1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
//! A module for all decoding needs.
#[cfg(feature = "std")]
use crate::error::StreamResult;
use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};
use crate::alloc::{boxed::Box, vec, vec::Vec};
#[cfg(feature = "std")]
use std::io::{self, BufRead, Write};
/// The state for decoding data with an LZW algorithm.
///
/// The same structure can be utilized with streams as well as your own buffers and driver logic.
/// It may even be possible to mix them if you are sufficiently careful not to lose or skip any
/// already decode data in the process.
///
/// This is a sans-IO implementation, meaning that it only contains the state of the decoder and
/// the caller will provide buffers for input and output data when calling the basic
/// [`decode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
/// methods for decoding with a particular style of common IO.
///
/// * [`decode`] for decoding once without any IO-loop.
/// * [`into_async`] for decoding with the `futures` traits for asynchronous IO.
/// * [`into_stream`] for decoding with the standard `io` traits.
/// * [`into_vec`] for in-memory decoding.
///
/// [`decode_bytes`]: #method.decode_bytes
/// [`decode`]: #method.decode
/// [`into_async`]: #method.into_async
/// [`into_stream`]: #method.into_stream
/// [`into_vec`]: #method.into_vec
pub struct Decoder {
state: Box<dyn Stateful + Send + 'static>,
}
/// A decoding stream sink.
///
/// See [`Decoder::into_stream`] on how to create this type.
///
/// [`Decoder::into_stream`]: struct.Decoder.html#method.into_stream
#[cfg_attr(
not(feature = "std"),
deprecated = "This type is only useful with the `std` feature."
)]
#[cfg_attr(not(feature = "std"), allow(dead_code))]
pub struct IntoStream<'d, W> {
decoder: &'d mut Decoder,
writer: W,
buffer: Option<StreamBuf<'d>>,
default_size: usize,
}
/// An async decoding sink.
///
/// See [`Decoder::into_async`] on how to create this type.
///
/// [`Decoder::into_async`]: struct.Decoder.html#method.into_async
#[cfg(feature = "async")]
pub struct IntoAsync<'d, W> {
decoder: &'d mut Decoder,
writer: W,
buffer: Option<StreamBuf<'d>>,
default_size: usize,
}
/// A decoding sink into a vector.
///
/// See [`Decoder::into_vec`] on how to create this type.
///
/// [`Decoder::into_vec`]: struct.Decoder.html#method.into_vec
pub struct IntoVec<'d> {
decoder: &'d mut Decoder,
vector: &'d mut Vec<u8>,
}
trait Stateful {
fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
fn has_ended(&self) -> bool;
/// Ignore an end code and continue decoding (no implied reset).
fn restart(&mut self);
/// Reset the decoder to the beginning, dropping all buffers etc.
fn reset(&mut self);
}
#[derive(Clone)]
struct Link {
prev: Code,
byte: u8,
}
#[derive(Default)]
struct MsbBuffer {
/// A buffer of individual bits. The oldest code is kept in the high-order bits.
bit_buffer: u64,
/// A precomputed mask for this code.
code_mask: u16,
/// The current code size.
code_size: u8,
/// The number of bits in the buffer.
bits: u8,
}
#[derive(Default)]
struct LsbBuffer {
/// A buffer of individual bits. The oldest code is kept in the high-order bits.
bit_buffer: u64,
/// A precomputed mask for this code.
code_mask: u16,
/// The current code size.
code_size: u8,
/// The number of bits in the buffer.
bits: u8,
}
trait CodeBuffer {
fn new(min_size: u8) -> Self;
fn reset(&mut self, min_size: u8);
fn bump_code_size(&mut self);
/// Retrieve the next symbol, refilling if necessary.
fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code>;
/// Refill the internal buffer.
fn refill_bits(&mut self, inp: &mut &[u8]);
/// Get the next buffered code word.
fn get_bits(&mut self) -> Option<Code>;
fn max_code(&self) -> Code;
fn code_size(&self) -> u8;
}
struct DecodeState<CodeBuffer> {
/// The original minimum code size.
min_size: u8,
/// The table of decoded codes.
table: Table,
/// The buffer of decoded data.
buffer: Buffer,
/// The link which we are still decoding and its original code.
last: Option<(Code, Link)>,
/// The next code entry.
next_code: Code,
/// Code to reset all tables.
clear_code: Code,
/// Code to signal the end of the stream.
end_code: Code,
/// A stored flag if the end code has already appeared.
has_ended: bool,
/// If tiff then bumps are a single code sooner.
is_tiff: bool,
/// Do we allow stream to start without an explicit reset code?
implicit_reset: bool,
/// The buffer for decoded words.
code_buffer: CodeBuffer,
}
struct Buffer {
bytes: Box<[u8]>,
read_mark: usize,
write_mark: usize,
}
struct Table {
inner: Vec<Link>,
depths: Vec<u16>,
}
impl Decoder {
/// Create a new decoder with the specified bit order and symbol size.
