1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
//! A module for all decoding needs.
#[cfg(feature = "std")]
use crate::error::StreamResult;
use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult};
use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE};

use crate::alloc::{boxed::Box, vec, vec::Vec};
#[cfg(feature = "std")]
use std::io::{self, BufRead, Write};

/// The state for decoding data with an LZW algorithm.
///
/// The same structure can be utilized with streams as well as your own buffers and driver logic.
/// It may even be possible to mix them if you are sufficiently careful not to lose or skip any
/// already decode data in the process.
///
/// This is a sans-IO implementation, meaning that it only contains the state of the decoder and
/// the caller will provide buffers for input and output data when calling the basic
/// [`decode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*`
/// methods for decoding with a particular style of common IO.
///
/// * [`decode`] for decoding once without any IO-loop.
/// * [`into_async`] for decoding with the `futures` traits for asynchronous IO.
/// * [`into_stream`] for decoding with the standard `io` traits.
/// * [`into_vec`] for in-memory decoding.
///
/// [`decode_bytes`]: #method.decode_bytes
/// [`decode`]: #method.decode
/// [`into_async`]: #method.into_async
/// [`into_stream`]: #method.into_stream
/// [`into_vec`]: #method.into_vec
pub struct Decoder {
    state: Box<dyn Stateful + Send + 'static>,
}

/// A decoding stream sink.
///
/// See [`Decoder::into_stream`] on how to create this type.
///
/// [`Decoder::into_stream`]: struct.Decoder.html#method.into_stream
#[cfg_attr(
    not(feature = "std"),
    deprecated = "This type is only useful with the `std` feature."
)]
#[cfg_attr(not(feature = "std"), allow(dead_code))]
pub struct IntoStream<'d, W> {
    decoder: &'d mut Decoder,
    writer: W,
    buffer: Option<StreamBuf<'d>>,
    default_size: usize,
}

/// An async decoding sink.
///
/// See [`Decoder::into_async`] on how to create this type.
///
/// [`Decoder::into_async`]: struct.Decoder.html#method.into_async
#[cfg(feature = "async")]
pub struct IntoAsync<'d, W> {
    decoder: &'d mut Decoder,
    writer: W,
    buffer: Option<StreamBuf<'d>>,
    default_size: usize,
}

/// A decoding sink into a vector.
///
/// See [`Decoder::into_vec`] on how to create this type.
///
/// [`Decoder::into_vec`]: struct.Decoder.html#method.into_vec
pub struct IntoVec<'d> {
    decoder: &'d mut Decoder,
    vector: &'d mut Vec<u8>,
}

trait Stateful {
    fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult;
    fn has_ended(&self) -> bool;
    /// Ignore an end code and continue decoding (no implied reset).
    fn restart(&mut self);
    /// Reset the decoder to the beginning, dropping all buffers etc.
    fn reset(&mut self);
}

#[derive(Clone)]
struct Link {
    prev: Code,
    byte: u8,
}

#[derive(Default)]
struct MsbBuffer {
    /// A buffer of individual bits. The oldest code is kept in the high-order bits.
    bit_buffer: u64,
    /// A precomputed mask for this code.
    code_mask: u16,
    /// The current code size.
    code_size: u8,
    /// The number of bits in the buffer.
    bits: u8,
}

#[derive(Default)]
struct LsbBuffer {
    /// A buffer of individual bits. The oldest code is kept in the high-order bits.
    bit_buffer: u64,
    /// A precomputed mask for this code.
    code_mask: u16,
    /// The current code size.
    code_size: u8,
    /// The number of bits in the buffer.
    bits: u8,
}

trait CodeBuffer {
    fn new(min_size: u8) -> Self;
    fn reset(&mut self, min_size: u8);
    fn bump_code_size(&mut self);
    /// Retrieve the next symbol, refilling if necessary.
    fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code>;
    /// Refill the internal buffer.
    fn refill_bits(&mut self, inp: &mut &[u8]);
    /// Get the next buffered code word.
    fn get_bits(&mut self) -> Option<Code>;
    fn max_code(&self) -> Code;
    fn code_size(&self) -> u8;
}

struct DecodeState<CodeBuffer> {
    /// The original minimum code size.
    min_size: u8,
    /// The table of decoded codes.
    table: Table,
    /// The buffer of decoded data.
    buffer: Buffer,
    /// The link which we are still decoding and its original code.
    last: Option<(Code, Link)>,
    /// The next code entry.
    next_code: Code,
    /// Code to reset all tables.
    clear_code: Code,
    /// Code to signal the end of the stream.
    end_code: Code,
    /// A stored flag if the end code has already appeared.
    has_ended: bool,
    /// If tiff then bumps are a single code sooner.
    is_tiff: bool,
    /// Do we allow stream to start without an explicit reset code?
    implicit_reset: bool,
    /// The buffer for decoded words.
    code_buffer: CodeBuffer,
}

struct Buffer {
    bytes: Box<[u8]>,
    read_mark: usize,
    write_mark: usize,
}

struct Table {
    inner: Vec<Link>,
    depths: Vec<u16>,
}

impl Decoder {
    /// Create a new decoder with the specified bit order and symbol size.
    ///
    /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
    /// original specification. In particular you will need to specify an `Lsb` bit oder to decode
    /// the data portion of a compressed `gif` image.
    ///
    /// # Panics
    ///
    /// The `size` needs to be in the interval `0..=12`.
    pub fn new(order: BitOrder, size: u8) -> Self {
        type Boxed = Box<dyn Stateful + Send + 'static>;
        super::assert_decode_size(size);
        let state = match order {
            BitOrder::Lsb => Box::new(DecodeState::<LsbBuffer>::new(size)) as Boxed,
            BitOrder::Msb => Box::new(DecodeState::<MsbBuffer>::new(size)) as Boxed,
        };

