uluru/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#![no_std]
#![deny(unsafe_code)]

//! A simple, fast, least-recently-used (LRU) cache.
//!
//! [`LRUCache`] uses a fixed-capacity array for storage. It provides `O(1)` insertion, and `O(n)`
//! lookup.  It does not require an allocator and can be used in `no_std` crates.
//!
//! See the [`LRUCache`] docs for details.

use arrayvec::ArrayVec;
use core::mem::replace;

#[cfg(test)]
mod tests;

/// A LRU cache using a statically-sized array for storage.
///
/// `LRUCache` uses a fixed-capacity array for storage. It provides `O(1)` insertion, and `O(n)`
/// lookup.
///
/// All items are stored inline within the `LRUCache`, so it does not impose any heap allocation or
/// indirection.  A linked list is used to record the cache order, so the items themselves do not
/// need to be moved when the order changes.  (This is important for speed if the items are large.)
///
/// # Example
///
/// ```
/// use uluru::LRUCache;
///
/// struct MyValue {
///     id: u32,
///     name: &'static str,
/// }
///
/// // A cache with a capacity of three.
/// type MyCache = LRUCache<MyValue, 3>;
///
/// // Create an empty cache, then insert some items.
/// let mut cache = MyCache::default();
/// cache.insert(MyValue { id: 1, name: "Mercury" });
/// cache.insert(MyValue { id: 2, name: "Venus" });
/// cache.insert(MyValue { id: 3, name: "Earth" });
///
/// // Use the `find` method to retrieve an item from the cache.
/// // This also "touches" the item, marking it most-recently-used.
/// let item = cache.find(|x| x.id == 1);
/// assert_eq!(item.unwrap().name, "Mercury");
///
/// // If the cache is full, inserting a new item evicts the least-recently-used item:
/// cache.insert(MyValue { id: 4, name: "Mars" });
/// assert!(cache.find(|x| x.id == 2).is_none());
/// ```
#[derive(Debug, Clone)]
pub struct LRUCache<T, const N: usize> {
    /// The most-recently-used entry is at index `head`. The entries form a linked list, linked to
    /// each other by indices within the `entries` array.  After an entry is added to the array,
    /// its index never changes, so these links are never invalidated.
    entries: ArrayVec<Entry<T>, N>,
    /// Index of the first entry. If the cache is empty, ignore this field.
    head: u16,
    /// Index of the last entry. If the cache is empty, ignore this field.
    tail: u16,
}

/// An entry in an `LRUCache`.
#[derive(Debug, Clone)]
struct Entry<T> {
    val: T,
    /// Index of the previous entry. If this entry is the head, ignore this field.
    prev: u16,
    /// Index of the next entry. If this entry is the tail, ignore this field.
    next: u16,
}

impl<T, const N: usize> Default for LRUCache<T, N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T, const N: usize> LRUCache<T, N> {
    /// Create an empty cache.
    pub const fn new() -> Self {
        assert!(N < u16::MAX as usize, "Capacity overflow");
        LRUCache {
            entries: ArrayVec::new_const(),
            head: 0,
            tail: 0,
        }
    }

    /// Insert a given key in the cache.
    ///
    /// This item becomes the front (most-recently-used) item in the cache.  If the cache is full,
    /// the back (least-recently-used) item will be removed and returned.
    pub fn insert(&mut self, val: T) -> Option<T> {
        let new_entry = Entry {
            val,
            prev: 0,
            next: 0,
        };

        // If the cache is full, replace the oldest entry. Otherwise, add an entry.
        if self.entries.is_full() {
            let i = self.pop_back();
            let old_entry = replace(self.entry(i), new_entry);
            self.push_front(i);
            Some(old_entry.val)
        } else {
            let i = self.entries.len() as u16;
            self.entries.push(new_entry);
            self.push_front(i);
            None
        }
    }

    /// Returns the first item in the cache that matches the given predicate.
    /// Touches the result (makes it most-recently-used) on a hit.
    pub fn find<F>(&mut self, pred: F) -> Option<&mut T>
    where
        F: FnMut(&T) -> bool,
    {
        if self.touch(pred) {
            self.front_mut()
        } else {
            None
        }
    }

    /// Performs a lookup on the cache with the given test routine. Touches
    /// the result on a hit.
    pub fn lookup<F, R>(&mut self, mut pred: F) -> Option<R>
    where
        F: FnMut(&mut T) -> Option<R>,
    {
        let mut iter = self.iter_mut();
        while let Some((i, val)) = iter.next() {
            if let Some(r) = pred(val) {
                self.touch_index(i);
                return Some(r);
            }
        }
        None
    }

