output.{C, LFE} = 0
v.resize(4 * FRAMES_PER_BLOCK_USIZE, 0.);
// output.{SL, R} = input.{SL, SR}
v.extend(&self.buffer[2 * FRAMES_PER_BLOCK_USIZE..]);
self.buffer = v;
self.channels = channels;
}
// Downmixing
// https://webaudio.github.io/web-audio-api/#down-mix
// mono
(2, 1) => {
let mut v = Vec::with_capacity(FRAMES_PER_BLOCK_USIZE);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
// output = 0.5 * (input.L + input.R);
let o =
0.5 * (self.data_chan_frame(frame, 0) + self.data_chan_frame(frame, 1));
v.push(o);
}
self.buffer = v;
self.channels = 1;
self.repeat = false;
}
(4, 1) => {
let mut v = Vec::with_capacity(FRAMES_PER_BLOCK_USIZE);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
// output = 0.5 * (input.L + input.R + input.SL + input.SR);
let o = 0.25
* (self.data_chan_frame(frame, 0)
+ self.data_chan_frame(frame, 1)
+ self.data_chan_frame(frame, 2)
+ self.data_chan_frame(frame, 3));
v.push(o);
}
self.buffer = v;
self.channels = 1;
self.repeat = false;
}
(6, 1) => {
let mut v = Vec::with_capacity(FRAMES_PER_BLOCK_USIZE);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
// output = sqrt(0.5) * (input.L + input.R) + input.C + 0.5 * (input.SL + input.SR)
let o =
// sqrt(0.5) * (input.L + input.R)
SQRT_2 * (self.data_chan_frame(frame, 0) +
self.data_chan_frame(frame, 1)) +
// input.C
self.data_chan_frame(frame, 2) +
// (ignore LFE)
// + 0 * self.buffer[frame + 3 * FRAMES_PER_BLOCK_USIZE]
// 0.5 * (input.SL + input.SR)
0.5 * (self.data_chan_frame(frame, 4) +
self.data_chan_frame(frame, 5));
v.push(o);
}
self.buffer = v;
self.channels = 1;
self.repeat = false;
}
// stereo
(4, 2) => {
let mut v = Vec::with_capacity(2 * FRAMES_PER_BLOCK_USIZE);
v.resize(2 * FRAMES_PER_BLOCK_USIZE, 0.);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
// output.L = 0.5 * (input.L + input.SL)
v[frame] =
0.5 * (self.data_chan_frame(frame, 0) + self.data_chan_frame(frame, 2));
// output.R = 0.5 * (input.R + input.SR)
v[frame + FRAMES_PER_BLOCK_USIZE] =
0.5 * (self.data_chan_frame(frame, 1) + self.data_chan_frame(frame, 3));
}
self.buffer = v;
self.channels = 2;
self.repeat = false;
}
(6, 2) => {
let mut v = Vec::with_capacity(2 * FRAMES_PER_BLOCK_USIZE);
v.resize(2 * FRAMES_PER_BLOCK_USIZE, 0.);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
// output.L = L + sqrt(0.5) * (input.C + input.SL)
v[frame] = self.data_chan_frame(frame, 0)
+ SQRT_2
* (self.data_chan_frame(frame, 2) + self.data_chan_frame(frame, 4));
// output.R = R + sqrt(0.5) * (input.C + input.SR)
v[frame + FRAMES_PER_BLOCK_USIZE] = self.data_chan_frame(frame, 1)
+ SQRT_2
* (self.data_chan_frame(frame, 2) + self.data_chan_frame(frame, 5));
}
self.buffer = v;
self.channels = 2;
self.repeat = false;
}
// quad
(6, 4) => {
let mut v = Vec::with_capacity(6 * FRAMES_PER_BLOCK_USIZE);
v.resize(6 * FRAMES_PER_BLOCK_USIZE, 0.);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
// output.L = L + sqrt(0.5) * input.C
v[frame] = self.data_chan_frame(frame, 0)
+ SQRT_2 * self.data_chan_frame(frame, 2);
// output.R = R + sqrt(0.5) * input.C
v[frame + FRAMES_PER_BLOCK_USIZE] = self.data_chan_frame(frame, 1)
+ SQRT_2 * self.data_chan_frame(frame, 2);
// output.SL = input.SL
v[frame + 2 * FRAMES_PER_BLOCK_USIZE] = self.data_chan_frame(frame, 4);
// output.SR = input.SR
v[frame + 3 * FRAMES_PER_BLOCK_USIZE] = self.data_chan_frame(frame, 5);
}
self.buffer = v;
self.channels = 4;
self.repeat = false;
}
// If it's not a known kind of speaker configuration, treat as
// discrete
_ => {
self.mix(channels, ChannelInterpretation::Discrete);
}
}
debug_assert!(self.channels == channels);
}
}
/// Resize to add or remove channels, fill extra channels with silence
pub fn resize_silence(&mut self, channels: u8) {
self.explicit_repeat();
self.buffer
.resize(FRAMES_PER_BLOCK_USIZE * channels as usize, 0.);
self.channels = channels;
}
/// Take a single-channel block and repeat the
/// channel
pub fn repeat(&mut self, channels: u8) {
debug_assert!(self.channels == 1);
self.channels = channels;