        Decoder { state }
    }

    /// Create a TIFF compatible decoder with the specified bit order and symbol size.
    ///
    /// The algorithm for dynamically increasing the code symbol bit width is compatible with the
    /// TIFF specification, which is a misinterpretation of the original algorithm for increasing
    /// the code size. It switches one symbol sooner.
    ///
    /// # Panics
    ///
    /// The `size` needs to be in the interval `0..=12`.
    pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self {
        type Boxed = Box<dyn Stateful + Send + 'static>;
        super::assert_decode_size(size);
        let state = match order {
            BitOrder::Lsb => {
                let mut state = Box::new(DecodeState::<LsbBuffer>::new(size));
                state.is_tiff = true;
                state as Boxed
            }
            BitOrder::Msb => {
                let mut state = Box::new(DecodeState::<MsbBuffer>::new(size));
                state.is_tiff = true;
                state as Boxed
            }
        };

        Decoder { state }
    }

    /// Decode some bytes from `inp` and write result to `out`.
    ///
    /// This will consume a prefix of the input buffer and write decoded output into a prefix of
    /// the output buffer. See the respective fields of the return value for the count of consumed
    /// and written bytes. For the next call You should have adjusted the inputs accordingly.
    ///
    /// The call will try to decode and write as many bytes of output as available. It will be
    /// much more optimized (and avoid intermediate buffering) if it is allowed to write a large
    /// contiguous chunk at once.
    ///
    /// See [`into_stream`] for high-level functions (that are only available with the `std`
    /// feature).
    ///
    /// [`into_stream`]: #method.into_stream
    pub fn decode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult {
        self.state.advance(inp, out)
    }

    /// Decode a single chunk of lzw encoded data.
    ///
    /// This method requires the data to contain an end marker, and returns an error otherwise.
    ///
    /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize
    /// buffer size, to supply an existing vector, to control whether an end marker is required, or
    /// to preserve partial data in the case of a decoding error.
    ///
    /// [`into_vec`]: #into_vec
    ///
    /// # Example
    ///
    /// ```
    /// use weezl::{BitOrder, decode::Decoder};
    ///
    /// // Encoded that was created with an encoder.
    /// let data = b"\x80\x04\x81\x94l\x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l\x19 \x10";
    /// let decoded = Decoder::new(BitOrder::Msb, 9)
    ///     .decode(data)
    ///     .unwrap();
    /// assert_eq!(decoded, b"Hello, world");
    /// ```
    pub fn decode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> {
        let mut output = vec![];
        self.into_vec(&mut output).decode_all(data).status?;
        Ok(output)
    }

    /// Construct a decoder into a writer.
    #[cfg(feature = "std")]
    pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> {
        IntoStream {
            decoder: self,
            writer,
            buffer: None,
            default_size: STREAM_BUF_SIZE,
        }
    }

    /// Construct a decoder into an async writer.
    #[cfg(feature = "async")]
    pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> {
        IntoAsync {
            decoder: self,
            writer,
            buffer: None,
            default_size: STREAM_BUF_SIZE,
        }
    }

    /// Construct a decoder into a vector.
    ///
    /// All decoded data is appended and the vector is __not__ cleared.
    ///
    /// Compared to `into_stream` this interface allows a high-level access to decoding without
    /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the
    /// special target exposes.
    pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> {
        IntoVec {
            decoder: self,
            vector: vec,
        }
    }

    /// Check if the decoding has finished.
    ///
    /// No more output is produced beyond the end code that marked the finish of the stream. The
    /// decoder may have read additional bytes, including padding bits beyond the last code word
    /// but also excess bytes provided.
    pub fn has_ended(&self) -> bool {
        self.state.has_ended()
    }

    /// Ignore an end code and continue.
    ///
    /// This will _not_ reset any of the inner code tables and not have the effect of a clear code.
    /// It will instead continue as if the end code had not been present. If no end code has
    /// occurred then this is a no-op.
    ///
    /// You can test if an end code has occurred with [`has_ended`](#method.has_ended).
    /// FIXME: clarify how this interacts with padding introduced after end code.
    #[allow(dead_code)]
    pub(crate) fn restart(&mut self) {
        self.state.restart();
    }

    /// Reset all internal state.
    ///
    /// This produce a decoder as if just constructed with `new` but taking slightly less work. In
    /// particular it will not deallocate any internal allocations. It will also avoid some
    /// duplicate setup work.
    pub fn reset(&mut self) {
        self.state.reset();
    }
}

#[cfg(feature = "std")]
impl<'d, W: Write> IntoStream<'d, W> {
    /// Decode data from a reader.
    ///
    /// This will read data until the stream is empty or an end marker is reached.
    pub fn decode(&mut self, read: impl BufRead) -> StreamResult {
        self.decode_part(read, false)
    }