///
/// The algorithm for dynamically increasing the code symbol bit width is compatible with the
/// original specification. In particular you will need to specify an `Lsb` bit oder to decode
/// the data portion of a compressed `gif` image.
///
/// # Panics
///
/// The `size` needs to be in the interval `0..=12`.
pub fn new(order: BitOrder, size: u8) -> Self {
type Boxed = Box<dyn Stateful + Send + 'static>;
super::assert_decode_size(size);
let state = match order {
BitOrder::Lsb => Box::new(DecodeState::<LsbBuffer>::new(size)) as Boxed,
BitOrder::Msb => Box::new(DecodeState::<MsbBuffer>::new(size)) as Boxed,
};
Decoder { state }
}
/// Create a TIFF compatible decoder with the specified bit order and symbol size.
///
/// The algorithm for dynamically increasing the code symbol bit width is compatible with the
/// TIFF specification, which is a misinterpretation of the original algorithm for increasing
/// the code size. It switches one symbol sooner.
///
/// # Panics
///
/// The `size` needs to be in the interval `0..=12`.
pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
type Boxed = Box<dyn Stateful + Send + 'static>;
super::assert_decode_size(size);
let state = match order {
BitOrder::Lsb => {
let mut state = Box::new(DecodeState::<LsbBuffer>::new(size));
state.is_tiff = true;
state as Boxed
}
BitOrder::Msb => {
let mut state = Box::new(DecodeState::<MsbBuffer>::new(size));
state.is_tiff = true;
state as Boxed
}
};
Decoder { state }
}
/// Decode some bytes from `inp` and write result to `out`.
///
/// This will consume a prefix of the input buffer and write decoded output into a prefix of
/// the output buffer. See the respective fields of the return value for the count of consumed
/// and written bytes. For the next call You should have adjusted the inputs accordingly.
///
/// The call will try to decode and write as many bytes of output as available. It will be
/// much more optimized (and avoid intermediate buffering) if it is allowed to write a large
/// contiguous chunk at once.
///
/// See [`into_stream`] for high-level functions (that are only available with the `std`
/// feature).
///
/// [`into_stream`]: #method.into_stream
pub fn decode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
self.state.advance(inp, out)
}
/// Decode a single chunk of lzw encoded data.
///
/// This method requires the data to contain an end marker, and returns an error otherwise.
///
/// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
/// buffer size, to supply an existing vector, to control whether an end marker is required, or
/// to preserve partial data in the case of a decoding error.
///
/// [`into_vec`]: #into_vec
///
/// # Example
///
/// ```
/// use weezl::{BitOrder, decode::Decoder};
///
/// // Encoded that was created with an encoder.
/// let data = b"\x80\x04\x81\x94l\x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l\x19 \x10";
/// let decoded = Decoder::new(BitOrder::Msb, 9)
/// .decode(data)
/// .unwrap();
/// assert_eq!(decoded, b"Hello, world");
/// ```
pub fn decode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
let mut output = vec![];
self.into_vec(&mut output).decode_all(data).status?;
Ok(output)
}
/// Construct a decoder into a writer.
#[cfg(feature = "std")]
pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
IntoStream {
decoder: self,
writer,
buffer: None,
default_size: STREAM_BUF_SIZE,
}
}
/// Construct a decoder into an async writer.
#[cfg(feature = "async")]
pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
IntoAsync {
decoder: self,
writer,
buffer: None,
default_size: STREAM_BUF_SIZE,
}
}
/// Construct a decoder into a vector.
///
/// All decoded data is appended and the vector is __not__ cleared.
///
/// Compared to `into_stream` this interface allows a high-level access to decoding without
/// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
/// special target exposes.
pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
IntoVec {
decoder: self,
vector: vec,
}
}
/// Check if the decoding has finished.
///
/// No more output is produced beyond the end code that marked the finish of the stream. The
/// decoder may have read additional bytes, including padding bits beyond the last code word
/// but also excess bytes provided.
pub fn has_ended(&self) -> bool {
self.state.has_ended()
}
/// Ignore an end code and continue.
///
/// This will _not_ reset any of the inner code tables and not have the effect of a clear code.
/// It will instead continue as if the end code had not been present. If no end code has
/// occurred then this is a no-op.
///
/// You can test if an end code has occurred with [`has_ended`](#method.has_ended).
/// FIXME: clarify how this interacts with padding introduced after end code.
#[allow(dead_code)]
pub(crate) fn restart(&mut self) {
self.state.restart();
}
/// Reset all internal state.
///
/// This produce a decoder as if just constructed with `new` but taking slightly less work. In
/// particular it will not deallocate any internal allocations. It will also avoid some
/// duplicate setup work.
pub fn reset(&mut self) {
self.state.reset();
}
}
#[cfg(feature = "std")]
impl<'d, W: Write> IntoStream<'d, W> {
/// Decode data from a reader.
