1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
/*
 * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

use super::{fabsf, j0f, j1f, logf, y0f, y1f};

/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
pub fn jnf(n: i32, mut x: f32) -> f32 {
    let mut ix: u32;
    let mut nm1: i32;
    let mut sign: bool;
    let mut i: i32;
    let mut a: f32;
    let mut b: f32;
    let mut temp: f32;

    ix = x.to_bits();
    sign = (ix >> 31) != 0;
    ix &= 0x7fffffff;
    if ix > 0x7f800000 {
        /* nan */
        return x;
    }

    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
    if n == 0 {
        return j0f(x);
    }
    if n < 0 {
        nm1 = -(n + 1);
        x = -x;
        sign = !sign;
    } else {
        nm1 = n - 1;
    }
    if nm1 == 0 {
        return j1f(x);
    }

    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
    x = fabsf(x);
    if ix == 0 || ix == 0x7f800000 {
        /* if x is 0 or inf */
        b = 0.0;
    } else if (nm1 as f32) < x {
        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
        a = j0f(x);
        b = j1f(x);
        i = 0;
        while i < nm1 {
            i += 1;
            temp = b;
            b = b * (2.0 * (i as f32) / x) - a;
            a = temp;
        }
    } else {
        if ix < 0x35800000 {
            /* x < 2**-20 */
            /* x is tiny, return the first Taylor expansion of J(n,x)
             * J(n,x) = 1/n!*(x/2)^n  - ...
             */
            if nm1 > 8 {
                /* underflow */
                nm1 = 8;
            }
            temp = 0.5 * x;
            b = temp;
            a = 1.0;
            i = 2;
            while i <= nm1 + 1 {
                a *= i as f32; /* a = n! */
                b *= temp; /* b = (x/2)^n */
                i += 1;
            }
            b = b / a;
        } else {
            /* use backward recurrence */
            /*                      x      x^2      x^2
             *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
             *                      2n  - 2(n+1) - 2(n+2)
             *
             *                      1      1        1
             *  (for large x)   =  ----  ------   ------   .....
             *                      2n   2(n+1)   2(n+2)
             *                      -- - ------ - ------ -
             *                       x     x         x
             *
             * Let w = 2n/x and h=2/x, then the above quotient
             * is equal to the continued fraction:
             *                  1
             *      = -----------------------
             *                     1
             *         w - -----------------
             *                        1
             *              w+h - ---------
             *                     w+2h - ...
             *
             * To determine how many terms needed, let
             * Q(0) = w, Q(1) = w(w+h) - 1,
             * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
             * When Q(k) > 1e4      good for single
             * When Q(k) > 1e9      good for double
             * When Q(k) > 1e17     good for quadruple
             */
            /* determine k */
            let mut t: f32;
            let mut q0: f32;
            let mut q1: f32;
            let mut w: f32;
            let h: f32;
            let mut z: f32;
            let mut tmp: f32;
            let nf: f32;
            let mut k: i32;

            nf = (nm1 as f32) + 1.0;
            w = 2.0 * (nf as f32) / x;
            h = 2.0 / x;
            z = w + h;
            q0 = w;
            q1 = w * z - 1.0;
            k = 1;
            while q1 < 1.0e4 {
                k += 1;
                z += h;
                tmp = z * q1 - q0;
                q0 = q1;
                q1 = tmp;
            }
            t = 0.0;
            i = k;
            while i >= 0 {
                t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
                i -= 1;
            }
            a = t;
            b = 1.0;
            /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
             *  Hence, if n*(log(2n/x)) > ...
             *  single 8.8722839355e+01
             *  double 7.09782712893383973096e+02
             *  long double 1.1356523406294143949491931077970765006170e+04
             *  then recurrent value may overflow and the result is
             *  likely underflow to zero
             */
            tmp = nf * logf(fabsf(w));
            if tmp < 88.721679688 {
                i = nm1;
                while i > 0 {
                    temp = b;
                    b = 2.0 * (i as f32) * b / x - a;
                    a = temp;
                    i -= 1;
                }
            } else {
                i = nm1;
                while i > 0 {
                    temp = b;
                    b = 2.0 * (i as f32) * b / x - a;
                    a = temp;
                    /* scale b to avoid spurious overflow */
                    let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
                    if b > x1p60 {
                        a /= b;
                        t /= b;
                        b = 1.0;
                    }
                    i -= 1;
                }
            }
            z = j0f(x);
            w = j1f(x);
            if fabsf(z) >= fabsf(w) {
                b = t * z / b;
            } else {
                b = t * w / a;
            }
        }
    }

    if sign { -b } else { b }
}

/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
pub fn ynf(n: i32, x: f32) -> f32 {
    let mut ix: u32;
    let mut ib: u32;
    let nm1: i32;
    let mut sign: bool;
    let mut i: i32;
    let mut a: f32;
    let mut b: f32;
    let mut temp: f32;

    ix = x.to_bits();
    sign = (ix >> 31) != 0;
    ix &= 0x7fffffff;
    if ix > 0x7f800000 {
        /* nan */
        return x;
    }
    if sign && ix != 0 {
        /* x < 0 */
        return 0.0 / 0.0;
    }
    if ix == 0x7f800000 {
        return 0.0;
    }

    if n == 0 {
        return y0f(x);
    }
    if n < 0 {
        nm1 = -(n + 1);
        sign = (n & 1) != 0;
    } else {
        nm1 = n - 1;
        sign = false;
    }
    if nm1 == 0 {
        if sign {
            return -y1f(x);
        } else {
            return y1f(x);
        }
    }

    a = y0f(x);
    b = y1f(x);
    /* quit if b is -inf */
    ib = b.to_bits();
    i = 0;
    while i < nm1 && ib != 0xff800000 {
        i += 1;
        temp = b;
        b = (2.0 * (i as f32) / x) * b - a;
        ib = b.to_bits();
        a = temp;
    }

    if sign { -b } else { b }
}