    /// Decode data from a reader, requiring an end marker.
    pub fn decode_all(mut self, read: impl BufRead) -> StreamResult {
        self.decode_part(read, true)
    }

    /// Set the size of the intermediate decode buffer.
    ///
    /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is
    /// available and any decoding method is called. No buffer is allocated if `set_buffer` has
    /// been called. The buffer is reused.
    ///
    /// # Panics
    /// This method panics if `size` is `0`.
    pub fn set_buffer_size(&mut self, size: usize) {
        assert_ne!(size, 0, "Attempted to set empty buffer");
        self.default_size = size;
    }

    /// Use a particular buffer as an intermediate decode buffer.
    ///
    /// Calling this sets or replaces the buffer. When a buffer has been set then it is used
    /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical
    /// for efficient decoding. Some optimization techniques require the buffer to hold one or more
    /// previous decoded words. There is also additional overhead from `write` calls each time the
    /// buffer has been filled.
    ///
    /// # Panics
    /// This method panics if the `buffer` is empty.
    pub fn set_buffer(&mut self, buffer: &'d mut [u8]) {
        assert_ne!(buffer.len(), 0, "Attempted to set empty buffer");
        self.buffer = Some(StreamBuf::Borrowed(buffer));
    }

    fn decode_part(&mut self, mut read: impl BufRead, must_finish: bool) -> StreamResult {
        let IntoStream {
            decoder,
            writer,
            buffer,
            default_size,
        } = self;

        enum Progress {
            Ok,
            Done,
        }

        let mut bytes_read = 0;
        let mut bytes_written = 0;

        // Converting to mutable refs to move into the `once` closure.
        let read_bytes = &mut bytes_read;
        let write_bytes = &mut bytes_written;

        let outbuf: &mut [u8] =
            match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } {
                StreamBuf::Borrowed(slice) => &mut *slice,
                StreamBuf::Owned(vec) => &mut *vec,
            };
        assert!(!outbuf.is_empty());

        let once = move || {
            // Try to grab one buffer of input data.
            let data = read.fill_buf()?;

            // Decode as much of the buffer as fits.
            let result = decoder.decode_bytes(data, &mut outbuf[..]);
            // Do the bookkeeping and consume the buffer.
            *read_bytes += result.consumed_in;
            *write_bytes += result.consumed_out;
            read.consume(result.consumed_in);

            // Handle the status in the result.
            let done = result.status.map_err(|err| {
                io::Error::new(io::ErrorKind::InvalidData, &*format!("{:?}", err))
            })?;

            // Check if we had any new data at all.
            if let LzwStatus::NoProgress = done {
                debug_assert_eq!(
                    result.consumed_out, 0,
                    "No progress means we have not decoded any data"
                );
                // In particular we did not finish decoding.
                if must_finish {
                    return Err(io::Error::new(
                        io::ErrorKind::UnexpectedEof,
                        "No more data but no end marker detected",
                    ));
                } else {
                    return Ok(Progress::Done);
                }
            }

            // And finish by writing our result.
            // TODO: we may lose data on error (also on status error above) which we might want to
            // deterministically handle so that we don't need to restart everything from scratch as
            // the only recovery strategy. Any changes welcome.
            writer.write_all(&outbuf[..result.consumed_out])?;

            Ok(if let LzwStatus::Done = done {
                Progress::Done
            } else {
                Progress::Ok
            })
        };

        // Decode chunks of input data until we're done.
        let status = core::iter::repeat_with(once)
            // scan+fuse can be replaced with map_while
            .scan((), |(), result| match result {
                Ok(Progress::Ok) => Some(Ok(())),
                Err(err) => Some(Err(err)),
                Ok(Progress::Done) => None,
            })
            .fuse()
            .collect();

        StreamResult {
            bytes_read,
            bytes_written,
            status,
        }
    }
}

impl IntoVec<'_> {
    /// Decode data from a slice.
    ///
    /// This will read data until the slice is empty or an end marker is reached.
    pub fn decode(&mut self, read: &[u8]) -> VectorResult {
        self.decode_part(read, false)
    }

    /// Decode data from a slice, requiring an end marker.
    pub fn decode_all(mut self, read: &[u8]) -> VectorResult {
        self.decode_part(read, true)
    }

    fn grab_buffer(&mut self) -> (&mut [u8], &mut Decoder) {
        const CHUNK_SIZE: usize = 1 << 12;
        let decoder = &mut self.decoder;
        let length = self.vector.len();

        // Use the vector to do overflow checks and w/e.
        self.vector.reserve(CHUNK_SIZE);
        // FIXME: decoding into uninit buffer?
        self.vector.resize(length + CHUNK_SIZE, 0u8);

        (&mut self.vector[length..], decoder)
    }

    fn decode_part(&mut self, part: &[u8], must_finish: bool) -> VectorResult {
        let mut result = VectorResult {
            consumed_in: 0,
            consumed_out: 0,
            status: Ok(LzwStatus::Ok),
        };

        enum Progress {
            Ok,
            Done,
        }

        // Converting to mutable refs to move into the `once` closure.
        let read_bytes = &mut result.consumed_in;
        let write_bytes = &mut result.consumed_out;
        let mut data = part;