///
/// This will read data until the stream is empty or an end marker is reached.
pub fn decode(&mut self, read: impl BufRead) -> StreamResult {
self.decode_part(read, false)
}
/// Decode data from a reader, requiring an end marker.
pub fn decode_all(mut self, read: impl BufRead) -> StreamResult {
self.decode_part(read, true)
}
/// Set the size of the intermediate decode buffer.
///
/// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is
/// available and any decoding method is called. No buffer is allocated if `set_buffer` has
/// been called. The buffer is reused.
///
/// # Panics
/// This method panics if `size` is `0`.
pub fn set_buffer_size(&mut self, size: usize) {
assert_ne!(size, 0, "Attempted to set empty buffer");
self.default_size = size;
}
/// Use a particular buffer as an intermediate decode buffer.
///
/// Calling this sets or replaces the buffer. When a buffer has been set then it is used
/// instead of dynamically allocating a buffer. Note that the size of the buffer is critical
/// for efficient decoding. Some optimization techniques require the buffer to hold one or more
/// previous decoded words. There is also additional overhead from `write` calls each time the
/// buffer has been filled.
///
/// # Panics
/// This method panics if the `buffer` is empty.
pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
self.buffer = Some(StreamBuf::Borrowed(buffer));
}
fn decode_part(&mut self, mut read: impl BufRead, must_finish: bool) -> StreamResult {
let IntoStream {
decoder,
writer,
buffer,
default_size,
} = self;
enum Progress {
Ok,
Done,
}
let mut bytes_read = 0;
let mut bytes_written = 0;
// Converting to mutable refs to move into the `once` closure.
let read_bytes = &mut bytes_read;
let write_bytes = &mut bytes_written;
let outbuf: &mut [u8] =
match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
StreamBuf::Borrowed(slice) => &mut *slice,
StreamBuf::Owned(vec) => &mut *vec,
};
assert!(!outbuf.is_empty());
let once = move || {
// Try to grab one buffer of input data.
let data = read.fill_buf()?;
// Decode as much of the buffer as fits.
let result = decoder.decode_bytes(data, &mut outbuf[..]);
// Do the bookkeeping and consume the buffer.
*read_bytes += result.consumed_in;
*write_bytes += result.consumed_out;
read.consume(result.consumed_in);
// Handle the status in the result.
let done = result.status.map_err(|err| {
io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
})?;
// Check if we had any new data at all.
if let LzwStatus::NoProgress = done {
debug_assert_eq!(
result.consumed_out, 0,
"No progress means we have not decoded any data"
);
// In particular we did not finish decoding.
if must_finish {
return Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"No more data but no end marker detected",
));
} else {
return Ok(Progress::Done);
}
}
// And finish by writing our result.
// TODO: we may lose data on error (also on status error above) which we might want to
// deterministically handle so that we don't need to restart everything from scratch as
// the only recovery strategy. Any changes welcome.
writer.write_all(&outbuf[..result.consumed_out])?;
Ok(if let LzwStatus::Done = done {
Progress::Done
} else {
Progress::Ok
})
};
// Decode chunks of input data until we're done.
let status = core::iter::repeat_with(once)
// scan+fuse can be replaced with map_while
.scan((), |(), result| match result {
Ok(Progress::Ok) => Some(Ok(())),
Err(err) => Some(Err(err)),
Ok(Progress::Done) => None,
})
.fuse()
.collect();
StreamResult {
bytes_read,
bytes_written,
status,
}
}
}
impl IntoVec<'_> {
/// Decode data from a slice.
///
/// This will read data until the slice is empty or an end marker is reached.
pub fn decode(&mut self, read: &[u8]) -> VectorResult {
self.decode_part(read, false)
}
/// Decode data from a slice, requiring an end marker.
pub fn decode_all(mut self, read: &[u8]) -> VectorResult {
self.decode_part(read, true)
}
fn grab_buffer(&mut self) -> (&mut [u8], &mut Decoder) {
const CHUNK_SIZE: usize = 1 << 12;
let decoder = &mut self.decoder;
let length = self.vector.len();
// Use the vector to do overflow checks and w/e.
self.vector.reserve(CHUNK_SIZE);
// FIXME: decoding into uninit buffer?
self.vector.resize(length + CHUNK_SIZE, 0u8);
(&mut self.vector[length..], decoder)
}
fn decode_part(&mut self, part: &[u8], must_finish: bool) -> VectorResult {
let mut result = VectorResult {
consumed_in: 0,
consumed_out: 0,
status: Ok(LzwStatus::Ok),
};
enum Progress {
Ok,
Done,
}
// Converting to mutable refs to move into the `once` closure.
let read_bytes = &mut result.consumed_in;
let write_bytes = &mut result.consumed_out;
let mut data = part;
// A 64 MB buffer is quite large but should get alloc_zeroed.
