1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! The style bloom filter is used as an optimization when matching deep
//! descendant selectors.
#![deny(missing_docs)]
use crate::dom::{SendElement, TElement};
use crate::LocalName;
use atomic_refcell::{AtomicRefCell, AtomicRefMut};
use selectors::bloom::BloomFilter;
use smallvec::SmallVec;
thread_local! {
/// Bloom filters are large allocations, so we store them in thread-local storage
/// such that they can be reused across style traversals. StyleBloom is responsible
/// for ensuring that the bloom filter is zeroed when it is dropped.
///
/// We intentionally leak this from TLS because we don't have the guarantee
/// of TLS destructors to run in worker threads.
///
/// Also, leaking it guarantees that we can borrow it indefinitely.
///
/// We could change this once https://github.com/rayon-rs/rayon/issues/688
/// is fixed, hopefully, which point we'd need to change the filter member below to be an
/// arc and carry an owning reference around or so.
static BLOOM_KEY: &'static AtomicRefCell<BloomFilter> = Box::leak(Default::default());
}
/// A struct that allows us to fast-reject deep descendant selectors avoiding
/// selector-matching.
///
/// This is implemented using a counting bloom filter, and it's a standard
/// optimization. See Gecko's `AncestorFilter`, and Blink's and WebKit's
/// `SelectorFilter`.
///
/// The constraints for Servo's style system are a bit different compared to
/// traditional style systems given Servo does a parallel breadth-first
/// traversal instead of a sequential depth-first traversal.
///
/// This implies that we need to track a bit more state than other browsers to
/// ensure we're doing the correct thing during the traversal, and being able to
/// apply this optimization effectively.
///
/// Concretely, we have a bloom filter instance per worker thread, and we track
/// the current DOM depth in order to find a common ancestor when it doesn't
/// match the previous element we've styled.
///
/// This is usually a pretty fast operation (we use to be one level deeper than
/// the previous one), but in the case of work-stealing, we may needed to push
/// and pop multiple elements.
///
/// See the `insert_parents_recovering`, where most of the magic happens.
///
/// Regarding thread-safety, this struct is safe because:
///
/// * We clear this after a restyle.
/// * The DOM shape and attributes (and every other thing we access here) are
/// immutable during a restyle.
///
pub struct StyleBloom<E: TElement> {
/// A handle to the bloom filter from the thread upon which this StyleBloom
/// was created. We use AtomicRefCell so that this is all |Send|, which allows
/// StyleBloom to live in ThreadLocalStyleContext, which is dropped from the
/// parent thread.
filter: AtomicRefMut<'static, BloomFilter>,
/// The stack of elements that this bloom filter contains, along with the
/// number of hashes pushed for each element.
elements: SmallVec<[PushedElement<E>; 16]>,
/// Stack of hashes that have been pushed onto this filter.
pushed_hashes: SmallVec<[u32; 64]>,
}
/// The very rough benchmarks in the selectors crate show clear()
/// costing about 25 times more than remove_hash(). We use this to implement
/// clear() more efficiently when only a small number of hashes have been
/// pushed.
///
/// One subtly to note is that remove_hash() will not touch the value
/// if the filter overflowed. However, overflow can only occur if we
/// get 255 collisions on the same hash value, and 25 < 255.
const MEMSET_CLEAR_THRESHOLD: usize = 25;
struct PushedElement<E: TElement> {
/// The element that was pushed.
element: SendElement<E>,
/// The number of hashes pushed for the element.
num_hashes: usize,
}
impl<E: TElement> PushedElement<E> {
fn new(el: E, num_hashes: usize) -> Self {
PushedElement {
element: unsafe { SendElement::new(el) },
num_hashes,
}
}
}
/// Returns whether the attribute name is excluded from the bloom filter.
///
/// We do this for attributes that are very common but not commonly used in
/// selectors.