        // A 64 MB buffer is quite large but should get alloc_zeroed.
        // Note that the decoded size can be up to quadratic in code block.
        let once = move || {
            // Grab a new output buffer.
            let (outbuf, decoder) = self.grab_buffer();

            // Decode as much of the buffer as fits.
            let result = decoder.decode_bytes(data, &mut outbuf[..]);
            // Do the bookkeeping and consume the buffer.
            *read_bytes += result.consumed_in;
            *write_bytes += result.consumed_out;
            data = &data[result.consumed_in..];

            let unfilled = outbuf.len() - result.consumed_out;
            let filled = self.vector.len() - unfilled;
            self.vector.truncate(filled);

            // Handle the status in the result.
            match result.status {
                Err(err) => Err(err),
                Ok(LzwStatus::NoProgress) if must_finish => Err(LzwError::InvalidCode),
                Ok(LzwStatus::NoProgress) | Ok(LzwStatus::Done) => Ok(Progress::Done),
                Ok(LzwStatus::Ok) => Ok(Progress::Ok),
            }
        };

        // Decode chunks of input data until we're done.
        let status: Result<(), _> = core::iter::repeat_with(once)
            // scan+fuse can be replaced with map_while
            .scan((), |(), result| match result {
                Ok(Progress::Ok) => Some(Ok(())),
                Err(err) => Some(Err(err)),
                Ok(Progress::Done) => None,
            })
            .fuse()
            .collect();

        if let Err(err) = status {
            result.status = Err(err);
        }

        result
    }
}

// This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would
// trip over the usage of await, which is a reserved keyword in that edition/version. It only
// contains an impl block.
#[cfg(feature = "async")]
#[path = "decode_into_async.rs"]
mod impl_decode_into_async;

impl<C: CodeBuffer> DecodeState<C> {
    fn new(min_size: u8) -> Self {
        DecodeState {
            min_size,
            table: Table::new(),
            buffer: Buffer::new(),
            last: None,
            clear_code: 1 << min_size,
            end_code: (1 << min_size) + 1,
            next_code: (1 << min_size) + 2,
            has_ended: false,
            is_tiff: false,
            implicit_reset: true,
            code_buffer: CodeBuffer::new(min_size),
        }
    }

    fn init_tables(&mut self) {
        self.code_buffer.reset(self.min_size);
        self.next_code = (1 << self.min_size) + 2;
        self.table.init(self.min_size);
    }

    fn reset_tables(&mut self) {
        self.code_buffer.reset(self.min_size);
        self.next_code = (1 << self.min_size) + 2;
        self.table.clear(self.min_size);
    }
}

impl<C: CodeBuffer> Stateful for DecodeState<C> {
    fn has_ended(&self) -> bool {
        self.has_ended
    }

    fn restart(&mut self) {
        self.has_ended = false;
    }

    fn reset(&mut self) {
        self.table.init(self.min_size);
        self.next_code = (1 << self.min_size) + 2;
        self.buffer.read_mark = 0;
        self.buffer.write_mark = 0;
        self.last = None;
        self.restart();
        self.code_buffer = CodeBuffer::new(self.min_size);
    }

    fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult {
        // Skip everything if there is nothing to do.
        if self.has_ended {
            return BufferResult {
                consumed_in: 0,
                consumed_out: 0,
                status: Ok(LzwStatus::Done),
            };
        }

        // Rough description:
        // We will fill the output slice as much as possible until either there is no more symbols
        // to decode or an end code has been reached. This requires an internal buffer to hold a
        // potential tail of the word corresponding to the last symbol. This tail will then be
        // decoded first before continuing with the regular decoding. The same buffer is required
        // to persist some symbol state across calls.
        //
        // We store the words corresponding to code symbols in an index chain, bytewise, where we
        // push each decoded symbol. (TODO: wuffs shows some success with 8-byte units). This chain
        // is traversed for each symbol when it is decoded and bytes are placed directly into the
        // output slice. In the special case (new_code == next_code) we use an existing decoded
        // version that is present in either the out bytes of this call or in buffer to copy the
        // repeated prefix slice.
        // TODO: I played with a 'decoding cache' to remember the position of long symbols and
        // avoid traversing the chain, doing a copy of memory instead. It did however not lead to
        // a serious improvement. It's just unlikely to both have a long symbol and have that
        // repeated twice in the same output buffer.
        //
        // You will also find the (to my knowledge novel) concept of a _decoding burst_ which
        // gained some >~10% speedup in tests. This is motivated by wanting to use out-of-order
        // execution as much as possible and for this reason have the least possible stress on
        // branch prediction. Our decoding table already gives us a lookahead on symbol lengths but
        // only for re-used codes, not novel ones. This lookahead also makes the loop termination
        // when restoring each byte of the code word perfectly predictable! So a burst is a chunk
        // of code words which are all independent of each other, have known lengths _and_ are
        // guaranteed to fit into the out slice without requiring a buffer. One burst can be
        // decoded in an extremely tight loop.
        //
        // TODO: since words can be at most (1 << MAX_CODESIZE) = 4096 bytes long we could avoid
        // that intermediate buffer at the expense of not always filling the output buffer
        // completely. Alternatively we might follow its chain of precursor states twice. This may
        // be even cheaper if we store more than one byte per link so it really should be
        // evaluated.
        // TODO: if the caller was required to provide the previous last word we could also avoid
        // the buffer for cases where we need it to restore the next code! This could be built
        // backwards compatible by only doing it after an opt-in call that enables the behaviour.