// Note that the decoded size can be up to quadratic in code block.
let once = move || {
// Grab a new output buffer.
let (outbuf, decoder) = self.grab_buffer();
// Decode as much of the buffer as fits.
let result = decoder.decode_bytes(data, &mut outbuf[..]);
// Do the bookkeeping and consume the buffer.
*read_bytes += result.consumed_in;
*write_bytes += result.consumed_out;
data = &data[result.consumed_in..];
let unfilled = outbuf.len() - result.consumed_out;
let filled = self.vector.len() - unfilled;
self.vector.truncate(filled);
// Handle the status in the result.
match result.status {
Err(err) => Err(err),
Ok(LzwStatus::NoProgress) if must_finish => Err(LzwError::InvalidCode),
Ok(LzwStatus::NoProgress) | Ok(LzwStatus::Done) => Ok(Progress::Done),
Ok(LzwStatus::Ok) => Ok(Progress::Ok),
}
};
// Decode chunks of input data until we're done.
let status: Result<(), _> = core::iter::repeat_with(once)
// scan+fuse can be replaced with map_while
.scan((), |(), result| match result {
Ok(Progress::Ok) => Some(Ok(())),
Err(err) => Some(Err(err)),
Ok(Progress::Done) => None,
})
.fuse()
.collect();
if let Err(err) = status {
result.status = Err(err);
}
result
}
}
// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
// trip over the usage of await, which is a reserved keyword in that edition/version. It only
// contains an impl block.
#[cfg(feature = "async")]
#[path = "decode_into_async.rs"]
mod impl_decode_into_async;
impl<C: CodeBuffer> DecodeState<C> {
fn new(min_size: u8) -> Self {
DecodeState {
min_size,
table: Table::new(),
buffer: Buffer::new(),
last: None,
clear_code: 1 << min_size,
end_code: (1 << min_size) + 1,
next_code: (1 << min_size) + 2,
has_ended: false,
is_tiff: false,
implicit_reset: true,
code_buffer: CodeBuffer::new(min_size),
}
}
fn init_tables(&mut self) {
self.code_buffer.reset(self.min_size);
self.next_code = (1 << self.min_size) + 2;
self.table.init(self.min_size);
}
fn reset_tables(&mut self) {
self.code_buffer.reset(self.min_size);
self.next_code = (1 << self.min_size) + 2;
self.table.clear(self.min_size);
}
}
impl<C: CodeBuffer> Stateful for DecodeState<C> {
fn has_ended(&self) -> bool {
self.has_ended
}
fn restart(&mut self) {
self.has_ended = false;
}
fn reset(&mut self) {
self.table.init(self.min_size);
self.next_code = (1 << self.min_size) + 2;
self.buffer.read_mark = 0;
self.buffer.write_mark = 0;
self.last = None;
self.restart();
self.code_buffer = CodeBuffer::new(self.min_size);
}
fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
// Skip everything if there is nothing to do.
if self.has_ended {
return BufferResult {
consumed_in: 0,
consumed_out: 0,
status: Ok(LzwStatus::Done),
};
}
// Rough description:
// We will fill the output slice as much as possible until either there is no more symbols
// to decode or an end code has been reached. This requires an internal buffer to hold a
// potential tail of the word corresponding to the last symbol. This tail will then be
// decoded first before continuing with the regular decoding. The same buffer is required
// to persist some symbol state across calls.
//
// We store the words corresponding to code symbols in an index chain, bytewise, where we
// push each decoded symbol. (TODO: wuffs shows some success with 8-byte units). This chain
// is traversed for each symbol when it is decoded and bytes are placed directly into the
// output slice. In the special case (new_code == next_code) we use an existing decoded
// version that is present in either the out bytes of this call or in buffer to copy the
// repeated prefix slice.
// TODO: I played with a 'decoding cache' to remember the position of long symbols and
// avoid traversing the chain, doing a copy of memory instead. It did however not lead to
// a serious improvement. It's just unlikely to both have a long symbol and have that
// repeated twice in the same output buffer.
//
// You will also find the (to my knowledge novel) concept of a _decoding burst_ which
// gained some >~10% speedup in tests. This is motivated by wanting to use out-of-order
// execution as much as possible and for this reason have the least possible stress on
// branch prediction. Our decoding table already gives us a lookahead on symbol lengths but
// only for re-used codes, not novel ones. This lookahead also makes the loop termination
// when restoring each byte of the code word perfectly predictable! So a burst is a chunk
// of code words which are all independent of each other, have known lengths _and_ are
// guaranteed to fit into the out slice without requiring a buffer. One burst can be
// decoded in an extremely tight loop.
//
// TODO: since words can be at most (1 << MAX_CODESIZE) = 4096 bytes long we could avoid
// that intermediate buffer at the expense of not always filling the output buffer
// completely. Alternatively we might follow its chain of precursor states twice. This may
// be even cheaper if we store more than one byte per link so it really should be
// evaluated.