    /// Returns the number of elements in the cache.
    #[inline]
    pub fn len(&self) -> usize {
        self.entries.len()
    }

    /// Returns true if the cache is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.entries.is_empty()
    }

    /// Evict all elements from the cache.
    #[inline]
    pub fn clear(&mut self) {
        self.entries.clear();
    }

    /// Returns the front entry in the list (most recently used).
    pub fn front(&self) -> Option<&T> {
        self.entries.get(self.head as usize).map(|e| &e.val)
    }

    /// Returns a mutable reference to the front entry in the list (most recently used).
    pub fn front_mut(&mut self) -> Option<&mut T> {
        self.entries.get_mut(self.head as usize).map(|e| &mut e.val)
    }

    /// Returns the n-th entry in the list (most recently used).
    pub fn get(&self, index: usize) -> Option<&T> {
        self.iter().nth(index)
    }

    /// Touches the first item in the cache that matches the given predicate (marks it as
    /// most-recently-used).
    /// Returns `true` on a hit, `false` if no matches.
    pub fn touch<F>(&mut self, mut pred: F) -> bool
    where
        F: FnMut(&T) -> bool,
    {
        let mut iter = self.iter_mut();
        while let Some((i, val)) = iter.next() {
            if pred(val) {
                self.touch_index(i);
                return true;
            }
        }
        false
    }

    /// Iterate over the contents of this cache in order from most-recently-used to
    /// least-recently-used.
    pub fn iter(&self) -> Iter<'_, T, N> {
        Iter {
            pos: self.head,
            cache: self,
        }
    }

    /// Iterate mutably over the contents of this cache in order from most-recently-used to
    /// least-recently-used.
    fn iter_mut(&mut self) -> IterMut<'_, T, N> {
        IterMut {
            pos: self.head,
            cache: self,
        }
    }

    /// Touch a given entry, putting it first in the list.
    #[inline]
    fn touch_index(&mut self, i: u16) {
        if i != self.head {
            self.remove(i);
            self.push_front(i);
        }
    }

    #[inline(always)]
    fn entry(&mut self, i: u16) -> &mut Entry<T> {
        &mut self.entries[i as usize]
    }

    /// Remove an entry from the linked list.
    ///
    /// Note: This only unlinks the entry from the list; it does not remove it from the array.
    fn remove(&mut self, i: u16) {
        let prev = self.entry(i).prev;
        let next = self.entry(i).next;

        if i == self.head {
            self.head = next;
        } else {
            self.entry(prev).next = next;
        }

        if i == self.tail {
            self.tail = prev;
        } else {
            self.entry(next).prev = prev;
        }
    }

    /// Insert a new entry at the head of the list.
    fn push_front(&mut self, i: u16) {
        if self.entries.len() == 1 {
            self.tail = i;
        } else {
            self.entry(i).next = self.head;
            self.entry(self.head).prev = i;
        }
        self.head = i;
    }

    /// Remove the last entry from the linked list. Returns the index of the removed entry.
    ///
    /// Note: This only unlinks the entry from the list; it does not remove it from the array.
    fn pop_back(&mut self) -> u16 {
        let new_tail = self.entry(self.tail).prev;
        replace(&mut self.tail, new_tail)
    }
}

/// Mutable iterator over values in an `LRUCache`, from most-recently-used to least-recently-used.
struct IterMut<'a, T, const N: usize> {
    cache: &'a mut LRUCache<T, N>,
    pos: u16,
}

impl<'a, T, const N: usize> IterMut<'a, T, N> {
    fn next(&mut self) -> Option<(u16, &mut T)> {
        let index = self.pos;
        let entry = self.cache.entries.get_mut(index as usize)?;

        self.pos = if index == self.cache.tail {
            N as u16 // Point past the end of the array to signal we are done.
        } else {
            entry.next
        };
        Some((index, &mut entry.val))
    }
}

/// Iterator over values in an [`LRUCache`], from most-recently-used to least-recently-used.
pub struct Iter<'a, T, const N: usize> {
    cache: &'a LRUCache<T, N>,
    pos: u16,
}

impl<'a, T, const N: usize> Iterator for Iter<'a, T, N> {
    type Item = &'a T;

    fn next(&mut self) -> Option<&'a T> {
        let entry = self.cache.entries.get(self.pos as usize)?;

        self.pos = if self.pos == self.cache.tail {
            N as u16 // Point past the end of the array to signal we are done.
        } else {
            entry.next
        };
        Some(&entry.val)
    }
}