        // Record initial lengths for the result that is returned.
        let o_in = inp.len();
        let o_out = out.len();

        // The code_link is the previously decoded symbol.
        // It's used to link the new code back to its predecessor.
        let mut code_link = None;
        // The status, which is written to on an invalid code.
        let mut status = Ok(LzwStatus::Ok);

        match self.last.take() {
            // No last state? This is the first code after a reset?
            None => {
                match self.next_symbol(&mut inp) {
                    // Plainly invalid code.
                    Some(code) if code > self.next_code => status = Err(LzwError::InvalidCode),
                    // next_code would require an actual predecessor.
                    Some(code) if code == self.next_code => status = Err(LzwError::InvalidCode),
                    // No more symbols available and nothing decoded yet.
                    // Assume that we didn't make progress, this may get reset to Done if we read
                    // some bytes from the input.
                    None => status = Ok(LzwStatus::NoProgress),
                    // Handle a valid code.
                    Some(init_code) => {
                        if init_code == self.clear_code {
                            self.init_tables();
                        } else if init_code == self.end_code {
                            self.has_ended = true;
                            status = Ok(LzwStatus::Done);
                        } else if self.table.is_empty() {
                            if self.implicit_reset {
                                self.init_tables();

                                self.buffer.fill_reconstruct(&self.table, init_code);
                                let link = self.table.at(init_code).clone();
                                code_link = Some((init_code, link));
                            } else {
                                // We require an explicit reset.
                                status = Err(LzwError::InvalidCode);
                            }
                        } else {
                            // Reconstruct the first code in the buffer.
                            self.buffer.fill_reconstruct(&self.table, init_code);
                            let link = self.table.at(init_code).clone();
                            code_link = Some((init_code, link));
                        }
                    }
                }
            }
            // Move the tracking state to the stack.
            Some(tup) => code_link = Some(tup),
        };

        // Track an empty `burst` (see below) means we made no progress.
        let mut burst_required_for_progress = false;
        // Restore the previous state, if any.
        if let Some((code, link)) = code_link.take() {
            code_link = Some((code, link));
            let remain = self.buffer.buffer();
            // Check if we can fully finish the buffer.
            if remain.len() > out.len() {
                if out.is_empty() {
                    status = Ok(LzwStatus::NoProgress);
                } else {
                    out.copy_from_slice(&remain[..out.len()]);
                    self.buffer.consume(out.len());
                    out = &mut [];
                }
            } else if remain.is_empty() {
                status = Ok(LzwStatus::NoProgress);
                burst_required_for_progress = true;
            } else {
                let consumed = remain.len();
                out[..consumed].copy_from_slice(remain);
                self.buffer.consume(consumed);
                out = &mut out[consumed..];
                burst_required_for_progress = false;
            }
        }

        // The tracking state for a burst.
        // These are actually initialized later but compiler wasn't smart enough to fully optimize
        // out the init code so that appears outside th loop.
        // TODO: maybe we can make it part of the state but it's dubious if that really gives a
        // benefit over stack usage? Also the slices stored here would need some treatment as we
        // can't infect the main struct with a lifetime.
        let mut burst = [0; 6];
        let mut bytes = [0u16; 6];
        let mut target: [&mut [u8]; 6] = Default::default();
        // A special reference to out slice which holds the last decoded symbol.
        let mut last_decoded: Option<&[u8]> = None;

        while let Some((mut code, mut link)) = code_link.take() {
            if out.is_empty() && !self.buffer.buffer().is_empty() {
                code_link = Some((code, link));
                break;
            }

            let mut burst_size = 0;
            // Ensure the code buffer is full, we're about to request some codes.
            // Note that this also ensures at least one code is in the buffer if any input is left.
            self.refill_bits(&mut inp);
            // A burst is a sequence of decodes that are completely independent of each other. This
            // is the case if neither is an end code, a clear code, or a next code, i.e. we have
            // all of them in the decoding table and thus known their depths, and additionally if
            // we can decode them directly into the output buffer.
            for b in &mut burst {
                // TODO: does it actually make a perf difference to avoid reading new bits here?
                *b = match self.get_bits() {
                    None => break,
                    Some(code) => code,
                };

                // We can commit the previous burst code, and will take a slice from the output
                // buffer. This also avoids the bounds check in the tight loop later.
                if burst_size > 0 {
                    let len = bytes[burst_size - 1];
                    let (into, tail) = out.split_at_mut(usize::from(len));
                    target[burst_size - 1] = into;
                    out = tail;
                }

                // Check that we don't overflow the code size with all codes we burst decode.
                if let Some(potential_code) = self.next_code.checked_add(burst_size as u16) {
                    burst_size += 1;
                    if potential_code == self.code_buffer.max_code() - Code::from(self.is_tiff) {
                        break;
                    }
                } else {
                    // next_code overflowed
                    break;
                }

                // A burst code can't be special.
                if *b == self.clear_code || *b == self.end_code || *b >= self.next_code {
                    break;
                }

