webrender/screen_capture.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! Screen capture infrastructure for the Gecko Profiler and Composition Recorder.
use std::collections::HashMap;
use api::{ImageFormat, ImageBufferKind};
use api::units::*;
use gleam::gl::GlType;
use crate::device::{Device, PBO, DrawTarget, ReadTarget, Texture, TextureFilter};
use crate::internal_types::RenderTargetInfo;
use crate::renderer::Renderer;
use crate::util::round_up_to_multiple;
/// A handle to a screenshot that is being asynchronously captured and scaled.
#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct AsyncScreenshotHandle(usize);
/// A handle to a recorded frame that was captured.
#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct RecordedFrameHandle(usize);
/// An asynchronously captured screenshot bound to a PBO which has not yet been mapped for copying.
struct AsyncScreenshot {
/// The PBO that will contain the screenshot data.
pbo: PBO,
/// The size of the screenshot.
screenshot_size: DeviceIntSize,
/// The stride of the data in the PBO.
buffer_stride: usize,
/// Thge image format of the screenshot.
image_format: ImageFormat,
}
/// How the `AsyncScreenshotGrabber` captures frames.
#[derive(Debug, Eq, PartialEq)]
enum AsyncScreenshotGrabberMode {
/// Capture screenshots for the Gecko profiler.
///
/// This mode will asynchronously scale the screenshots captured.
ProfilerScreenshots,
/// Capture screenshots for the CompositionRecorder.
///
/// This mode does not scale the captured screenshots.
CompositionRecorder,
}
/// Renderer infrastructure for capturing screenshots and scaling them asynchronously.
pub(in crate) struct AsyncScreenshotGrabber {
/// The textures used to scale screenshots.
scaling_textures: Vec<Texture>,
/// PBOs available to be used for screenshot readback.
available_pbos: Vec<PBO>,
/// PBOs containing screenshots that are awaiting readback.
awaiting_readback: HashMap<AsyncScreenshotHandle, AsyncScreenshot>,
/// The handle for the net PBO that will be inserted into `in_use_pbos`.
next_pbo_handle: usize,
/// The mode the grabber operates in.
mode: AsyncScreenshotGrabberMode,
}
impl Default for AsyncScreenshotGrabber {
fn default() -> Self {
AsyncScreenshotGrabber {
scaling_textures: Vec::new(),
available_pbos: Vec::new(),
awaiting_readback: HashMap::new(),
next_pbo_handle: 1,
mode: AsyncScreenshotGrabberMode::ProfilerScreenshots,
}
}
}
impl AsyncScreenshotGrabber {
/// Create a new AsyncScreenshotGrabber for the composition recorder.
pub fn new_composition_recorder() -> Self {
let mut recorder = Self::default();
recorder.mode = AsyncScreenshotGrabberMode::CompositionRecorder;
recorder
}
/// Deinitialize the allocated textures and PBOs.
pub fn deinit(self, device: &mut Device) {
for texture in self.scaling_textures {
device.delete_texture(texture);
}
for pbo in self.available_pbos {
device.delete_pbo(pbo);
}
for (_, async_screenshot) in self.awaiting_readback {
device.delete_pbo(async_screenshot.pbo);
}
}
/// Take a screenshot and scale it asynchronously.
///
/// The returned handle can be used to access the mapped screenshot data via
/// `map_and_recycle_screenshot`.
/// The returned size is the size of the screenshot.
pub fn get_screenshot(
&mut self,
device: &mut Device,
window_rect: DeviceIntRect,
buffer_size: DeviceIntSize,
image_format: ImageFormat,
) -> (AsyncScreenshotHandle, DeviceIntSize) {
let screenshot_size = match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => {
assert_ne!(window_rect.width(), 0);
assert_ne!(window_rect.height(), 0);
let scale = (buffer_size.width as f32 / window_rect.width() as f32)
.min(buffer_size.height as f32 / window_rect.height() as f32);
(window_rect.size().to_f32() * scale).round().to_i32()
}
AsyncScreenshotGrabberMode::CompositionRecorder => {
assert_eq!(buffer_size, window_rect.size());
buffer_size
}
};
assert!(screenshot_size.width <= buffer_size.width);
assert!(screenshot_size.height <= buffer_size.height);
// To ensure that we hit the fast path when reading from a
// framebuffer we must ensure that the width of the area we read
// is a multiple of the device's optimal pixel-transfer stride.