if !self.is_silence() {
self.repeat = true;
}
}
pub fn interleave(&mut self) -> Vec<f32> {
self.explicit_repeat();
let mut vec = Vec::with_capacity(self.buffer.len());
// FIXME this isn't too efficient
vec.resize(self.buffer.len(), 0.);
for frame in 0..FRAMES_PER_BLOCK_USIZE {
let channels = self.channels as usize;
for chan in 0..channels {
vec[frame * channels + chan] = self.buffer[chan * FRAMES_PER_BLOCK_USIZE + frame]
}
}
vec
}
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
/// Get the position, forward, and up vectors for a given
/// AudioListener-produced block
pub fn listener_data(&self, frame: Tick) -> (Vector3D<f32>, Vector3D<f32>, Vector3D<f32>) {
let frame = frame.0 as usize;
(
Vector3D::new(
self.data_chan_frame(frame, 0),
self.data_chan_frame(frame, 1),
self.data_chan_frame(frame, 2),
),
Vector3D::new(
self.data_chan_frame(frame, 3),
self.data_chan_frame(frame, 4),
self.data_chan_frame(frame, 5),
),
Vector3D::new(
self.data_chan_frame(frame, 6),
self.data_chan_frame(frame, 7),
self.data_chan_frame(frame, 8),
),
)
}
}
/// An iterator over frames in a block
pub struct FrameIterator<'a> {
frame: Tick,
block: &'a mut Block,
}
impl<'a> FrameIterator<'a> {
#[inline]
pub fn new(block: &'a mut Block) -> Self {
FrameIterator {
frame: Tick(0),
block,
}
}
/// Advance the iterator
///
/// We can't implement Iterator since it doesn't support
/// streaming iterators, but we can call `while let Some(frame) = iter.next()`
/// here
#[inline]
pub fn next<'b>(&'b mut self) -> Option<FrameRef<'b>> {
let curr = self.frame;
if curr < FRAMES_PER_BLOCK {
self.frame.advance();
Some(FrameRef {
frame: curr,
block: &mut self.block,
})
} else {
None
}
}
}
/// A reference to a frame
pub struct FrameRef<'a> {
frame: Tick,
block: &'a mut Block,
}
impl<'a> FrameRef<'a> {
#[inline]
pub fn tick(&self) -> Tick {
self.frame
}
/// Given a block and a function `f`, mutate the frame through all channels with `f`
///
/// Use this when you plan to do the same operation for each channel.
/// (Helpers for the other cases will eventually exist)
///
/// Block must not be silence
///
/// The second parameter to f is the channel number, 0 in case of a repeat()
#[inline]
pub fn mutate_with<F>(&mut self, mut f: F)
where
F: FnMut(&mut f32, u8),
{
debug_assert!(
!self.block.is_silence(),
"mutate_frame_with should not be called with a silenced block, \
call .explicit_silence() if you wish to use this"
);
if self.block.repeat {
f(&mut self.block.buffer[self.frame.0 as usize], 0)
} else {
for chan in 0..self.block.channels {
f(
&mut self.block.buffer
[chan as usize * FRAMES_PER_BLOCK_USIZE + self.frame.0 as usize],
chan,
)
}
}
}
}
// operator impls
impl<T: PortKind> IndexMut<PortIndex<T>> for Chunk {
fn index_mut(&mut self, i: PortIndex<T>) -> &mut Block {
if let PortIndex::Port(i) = i {
&mut self.blocks[i as usize]
} else {
panic!("attempted to index chunk with param")
}
}
}
impl<T: PortKind> Index<PortIndex<T>> for Chunk {
type Output = Block;
fn index(&self, i: PortIndex<T>) -> &Block {
if let PortIndex::Port(i) = i {
&self.blocks[i as usize]
} else {
panic!("attempted to index chunk with param")
}
}
}
impl Add<Tick> for Tick {
type Output = Tick;
fn add(self, other: Tick) -> Self {
self + other.0
}
}
impl AddAssign for Tick {
fn add_assign(&mut self, other: Tick) {
*self = *self + other
}
}
impl Sub<Tick> for Tick {
type Output = Tick;
fn sub(self, other: Tick) -> Self {
self - other.0
}
}
impl Add<u64> for Tick {
type Output = Tick;
fn add(self, other: u64) -> Self {
Tick(self.0 + other)
}
}
impl Sub<u64> for Tick {
type Output = Tick;
fn sub(self, other: u64) -> Self {
Tick(self.0 - other)
}
}
impl Div<f64> for Tick {
type Output = f64;
fn div(self, other: f64) -> f64 {
self.0 as f64 / other
}
}
impl Tick {
pub const FRAMES_PER_BLOCK: Tick = FRAMES_PER_BLOCK;
const EPSILON: f64 = 1e-7;
pub fn from_time(time: f64, rate: f32) -> Tick {
Tick((time * rate as f64 - Tick::EPSILON).ceil() as u64)
}
pub fn advance(&mut self) {
self.0 += 1;
}
}