// TODO: if the caller was required to provide the previous last word we could also avoid
// the buffer for cases where we need it to restore the next code! This could be built
// backwards compatible by only doing it after an opt-in call that enables the behaviour.
// Record initial lengths for the result that is returned.
let o_in = inp.len();
let o_out = out.len();
// The code_link is the previously decoded symbol.
// It's used to link the new code back to its predecessor.
let mut code_link = None;
// The status, which is written to on an invalid code.
let mut status = Ok(LzwStatus::Ok);
match self.last.take() {
// No last state? This is the first code after a reset?
None => {
match self.next_symbol(&mut inp) {
// Plainly invalid code.
Some(code) if code > self.next_code => status = Err(LzwError::InvalidCode),
// next_code would require an actual predecessor.
Some(code) if code == self.next_code => status = Err(LzwError::InvalidCode),
// No more symbols available and nothing decoded yet.
// Assume that we didn't make progress, this may get reset to Done if we read
// some bytes from the input.
None => status = Ok(LzwStatus::NoProgress),
// Handle a valid code.
Some(init_code) => {
if init_code == self.clear_code {
self.init_tables();
} else if init_code == self.end_code {
self.has_ended = true;
status = Ok(LzwStatus::Done);
} else if self.table.is_empty() {
if self.implicit_reset {
self.init_tables();
self.buffer.fill_reconstruct(&self.table, init_code);
let link = self.table.at(init_code).clone();
code_link = Some((init_code, link));
} else {
// We require an explicit reset.
status = Err(LzwError::InvalidCode);
}
} else {
// Reconstruct the first code in the buffer.
self.buffer.fill_reconstruct(&self.table, init_code);
let link = self.table.at(init_code).clone();
code_link = Some((init_code, link));
}
}
}
}
// Move the tracking state to the stack.
Some(tup) => code_link = Some(tup),
};
// Track an empty `burst` (see below) means we made no progress.
let mut burst_required_for_progress = false;
// Restore the previous state, if any.
if let Some((code, link)) = code_link.take() {
code_link = Some((code, link));
let remain = self.buffer.buffer();
// Check if we can fully finish the buffer.
if remain.len() > out.len() {
if out.is_empty() {
status = Ok(LzwStatus::NoProgress);
} else {
out.copy_from_slice(&remain[..out.len()]);
self.buffer.consume(out.len());
out = &mut [];
}
} else if remain.is_empty() {
status = Ok(LzwStatus::NoProgress);
burst_required_for_progress = true;
} else {
let consumed = remain.len();
out[..consumed].copy_from_slice(remain);
self.buffer.consume(consumed);
out = &mut out[consumed..];
burst_required_for_progress = false;
}
}
// The tracking state for a burst.
// These are actually initialized later but compiler wasn't smart enough to fully optimize
// out the init code so that appears outside th loop.
// TODO: maybe we can make it part of the state but it's dubious if that really gives a
// benefit over stack usage? Also the slices stored here would need some treatment as we
// can't infect the main struct with a lifetime.
let mut burst = [0; 6];
let mut bytes = [0u16; 6];
let mut target: [&mut [u8]; 6] = Default::default();
// A special reference to out slice which holds the last decoded symbol.
let mut last_decoded: Option<&[u8]> = None;
while let Some((mut code, mut link)) = code_link.take() {
if out.is_empty() && !self.buffer.buffer().is_empty() {
code_link = Some((code, link));
break;
}
let mut burst_size = 0;
// Ensure the code buffer is full, we're about to request some codes.
// Note that this also ensures at least one code is in the buffer if any input is left.
self.refill_bits(&mut inp);
// A burst is a sequence of decodes that are completely independent of each other. This
// is the case if neither is an end code, a clear code, or a next code, i.e. we have
// all of them in the decoding table and thus known their depths, and additionally if
// we can decode them directly into the output buffer.
for b in &mut burst {
// TODO: does it actually make a perf difference to avoid reading new bits here?
*b = match self.get_bits() {
None => break,
Some(code) => code,
};
// We can commit the previous burst code, and will take a slice from the output
// buffer. This also avoids the bounds check in the tight loop later.
if burst_size > 0 {
let len = bytes[burst_size - 1];
let (into, tail) = out.split_at_mut(usize::from(len));
target[burst_size - 1] = into;
out = tail;
}
// Check that we don't overflow the code size with all codes we burst decode.
if let Some(potential_code) = self.next_code.checked_add(burst_size as u16) {
burst_size += 1;
if potential_code == self.code_buffer.max_code() - Code::from(self.is_tiff) {
break;
}
} else {
// next_code overflowed
break;
}
// A burst code can't be special.
if *b == self.clear_code || *b == self.end_code || *b >= self.next_code {
break;
}
// Read the code length and check that we can decode directly into the out slice.