                // Read the code length and check that we can decode directly into the out slice.
                let len = self.table.depths[usize::from(*b)];
                if out.len() < usize::from(len) {
                    break;
                }

                bytes[burst_size - 1] = len;
            }

            // No code left, and no more bytes to fill the buffer.
            if burst_size == 0 {
                if burst_required_for_progress {
                    status = Ok(LzwStatus::NoProgress);
                }
                code_link = Some((code, link));
                break;
            }

            burst_required_for_progress = false;
            // Note that the very last code in the burst buffer doesn't actually belong to the
            // burst itself. TODO: sometimes it could, we just don't differentiate between the
            // breaks and a loop end condition above. That may be a speed advantage?
            let (&new_code, burst) = burst[..burst_size].split_last().unwrap();

            // The very tight loop for restoring the actual burst.
            for (&burst, target) in burst.iter().zip(&mut target[..burst_size - 1]) {
                let cha = self.table.reconstruct(burst, target);
                // TODO: this pushes into a Vec, maybe we can make this cleaner.
                // Theoretically this has a branch and llvm tends to be flaky with code layout for
                // the case of requiring an allocation (which can't occur in practice).
                let new_link = self.table.derive(&link, cha, code);
                self.next_code += 1;
                code = burst;
                link = new_link;
            }

            // Update the slice holding the last decoded word.
            if let Some(new_last) = target[..burst_size - 1].last_mut() {
                let slice = core::mem::replace(new_last, &mut []);
                last_decoded = Some(&*slice);
            }

            // Now handle the special codes.
            if new_code == self.clear_code {
                self.reset_tables();
                last_decoded = None;
                continue;
            }

            if new_code == self.end_code {
                self.has_ended = true;
                status = Ok(LzwStatus::Done);
                last_decoded = None;
                break;
            }

            if new_code > self.next_code {
                status = Err(LzwError::InvalidCode);
                last_decoded = None;
                break;
            }

            let required_len = if new_code == self.next_code {
                self.table.depths[usize::from(code)] + 1
            } else {
                self.table.depths[usize::from(new_code)]
            };

            let cha;
            let is_in_buffer;
            // Check if we will need to store our current state into the buffer.
            if usize::from(required_len) > out.len() {
                is_in_buffer = true;
                if new_code == self.next_code {
                    // last_decoded will be Some if we have restored any code into the out slice.
                    // Otherwise it will still be present in the buffer.
                    if let Some(last) = last_decoded.take() {
                        self.buffer.bytes[..last.len()].copy_from_slice(last);
                        self.buffer.write_mark = last.len();
                        self.buffer.read_mark = last.len();
                    }

                    cha = self.buffer.fill_cscsc();
                } else {
                    // Restore the decoded word into the buffer.
                    last_decoded = None;
                    cha = self.buffer.fill_reconstruct(&self.table, new_code);
                }
            } else {
                is_in_buffer = false;
                let (target, tail) = out.split_at_mut(usize::from(required_len));
                out = tail;

                if new_code == self.next_code {
                    // Reconstruct high.
                    let source = match last_decoded.take() {
                        Some(last) => last,
                        None => &self.buffer.bytes[..self.buffer.write_mark],
                    };
                    cha = source[0];
                    target[..source.len()].copy_from_slice(source);
                    target[source.len()..][0] = source[0];
                } else {
                    cha = self.table.reconstruct(new_code, target);
                }

                // A new decoded word.
                last_decoded = Some(target);
            }

            let new_link;
            // Each newly read code creates one new code/link based on the preceding code if we
            // have enough space to put it there.
            if !self.table.is_full() {
                let link = self.table.derive(&link, cha, code);

                if self.next_code == self.code_buffer.max_code() - Code::from(self.is_tiff)
                    && self.code_buffer.code_size() < MAX_CODESIZE
                {
                    self.bump_code_size();
                }

                self.next_code += 1;
                new_link = link;
            } else {
                // It's actually quite likely that the next code will be a reset but just in case.
                // FIXME: this path hasn't been tested very well.
                new_link = link.clone();
            }

            // store the information on the decoded word.
            code_link = Some((new_code, new_link));

            // Can't make any more progress with decoding.
            if is_in_buffer {
                break;
            }
        }

        // We need to store the last word into the buffer in case the first code in the next
        // iteration is the next_code.
        if let Some(tail) = last_decoded {
            self.buffer.bytes[..tail.len()].copy_from_slice(tail);
            self.buffer.write_mark = tail.len();
            self.buffer.read_mark = tail.len();
        }

        // Ensure we don't indicate that no progress was made if we read some bytes from the input
        // (which is progress).
        if o_in > inp.len() {
            if let Ok(LzwStatus::NoProgress) = status {
                status = Ok(LzwStatus::Ok);
            }
        }

        // Store the code/link state.
        self.last = code_link;