// The read_size should therefore be the screenshot_size with the width
// increased to a suitable value. We will also pass this value to
// scale_screenshot() as the min_texture_size, to ensure the texture is
// large enough to read from. In CompositionRecorder mode we read
// directly from the default framebuffer so are unable choose this size.
let read_size = match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => {
let stride = (screenshot_size.width * image_format.bytes_per_pixel()) as usize;
let rounded = round_up_to_multiple(stride, device.required_pbo_stride().num_bytes(image_format));
let optimal_width = rounded as i32 / image_format.bytes_per_pixel();
DeviceIntSize::new(
optimal_width,
screenshot_size.height,
)
}
AsyncScreenshotGrabberMode::CompositionRecorder => buffer_size,
};
let required_size = read_size.area() as usize * image_format.bytes_per_pixel() as usize;
// Find an available PBO with the required size, creating a new one if necessary.
let pbo = {
let mut reusable_pbo = None;
while let Some(pbo) = self.available_pbos.pop() {
if pbo.get_reserved_size() != required_size {
device.delete_pbo(pbo);
} else {
reusable_pbo = Some(pbo);
break;
}
};
reusable_pbo.unwrap_or_else(|| device.create_pbo_with_size(required_size))
};
assert_eq!(pbo.get_reserved_size(), required_size);
let read_target = match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => {
self.scale_screenshot(
device,
ReadTarget::Default,
window_rect,
buffer_size,
read_size,
screenshot_size,
image_format,
0,
);
ReadTarget::from_texture(&self.scaling_textures[0])
}
AsyncScreenshotGrabberMode::CompositionRecorder => ReadTarget::Default,
};
device.read_pixels_into_pbo(
read_target,
DeviceIntRect::from_size(read_size),
image_format,
&pbo,
);
let handle = AsyncScreenshotHandle(self.next_pbo_handle);
self.next_pbo_handle += 1;
self.awaiting_readback.insert(
handle,
AsyncScreenshot {
pbo,
screenshot_size,
buffer_stride: (read_size.width * image_format.bytes_per_pixel()) as usize,
image_format,
},
);
(handle, screenshot_size)
}
/// Take the screenshot in the given `ReadTarget` and scale it to `dest_size` recursively.
///
/// Each scaling operation scales only by a factor of two to preserve quality.
///
/// Textures are scaled such that `scaling_textures[n]` is half the size of
/// `scaling_textures[n+1]`.
///
/// After the scaling completes, the final screenshot will be in
/// `scaling_textures[0]`.
///
/// The size of `scaling_textures[0]` will be increased to `min_texture_size`
/// so that an optimally-sized area can be read from it.
fn scale_screenshot(
&mut self,
device: &mut Device,
read_target: ReadTarget,
read_target_rect: DeviceIntRect,
buffer_size: DeviceIntSize,
min_texture_size: DeviceIntSize,
dest_size: DeviceIntSize,
image_format: ImageFormat,
level: usize,
) {
assert_eq!(self.mode, AsyncScreenshotGrabberMode::ProfilerScreenshots);
let texture_size = {
let size = buffer_size * (1 << level);
DeviceIntSize::new(
size.width.max(min_texture_size.width),
size.height.max(min_texture_size.height),
)
};
// If we haven't created a texture for this level, or the existing
// texture is the wrong size, then create a new one.
if level == self.scaling_textures.len() || self.scaling_textures[level].get_dimensions() != texture_size {
let texture = device.create_texture(
ImageBufferKind::Texture2D,
image_format,
texture_size.width,
texture_size.height,
TextureFilter::Linear,
Some(RenderTargetInfo { has_depth: false }),
);
if level == self.scaling_textures.len() {
self.scaling_textures.push(texture);
} else {
let old_texture = std::mem::replace(&mut self.scaling_textures[level], texture);
device.delete_texture(old_texture);
}
}
assert_eq!(self.scaling_textures[level].get_dimensions(), texture_size);
let (read_target, read_target_rect) = if read_target_rect.width() > 2 * dest_size.width {
self.scale_screenshot(
device,
read_target,
read_target_rect,
buffer_size,
min_texture_size,
dest_size * 2,
image_format,
level + 1,
);
(
ReadTarget::from_texture(&self.scaling_textures[level + 1]),
DeviceIntRect::from_size(dest_size * 2),
)
} else {
(read_target, read_target_rect)
};
let draw_target = DrawTarget::from_texture(&self.scaling_textures[level], false);
let draw_target_rect = draw_target
.to_framebuffer_rect(DeviceIntRect::from_size(dest_size));
let read_target_rect = device_rect_as_framebuffer_rect(&read_target_rect);
if level == 0 && !device.surface_origin_is_top_left() {
device.blit_render_target_invert_y(
read_target,
read_target_rect,
draw_target,
draw_target_rect,
);
} else {
device.blit_render_target(
read_target,
read_target_rect,
draw_target,
draw_target_rect,
TextureFilter::Linear,
);
}
}
/// Map the contents of the screenshot given by the handle and copy it into
/// the given buffer.