let len = self.table.depths[usize::from(*b)];
if out.len() < usize::from(len) {
break;
}
bytes[burst_size - 1] = len;
}
// No code left, and no more bytes to fill the buffer.
if burst_size == 0 {
if burst_required_for_progress {
status = Ok(LzwStatus::NoProgress);
}
code_link = Some((code, link));
break;
}
burst_required_for_progress = false;
// Note that the very last code in the burst buffer doesn't actually belong to the
// burst itself. TODO: sometimes it could, we just don't differentiate between the
// breaks and a loop end condition above. That may be a speed advantage?
let (&new_code, burst) = burst[..burst_size].split_last().unwrap();
// The very tight loop for restoring the actual burst.
for (&burst, target) in burst.iter().zip(&mut target[..burst_size - 1]) {
let cha = self.table.reconstruct(burst, target);
// TODO: this pushes into a Vec, maybe we can make this cleaner.
// Theoretically this has a branch and llvm tends to be flaky with code layout for
// the case of requiring an allocation (which can't occur in practice).
let new_link = self.table.derive(&link, cha, code);
self.next_code += 1;
code = burst;
link = new_link;
}
// Update the slice holding the last decoded word.
if let Some(new_last) = target[..burst_size - 1].last_mut() {
let slice = core::mem::replace(new_last, &mut []);
last_decoded = Some(&*slice);
}
// Now handle the special codes.
if new_code == self.clear_code {
self.reset_tables();
last_decoded = None;
continue;
}
if new_code == self.end_code {
self.has_ended = true;
status = Ok(LzwStatus::Done);
last_decoded = None;
break;
}
if new_code > self.next_code {
status = Err(LzwError::InvalidCode);
last_decoded = None;
break;
}
let required_len = if new_code == self.next_code {
self.table.depths[usize::from(code)] + 1
} else {
self.table.depths[usize::from(new_code)]
};
let cha;
let is_in_buffer;
// Check if we will need to store our current state into the buffer.
if usize::from(required_len) > out.len() {
is_in_buffer = true;
if new_code == self.next_code {
// last_decoded will be Some if we have restored any code into the out slice.
// Otherwise it will still be present in the buffer.
if let Some(last) = last_decoded.take() {
self.buffer.bytes[..last.len()].copy_from_slice(last);
self.buffer.write_mark = last.len();
self.buffer.read_mark = last.len();
}
cha = self.buffer.fill_cscsc();
} else {
// Restore the decoded word into the buffer.
last_decoded = None;
cha = self.buffer.fill_reconstruct(&self.table, new_code);
}
} else {
is_in_buffer = false;
let (target, tail) = out.split_at_mut(usize::from(required_len));
out = tail;
if new_code == self.next_code {
// Reconstruct high.
let source = match last_decoded.take() {
Some(last) => last,
None => &self.buffer.bytes[..self.buffer.write_mark],
};
cha = source[0];
target[..source.len()].copy_from_slice(source);
target[source.len()..][0] = source[0];
} else {
cha = self.table.reconstruct(new_code, target);
}
// A new decoded word.
last_decoded = Some(target);
}
let new_link;
// Each newly read code creates one new code/link based on the preceding code if we
// have enough space to put it there.
if !self.table.is_full() {
let link = self.table.derive(&link, cha, code);
if self.next_code == self.code_buffer.max_code() - Code::from(self.is_tiff)
&& self.code_buffer.code_size() < MAX_CODESIZE
{
self.bump_code_size();
}
self.next_code += 1;
new_link = link;
} else {
// It's actually quite likely that the next code will be a reset but just in case.
// FIXME: this path hasn't been tested very well.
new_link = link.clone();
}
// store the information on the decoded word.
code_link = Some((new_code, new_link));
// Can't make any more progress with decoding.
if is_in_buffer {
break;
}
}
// We need to store the last word into the buffer in case the first code in the next
// iteration is the next_code.
if let Some(tail) = last_decoded {
self.buffer.bytes[..tail.len()].copy_from_slice(tail);
self.buffer.write_mark = tail.len();
self.buffer.read_mark = tail.len();
}
// Ensure we don't indicate that no progress was made if we read some bytes from the input
// (which is progress).
if o_in > inp.len() {
if let Ok(LzwStatus::NoProgress) = status {
status = Ok(LzwStatus::Ok);
}
}
// Store the code/link state.