        BufferResult {
            consumed_in: o_in.wrapping_sub(inp.len()),
            consumed_out: o_out.wrapping_sub(out.len()),
            status,
        }
    }
}

impl<C: CodeBuffer> DecodeState<C> {
    fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
        self.code_buffer.next_symbol(inp)
    }

    fn bump_code_size(&mut self) {
        self.code_buffer.bump_code_size()
    }

    fn refill_bits(&mut self, inp: &mut &[u8]) {
        self.code_buffer.refill_bits(inp)
    }

    fn get_bits(&mut self) -> Option<Code> {
        self.code_buffer.get_bits()
    }
}

impl CodeBuffer for MsbBuffer {
    fn new(min_size: u8) -> Self {
        MsbBuffer {
            code_size: min_size + 1,
            code_mask: (1u16 << (min_size + 1)) - 1,
            bit_buffer: 0,
            bits: 0,
        }
    }

    fn reset(&mut self, min_size: u8) {
        self.code_size = min_size + 1;
        self.code_mask = (1 << self.code_size) - 1;
    }

    fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
        if self.bits < self.code_size {
            self.refill_bits(inp);
        }

        self.get_bits()
    }

    fn bump_code_size(&mut self) {
        self.code_size += 1;
        self.code_mask = (self.code_mask << 1) | 1;
    }

    fn refill_bits(&mut self, inp: &mut &[u8]) {
        let wish_count = (64 - self.bits) / 8;
        let mut buffer = [0u8; 8];
        let new_bits = match inp.get(..usize::from(wish_count)) {
            Some(bytes) => {
                buffer[..usize::from(wish_count)].copy_from_slice(bytes);
                *inp = &inp[usize::from(wish_count)..];
                wish_count * 8
            }
            None => {
                let new_bits = inp.len() * 8;
                buffer[..inp.len()].copy_from_slice(inp);
                *inp = &[];
                new_bits as u8
            }
        };
        self.bit_buffer |= u64::from_be_bytes(buffer) >> self.bits;
        self.bits += new_bits;
    }

    fn get_bits(&mut self) -> Option<Code> {
        if self.bits < self.code_size {
            return None;
        }

        let mask = u64::from(self.code_mask);
        let rotbuf = self.bit_buffer.rotate_left(self.code_size.into());
        self.bit_buffer = rotbuf & !mask;
        self.bits -= self.code_size;
        Some((rotbuf & mask) as u16)
    }

    fn max_code(&self) -> Code {
        self.code_mask
    }

    fn code_size(&self) -> u8 {
        self.code_size
    }
}

impl CodeBuffer for LsbBuffer {
    fn new(min_size: u8) -> Self {
        LsbBuffer {
            code_size: min_size + 1,
            code_mask: (1u16 << (min_size + 1)) - 1,
            bit_buffer: 0,
            bits: 0,
        }
    }

    fn reset(&mut self, min_size: u8) {
        self.code_size = min_size + 1;
        self.code_mask = (1 << self.code_size) - 1;
    }

    fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> {
        if self.bits < self.code_size {
            self.refill_bits(inp);
        }

        self.get_bits()
    }

    fn bump_code_size(&mut self) {
        self.code_size += 1;
        self.code_mask = (self.code_mask << 1) | 1;
    }

    fn refill_bits(&mut self, inp: &mut &[u8]) {
        let wish_count = (64 - self.bits) / 8;
        let mut buffer = [0u8; 8];
        let new_bits = match inp.get(..usize::from(wish_count)) {
            Some(bytes) => {
                buffer[..usize::from(wish_count)].copy_from_slice(bytes);
                *inp = &inp[usize::from(wish_count)..];
                wish_count * 8
            }
            None => {
                let new_bits = inp.len() * 8;
                buffer[..inp.len()].copy_from_slice(inp);
                *inp = &[];
                new_bits as u8
            }
        };
        self.bit_buffer |= u64::from_be_bytes(buffer).swap_bytes() << self.bits;
        self.bits += new_bits;
    }

    fn get_bits(&mut self) -> Option<Code> {
        if self.bits < self.code_size {
            return None;
        }

        let mask = u64::from(self.code_mask);
        let code = self.bit_buffer & mask;
        self.bit_buffer >>= self.code_size;
        self.bits -= self.code_size;
        Some(code as u16)
    }

    fn max_code(&self) -> Code {
        self.code_mask
    }

    fn code_size(&self) -> u8 {
        self.code_size
    }
}

impl Buffer {
    fn new() -> Self {
        Buffer {
            bytes: vec![0; MAX_ENTRIES].into_boxed_slice(),
            read_mark: 0,
            write_mark: 0,
        }
    }

    /// When encoding a sequence `cScSc` where `c` is any character and `S` is any string
    /// this results in two codes `AB`, `A` encoding `cS` and `B` encoding `cSc`. Supposing
    /// the buffer is already filled with the reconstruction of `A`, we can easily fill it
    /// with the reconstruction of `B`.
    fn fill_cscsc(&mut self) -> u8 {
        self.bytes[self.write_mark] = self.bytes[0];
        self.write_mark += 1;
        self.read_mark = 0;
        self.bytes[0]
    }