#[inline]
pub fn is_attr_name_excluded_from_filter(name: &LocalName) -> bool {
*name == local_name!("class") || *name == local_name!("id") || *name == local_name!("style")
}
/// Gather all relevant hash for fast-reject filters from an element.
pub fn each_relevant_element_hash<E, F>(element: E, mut f: F)
where
E: TElement,
F: FnMut(u32),
{
f(element.local_name().get_hash());
f(element.namespace().get_hash());
if let Some(id) = element.id() {
f(id.get_hash());
}
element.each_class(|class| f(class.get_hash()));
element.each_attr_name(|name| {
if !is_attr_name_excluded_from_filter(name) {
f(name.get_hash())
}
});
}
impl<E: TElement> Drop for StyleBloom<E> {
fn drop(&mut self) {
// Leave the reusable bloom filter in a zeroed state.
self.clear();
}
}
impl<E: TElement> StyleBloom<E> {
/// Create an empty `StyleBloom`. Because StyleBloom acquires the thread-
/// local filter buffer, creating multiple live StyleBloom instances at
/// the same time on the same thread will panic.
// Forced out of line to limit stack frame sizes after extra inlining from
// https://github.com/rust-lang/rust/pull/43931
//
// See https://github.com/servo/servo/pull/18420#issuecomment-328769322
#[inline(never)]
pub fn new() -> Self {
let filter = BLOOM_KEY.with(|b| b.borrow_mut());
debug_assert!(
filter.is_zeroed(),
"Forgot to zero the bloom filter last time"
);
StyleBloom {
filter,
elements: Default::default(),
pushed_hashes: Default::default(),
}
}
/// Return the bloom filter used properly by the `selectors` crate.
pub fn filter(&self) -> &BloomFilter {
&*self.filter
}
/// Push an element to the bloom filter, knowing that it's a child of the
/// last element parent.
pub fn push(&mut self, element: E) {
if cfg!(debug_assertions) {
if self.elements.is_empty() {
assert!(element.traversal_parent().is_none());
}
}
self.push_internal(element);
}
/// Same as `push`, but without asserting, in order to use it from
/// `rebuild`.
fn push_internal(&mut self, element: E) {
let mut count = 0;
each_relevant_element_hash(element, |hash| {
count += 1;
self.filter.insert_hash(hash);
self.pushed_hashes.push(hash);
});
self.elements.push(PushedElement::new(element, count));
}
/// Pop the last element in the bloom filter and return it.
#[inline]
fn pop(&mut self) -> Option<E> {
let PushedElement {
element,
num_hashes,
} = self.elements.pop()?;
let popped_element = *element;
// Verify that the pushed hashes match the ones we'd get from the element.
let mut expected_hashes = vec![];
if cfg!(debug_assertions) {
each_relevant_element_hash(popped_element, |hash| expected_hashes.push(hash));
}
for _ in 0..num_hashes {
let hash = self.pushed_hashes.pop().unwrap();
debug_assert_eq!(expected_hashes.pop().unwrap(), hash);
self.filter.remove_hash(hash);
}
Some(popped_element)
}
/// Returns the DOM depth of elements that can be correctly
/// matched against the bloom filter (that is, the number of
/// elements in our list).
pub fn matching_depth(&self) -> usize {
self.elements.len()
}
/// Clears the bloom filter.
pub fn clear(&mut self) {
self.elements.clear();
if self.pushed_hashes.len() > MEMSET_CLEAR_THRESHOLD {
self.filter.clear();
self.pushed_hashes.clear();
} else {
for hash in self.pushed_hashes.drain(..) {
self.filter.remove_hash(hash);
}
debug_assert!(self.filter.is_zeroed());
}
}
/// Rebuilds the bloom filter up to the parent of the given element.
pub fn rebuild(&mut self, mut element: E) {
self.clear();
let mut parents_to_insert = SmallVec::<[E; 16]>::new();
while let Some(parent) = element.traversal_parent() {
parents_to_insert.push(parent);
element = parent;
}
for parent in parents_to_insert.drain(..).rev() {
self.push(parent);
}
}
/// In debug builds, asserts that all the parents of `element` are in the
/// bloom filter.