self.last = code_link;
BufferResult {
consumed_in: o_in.wrapping_sub(inp.len()),
consumed_out: o_out.wrapping_sub(out.len()),
status,
}
}
}
impl<C: CodeBuffer> DecodeState<C> {
fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
self.code_buffer.next_symbol(inp)
}
fn bump_code_size(&mut self) {
self.code_buffer.bump_code_size()
}
fn refill_bits(&mut self, inp: &mut &[u8]) {
self.code_buffer.refill_bits(inp)
}
fn get_bits(&mut self) -> Option<Code> {
self.code_buffer.get_bits()
}
}
impl CodeBuffer for MsbBuffer {
fn new(min_size: u8) -> Self {
MsbBuffer {
code_size: min_size + 1,
code_mask: (1u16 << (min_size + 1)) - 1,
bit_buffer: 0,
bits: 0,
}
}
fn reset(&mut self, min_size: u8) {
self.code_size = min_size + 1;
self.code_mask = (1 << self.code_size) - 1;
}
fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
if self.bits < self.code_size {
self.refill_bits(inp);
}
self.get_bits()
}
fn bump_code_size(&mut self) {
self.code_size += 1;
self.code_mask = (self.code_mask << 1) | 1;
}
fn refill_bits(&mut self, inp: &mut &[u8]) {
let wish_count = (64 - self.bits) / 8;
let mut buffer = [0u8; 8];
let new_bits = match inp.get(..usize::from(wish_count)) {
Some(bytes) => {
buffer[..usize::from(wish_count)].copy_from_slice(bytes);
*inp = &inp[usize::from(wish_count)..];
wish_count * 8
}
None => {
let new_bits = inp.len() * 8;
buffer[..inp.len()].copy_from_slice(inp);
*inp = &[];
new_bits as u8
}
};
self.bit_buffer |= u64::from_be_bytes(buffer) >> self.bits;
self.bits += new_bits;
}
fn get_bits(&mut self) -> Option<Code> {
if self.bits < self.code_size {
return None;
}
let mask = u64::from(self.code_mask);
let rotbuf = self.bit_buffer.rotate_left(self.code_size.into());
self.bit_buffer = rotbuf & !mask;
self.bits -= self.code_size;
Some((rotbuf & mask) as u16)
}
fn max_code(&self) -> Code {
self.code_mask
}
fn code_size(&self) -> u8 {
self.code_size
}
}
impl CodeBuffer for LsbBuffer {
fn new(min_size: u8) -> Self {
LsbBuffer {
code_size: min_size + 1,
code_mask: (1u16 << (min_size + 1)) - 1,
bit_buffer: 0,
bits: 0,
}
}
fn reset(&mut self, min_size: u8) {
self.code_size = min_size + 1;
self.code_mask = (1 << self.code_size) - 1;
}
fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
if self.bits < self.code_size {
self.refill_bits(inp);
}
self.get_bits()
}
fn bump_code_size(&mut self) {
self.code_size += 1;
self.code_mask = (self.code_mask << 1) | 1;
}
fn refill_bits(&mut self, inp: &mut &[u8]) {
let wish_count = (64 - self.bits) / 8;
let mut buffer = [0u8; 8];
let new_bits = match inp.get(..usize::from(wish_count)) {
Some(bytes) => {
buffer[..usize::from(wish_count)].copy_from_slice(bytes);
*inp = &inp[usize::from(wish_count)..];
wish_count * 8
}
None => {
let new_bits = inp.len() * 8;
buffer[..inp.len()].copy_from_slice(inp);
*inp = &[];
new_bits as u8
}
};
self.bit_buffer |= u64::from_be_bytes(buffer).swap_bytes() << self.bits;
self.bits += new_bits;
}
fn get_bits(&mut self) -> Option<Code> {
if self.bits < self.code_size {
return None;
}
let mask = u64::from(self.code_mask);
let code = self.bit_buffer & mask;
self.bit_buffer >>= self.code_size;
self.bits -= self.code_size;
Some(code as u16)
}
fn max_code(&self) -> Code {
self.code_mask
}
fn code_size(&self) -> u8 {
self.code_size
}
}
impl Buffer {
fn new() -> Self {
Buffer {
bytes: vec![0; MAX_ENTRIES].into_boxed_slice(),
read_mark: 0,
write_mark: 0,
}
}
/// When encoding a sequence `cScSc` where `c` is any character and `S` is any string
/// this results in two codes `AB`, `A` encoding `cS` and `B` encoding `cSc`. Supposing
/// the buffer is already filled with the reconstruction of `A`, we can easily fill it
/// with the reconstruction of `B`.
fn fill_cscsc(&mut self) -> u8 {
self.bytes[self.write_mark] = self.bytes[0];
self.write_mark += 1;
self.read_mark = 0;
self.bytes[0]
}
// Fill the buffer by decoding from the table
fn fill_reconstruct(&mut self, table: &Table, code: Code) -> u8 {
self.write_mark = 0;
self.read_mark = 0;
let depth = table.depths[usize::from(code)];
let mut memory = core::mem::replace(&mut self.bytes, Box::default());
let out = &mut memory[..usize::from(depth)];
let last = table.reconstruct(code, out);
self.bytes = memory;
self.write_mark = usize::from(depth);
last
}
fn buffer(&self) -> &[u8] {
&self.bytes[self.read_mark..self.write_mark]
}
fn consume(&mut self, amt: usize) {
self.read_mark += amt;
}
}
impl Table {
fn new() -> Self {
Table {
inner: Vec::with_capacity(MAX_ENTRIES),
depths: Vec::with_capacity(MAX_ENTRIES),
}
}
fn clear(&mut self, min_size: u8) {
let static_count = usize::from(1u16 << u16::from(min_size)) + 2;
self.inner.truncate(static_count);
self.depths.truncate(static_count);
}
fn init(&mut self, min_size: u8) {
self.inner.clear();
self.depths.clear();
for i in 0..(1u16 << u16::from(min_size)) {
self.inner.push(Link::base(i as u8));
self.depths.push(1);
}
// Clear code.