    // Fill the buffer by decoding from the table
    fn fill_reconstruct(&mut self, table: &Table, code: Code) -> u8 {
        self.write_mark = 0;
        self.read_mark = 0;
        let depth = table.depths[usize::from(code)];
        let mut memory = core::mem::replace(&mut self.bytes, Box::default());

        let out = &mut memory[..usize::from(depth)];
        let last = table.reconstruct(code, out);

        self.bytes = memory;
        self.write_mark = usize::from(depth);
        last
    }

    fn buffer(&self) -> &[u8] {
        &self.bytes[self.read_mark..self.write_mark]
    }

    fn consume(&mut self, amt: usize) {
        self.read_mark += amt;
    }
}

impl Table {
    fn new() -> Self {
        Table {
            inner: Vec::with_capacity(MAX_ENTRIES),
            depths: Vec::with_capacity(MAX_ENTRIES),
        }
    }

    fn clear(&mut self, min_size: u8) {
        let static_count = usize::from(1u16 << u16::from(min_size)) + 2;
        self.inner.truncate(static_count);
        self.depths.truncate(static_count);
    }

    fn init(&mut self, min_size: u8) {
        self.inner.clear();
        self.depths.clear();
        for i in 0..(1u16 << u16::from(min_size)) {
            self.inner.push(Link::base(i as u8));
            self.depths.push(1);
        }
        // Clear code.
        self.inner.push(Link::base(0));
        self.depths.push(0);
        // End code.
        self.inner.push(Link::base(0));
        self.depths.push(0);
    }

    fn at(&self, code: Code) -> &Link {
        &self.inner[usize::from(code)]
    }

    fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    fn is_full(&self) -> bool {
        self.inner.len() >= MAX_ENTRIES
    }

    fn derive(&mut self, from: &Link, byte: u8, prev: Code) -> Link {
        let link = from.derive(byte, prev);
        let depth = self.depths[usize::from(prev)] + 1;
        self.inner.push(link.clone());
        self.depths.push(depth);
        link
    }

    fn reconstruct(&self, code: Code, out: &mut [u8]) -> u8 {
        let mut code_iter = code;
        let table = &self.inner[..=usize::from(code)];
        let len = code_iter;
        for ch in out.iter_mut().rev() {
            //(code, cha) = self.table[k as usize];
            // Note: This could possibly be replaced with an unchecked array access if
            //  - value is asserted to be < self.next_code() in push
            //  - min_size is asserted to be < MAX_CODESIZE
            let entry = &table[usize::from(code_iter)];
            code_iter = core::cmp::min(len, entry.prev);
            *ch = entry.byte;
        }
        out[0]
    }
}

impl Link {
    fn base(byte: u8) -> Self {
        Link { prev: 0, byte }
    }

    // TODO: this has self type to make it clear we might depend on the old in a future
    // optimization. However, that has no practical purpose right now.
    fn derive(&self, byte: u8, prev: Code) -> Self {
        Link { prev, byte }
    }
}

#[cfg(test)]
mod tests {
    use crate::alloc::vec::Vec;
    #[cfg(feature = "std")]
    use crate::StreamBuf;
    use crate::{decode::Decoder, BitOrder};

    #[test]
    fn invalid_code_size_low() {
        let _ = Decoder::new(BitOrder::Msb, 0);
        let _ = Decoder::new(BitOrder::Msb, 1);
    }

    #[test]
    #[should_panic]
    fn invalid_code_size_high() {
        let _ = Decoder::new(BitOrder::Msb, 14);
    }

    fn make_encoded() -> Vec<u8> {
        const FILE: &'static [u8] = include_bytes!(concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/benches/binary-8-msb.lzw"
        ));
        return Vec::from(FILE);
    }

    #[test]
    #[cfg(feature = "std")]
    fn into_stream_buffer_no_alloc() {
        let encoded = make_encoded();
        let mut decoder = Decoder::new(BitOrder::Msb, 8);

        let mut output = vec![];
        let mut buffer = [0; 512];
        let mut istream = decoder.into_stream(&mut output);
        istream.set_buffer(&mut buffer[..]);
        istream.decode(&encoded[..]).status.unwrap();

        match istream.buffer {
            Some(StreamBuf::Borrowed(_)) => {}
            None => panic!("Decoded without buffer??"),
            Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation"),
        }
    }

    #[test]
    #[cfg(feature = "std")]
    fn into_stream_buffer_small_alloc() {
        struct WriteTap<W: std::io::Write>(W);
        const BUF_SIZE: usize = 512;

        impl<W: std::io::Write> std::io::Write for WriteTap<W> {
            fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
                assert!(buf.len() <= BUF_SIZE);
                self.0.write(buf)
            }
            fn flush(&mut self) -> std::io::Result<()> {
                self.0.flush()
            }
        }

        let encoded = make_encoded();
        let mut decoder = Decoder::new(BitOrder::Msb, 8);

        let mut output = vec![];
        let mut istream = decoder.into_stream(WriteTap(&mut output));
        istream.set_buffer_size(512);
        istream.decode(&encoded[..]).status.unwrap();

        match istream.buffer {
            Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE),
            Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?"),
            None => panic!("Decoded without buffer??"),
        }
    }

    #[test]
    #[cfg(feature = "std")]
    fn reset() {
        let encoded = make_encoded();
        let mut decoder = Decoder::new(BitOrder::Msb, 8);
        let mut reference = None;

        for _ in 0..2 {
            let mut output = vec![];
            let mut buffer = [0; 512];
            let mut istream = decoder.into_stream(&mut output);
            istream.set_buffer(&mut buffer[..]);
            istream.decode_all(&encoded[..]).status.unwrap();

            decoder.reset();
            if let Some(reference) = &reference {
                assert_eq!(output, *reference);
            } else {
                reference = Some(output);
            }
        }
    }
}