///
/// Goes away in release builds.
pub fn assert_complete(&self, mut element: E) {
if cfg!(debug_assertions) {
let mut checked = 0;
while let Some(parent) = element.traversal_parent() {
assert_eq!(
parent,
*(self.elements[self.elements.len() - 1 - checked].element)
);
element = parent;
checked += 1;
}
assert_eq!(checked, self.elements.len());
}
}
/// Get the element that represents the chain of things inserted
/// into the filter right now. That chain is the given element
/// (if any) and its ancestors.
#[inline]
pub fn current_parent(&self) -> Option<E> {
self.elements.last().map(|ref el| *el.element)
}
/// Insert the parents of an element in the bloom filter, trying to recover
/// the filter if the last element inserted doesn't match.
///
/// Gets the element depth in the dom, to make it efficient, or if not
/// provided always rebuilds the filter from scratch.
///
/// Returns the new bloom filter depth, that the traversal code is
/// responsible to keep around if it wants to get an effective filter.
pub fn insert_parents_recovering(&mut self, element: E, element_depth: usize) {
// Easy case, we're in a different restyle, or we're empty.
if self.elements.is_empty() {
self.rebuild(element);
return;
}
let traversal_parent = match element.traversal_parent() {
Some(parent) => parent,
None => {
// Yay, another easy case.
self.clear();
return;
},
};
if self.current_parent() == Some(traversal_parent) {
// Ta da, cache hit, we're all done.
return;
}
if element_depth == 0 {
self.clear();
return;
}
// We should've early exited above.
debug_assert!(
element_depth != 0,
"We should have already cleared the bloom filter"
);
debug_assert!(!self.elements.is_empty(), "How! We should've just rebuilt!");
// Now the fun begins: We have the depth of the dom and the depth of the
// last element inserted in the filter, let's try to find a common
// parent.
//
// The current depth, that is, the depth of the last element inserted in
// the bloom filter, is the number of elements _minus one_, that is: if
// there's one element, it must be the root -> depth zero.
let mut current_depth = self.elements.len() - 1;
// If the filter represents an element too deep in the dom, we need to
// pop ancestors.
while current_depth > element_depth - 1 {
self.pop().expect("Emilio is bad at math");
current_depth -= 1;
}
// Now let's try to find a common parent in the bloom filter chain,
// starting with traversal_parent.
let mut common_parent = traversal_parent;
let mut common_parent_depth = element_depth - 1;
// Let's collect the parents we are going to need to insert once we've
// found the common one.
let mut parents_to_insert = SmallVec::<[E; 16]>::new();
// If the bloom filter still doesn't have enough elements, the common
// parent is up in the dom.
while common_parent_depth > current_depth {
// TODO(emilio): Seems like we could insert parents here, then
// reverse the slice.
parents_to_insert.push(common_parent);
common_parent = common_parent.traversal_parent().expect("We were lied to");
common_parent_depth -= 1;
}
// Now the two depths are the same.
debug_assert_eq!(common_parent_depth, current_depth);
// Happy case: The parents match, we only need to push the ancestors
// we've collected and we'll never enter in this loop.
//
// Not-so-happy case: Parent's don't match, so we need to keep going up
// until we find a common ancestor.
//
// Gecko currently models native anonymous content that conceptually
// hangs off the document (such as scrollbars) as a separate subtree
// from the document root.
//
// Thus it's possible with Gecko that we do not find any common
// ancestor.
while *(self.elements.last().unwrap().element) != common_parent {
parents_to_insert.push(common_parent);
self.pop().unwrap();
common_parent = match common_parent.traversal_parent() {
Some(parent) => parent,
None => {
debug_assert!(self.elements.is_empty());
if cfg!(feature = "gecko") {
break;
} else {
panic!("should have found a common ancestor");
}
},
}
}
// Now the parents match, so insert the stack of elements we have been
// collecting so far.
for parent in parents_to_insert.drain(..).rev() {
self.push(parent);
}
debug_assert_eq!(self.elements.len(), element_depth);
// We're done! Easy.
}
}