self.inner.push(Link::base(0));
self.depths.push(0);
// End code.
self.inner.push(Link::base(0));
self.depths.push(0);
}
fn at(&self, code: Code) -> &Link {
&self.inner[usize::from(code)]
}
fn is_empty(&self) -> bool {
self.inner.is_empty()
}
fn is_full(&self) -> bool {
self.inner.len() >= MAX_ENTRIES
}
fn derive(&mut self, from: &Link, byte: u8, prev: Code) -> Link {
let link = from.derive(byte, prev);
let depth = self.depths[usize::from(prev)] + 1;
self.inner.push(link.clone());
self.depths.push(depth);
link
}
fn reconstruct(&self, code: Code, out: &mut [u8]) -> u8 {
let mut code_iter = code;
let table = &self.inner[..=usize::from(code)];
let len = code_iter;
for ch in out.iter_mut().rev() {
//(code, cha) = self.table[k as usize];
// Note: This could possibly be replaced with an unchecked array access if
// - value is asserted to be < self.next_code() in push
// - min_size is asserted to be < MAX_CODESIZE
let entry = &table[usize::from(code_iter)];
code_iter = core::cmp::min(len, entry.prev);
*ch = entry.byte;
}
out[0]
}
}
impl Link {
fn base(byte: u8) -> Self {
Link { prev: 0, byte }
}
// TODO: this has self type to make it clear we might depend on the old in a future
// optimization. However, that has no practical purpose right now.
fn derive(&self, byte: u8, prev: Code) -> Self {
Link { prev, byte }
}
}
#[cfg(test)]
mod tests {
use crate::alloc::vec::Vec;
#[cfg(feature = "std")]
use crate::StreamBuf;
use crate::{decode::Decoder, BitOrder};
#[test]
fn invalid_code_size_low() {
let _ = Decoder::new(BitOrder::Msb, 0);
let _ = Decoder::new(BitOrder::Msb, 1);
}
#[test]
#[should_panic]
fn invalid_code_size_high() {
let _ = Decoder::new(BitOrder::Msb, 14);
}
fn make_encoded() -> Vec<u8> {
const FILE: &'static [u8] = include_bytes!(concat!(
env!("CARGO_MANIFEST_DIR"),
"/benches/binary-8-msb.lzw"
));
return Vec::from(FILE);
}
#[test]
#[cfg(feature = "std")]
fn into_stream_buffer_no_alloc() {
let encoded = make_encoded();
let mut decoder = Decoder::new(BitOrder::Msb, 8);
let mut output = vec![];
let mut buffer = [0; 512];
let mut istream = decoder.into_stream(&mut output);
istream.set_buffer(&mut buffer[..]);
istream.decode(&encoded[..]).status.unwrap();
match istream.buffer {
Some(StreamBuf::Borrowed(_)) => {}
None => panic!("Decoded without buffer??"),
Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
}
}
#[test]
#[cfg(feature = "std")]
fn into_stream_buffer_small_alloc() {
struct WriteTap<W: std::io::Write>(W);
const BUF_SIZE: usize = 512;
impl<W: std::io::Write> std::io::Write for WriteTap<W> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
assert!(buf.len() <= BUF_SIZE);
self.0.write(buf)
}
fn flush(&mut self) -> std::io::Result<()> {
self.0.flush()
}
}
let encoded = make_encoded();
let mut decoder = Decoder::new(BitOrder::Msb, 8);
let mut output = vec![];
let mut istream = decoder.into_stream(WriteTap(&mut output));
istream.set_buffer_size(512);
istream.decode(&encoded[..]).status.unwrap();
match istream.buffer {
Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
None => panic!("Decoded without buffer??"),
}
}
#[test]
#[cfg(feature = "std")]
fn reset() {
let encoded = make_encoded();
let mut decoder = Decoder::new(BitOrder::Msb, 8);
let mut reference = None;
for _ in 0..2 {
let mut output = vec![];
let mut buffer = [0; 512];
let mut istream = decoder.into_stream(&mut output);
istream.set_buffer(&mut buffer[..]);
istream.decode_all(&encoded[..]).status.unwrap();
decoder.reset();
if let Some(reference) = &reference {
assert_eq!(output, *reference);
} else {
reference = Some(output);
}
}
}
}