pub fn map_and_recycle_screenshot(
&mut self,
device: &mut Device,
handle: AsyncScreenshotHandle,
dst_buffer: &mut [u8],
dst_stride: usize,
) -> bool {
let AsyncScreenshot {
pbo,
screenshot_size,
buffer_stride,
image_format,
} = match self.awaiting_readback.remove(&handle) {
Some(screenshot) => screenshot,
None => return false,
};
let gl_type = device.gl().get_type();
let success = if let Some(bound_pbo) = device.map_pbo_for_readback(&pbo) {
let src_buffer = &bound_pbo.data;
let src_stride = buffer_stride;
let src_width =
screenshot_size.width as usize * image_format.bytes_per_pixel() as usize;
for (src_slice, dst_slice) in self
.iter_src_buffer_chunked(gl_type, src_buffer, src_stride)
.zip(dst_buffer.chunks_mut(dst_stride))
.take(screenshot_size.height as usize)
{
dst_slice[.. src_width].copy_from_slice(&src_slice[.. src_width]);
}
true
} else {
false
};
match self.mode {
AsyncScreenshotGrabberMode::ProfilerScreenshots => self.available_pbos.push(pbo),
AsyncScreenshotGrabberMode::CompositionRecorder => device.delete_pbo(pbo),
}
success
}
fn iter_src_buffer_chunked<'a>(
&self,
gl_type: GlType,
src_buffer: &'a [u8],
src_stride: usize,
) -> Box<dyn Iterator<Item = &'a [u8]> + 'a> {
use AsyncScreenshotGrabberMode::*;
let is_angle = cfg!(windows) && gl_type == GlType::Gles;
if self.mode == CompositionRecorder && !is_angle {
// This is a non-ANGLE configuration. in this case, the recorded frames were captured
// upside down, so we have to flip them right side up.
Box::new(src_buffer.chunks(src_stride).rev())
} else {
// This is either an ANGLE configuration in the `CompositionRecorder` mode or a
// non-ANGLE configuration in the `ProfilerScreenshots` mode. In either case, the
// captured frames are right-side up.
Box::new(src_buffer.chunks(src_stride))
}
}
}
// Screen-capture specific Renderer impls.
impl Renderer {
/// Record a frame for the Composition Recorder.
///
/// The returned handle can be passed to `map_recorded_frame` to copy it into
/// a buffer.
/// The returned size is the size of the frame.
pub fn record_frame(
&mut self,
image_format: ImageFormat,
) -> Option<(RecordedFrameHandle, DeviceIntSize)> {
let device_size = self.device_size()?;
self.device.begin_frame();
let (handle, _) = self
.async_frame_recorder
.get_or_insert_with(AsyncScreenshotGrabber::new_composition_recorder)
.get_screenshot(
&mut self.device,
DeviceIntRect::from_size(device_size),
device_size,
image_format,
);
self.device.end_frame();
Some((RecordedFrameHandle(handle.0), device_size))
}
/// Map a frame captured for the composition recorder into the given buffer.
pub fn map_recorded_frame(
&mut self,
handle: RecordedFrameHandle,
dst_buffer: &mut [u8],
dst_stride: usize,
) -> bool {
if let Some(async_frame_recorder) = self.async_frame_recorder.as_mut() {
async_frame_recorder.map_and_recycle_screenshot(
&mut self.device,
AsyncScreenshotHandle(handle.0),
dst_buffer,
dst_stride,
)
} else {
false
}
}
/// Free the data structures used by the composition recorder.
pub fn release_composition_recorder_structures(&mut self) {
if let Some(async_frame_recorder) = self.async_frame_recorder.take() {
self.device.begin_frame();
async_frame_recorder.deinit(&mut self.device);
self.device.end_frame();
}
}
/// Take a screenshot and scale it asynchronously.
///
/// The returned handle can be used to access the mapped screenshot data via
/// `map_and_recycle_screenshot`.
///
/// The returned size is the size of the screenshot.
pub fn get_screenshot_async(
&mut self,
window_rect: DeviceIntRect,
buffer_size: DeviceIntSize,
image_format: ImageFormat,
) -> (AsyncScreenshotHandle, DeviceIntSize) {
self.device.begin_frame();
let handle = self
.async_screenshots
.get_or_insert_with(AsyncScreenshotGrabber::default)
.get_screenshot(&mut self.device, window_rect, buffer_size, image_format);
self.device.end_frame();
handle
}
/// Map the contents of the screenshot given by the handle and copy it into
/// the given buffer.
pub fn map_and_recycle_screenshot(
&mut self,
handle: AsyncScreenshotHandle,
dst_buffer: &mut [u8],
dst_stride: usize,
) -> bool {
if let Some(async_screenshots) = self.async_screenshots.as_mut() {
async_screenshots.map_and_recycle_screenshot(
&mut self.device,
handle,
dst_buffer,
dst_stride,
)
} else {
false
}
}
/// Release the screenshot grabbing structures that the profiler was using.
pub fn release_profiler_structures(&mut self) {
if let Some(async_screenshots) = self.async_screenshots.take() {
self.device.begin_frame();
async_screenshots.deinit(&mut self.device);
self.device.end_frame();
}
}
}