1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Radial gradients
//!
//! Specification: https://drafts.csswg.org/css-images-4/#radial-gradients
//!
//! Radial gradients are rendered via cached render tasks and composited with the image brush.

use euclid::{vec2, size2};
use api::{ExtendMode, GradientStop, PremultipliedColorF, ColorU};
use api::units::*;
use crate::scene_building::IsVisible;
use crate::frame_builder::FrameBuildingState;
use crate::intern::{Internable, InternDebug, Handle as InternHandle};
use crate::internal_types::LayoutPrimitiveInfo;
use crate::prim_store::{BrushSegment, GradientTileRange, InternablePrimitive};
use crate::prim_store::{PrimitiveInstanceKind, PrimitiveOpacity};
use crate::prim_store::{PrimKeyCommonData, PrimTemplateCommonData, PrimitiveStore};
use crate::prim_store::{NinePatchDescriptor, PointKey, SizeKey, FloatKey};
use crate::render_task::{RenderTask, RenderTaskKind};
use crate::render_task_graph::RenderTaskId;
use crate::render_task_cache::{RenderTaskCacheKeyKind, RenderTaskCacheKey, RenderTaskParent};
use crate::renderer::GpuBufferAddress;
use crate::picture::{SurfaceIndex};

use std::{hash, ops::{Deref, DerefMut}};
use super::{
    stops_and_min_alpha, GradientStopKey, GradientGpuBlockBuilder,
    apply_gradient_local_clip,
};

/// Hashable radial gradient parameters, for use during prim interning.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Clone, MallocSizeOf, PartialEq)]
pub struct RadialGradientParams {
    pub start_radius: f32,
    pub end_radius: f32,
    pub ratio_xy: f32,
}

impl Eq for RadialGradientParams {}

impl hash::Hash for RadialGradientParams {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.start_radius.to_bits().hash(state);
        self.end_radius.to_bits().hash(state);
        self.ratio_xy.to_bits().hash(state);
    }
}

/// Identifying key for a radial gradient.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Clone, Eq, PartialEq, Hash, MallocSizeOf)]
pub struct RadialGradientKey {
    pub common: PrimKeyCommonData,
    pub extend_mode: ExtendMode,
    pub center: PointKey,
    pub params: RadialGradientParams,
    pub stretch_size: SizeKey,
    pub stops: Vec<GradientStopKey>,
    pub tile_spacing: SizeKey,
    pub nine_patch: Option<Box<NinePatchDescriptor>>,
}

impl RadialGradientKey {
    pub fn new(
        info: &LayoutPrimitiveInfo,
        radial_grad: RadialGradient,
    ) -> Self {
        RadialGradientKey {
            common: info.into(),
            extend_mode: radial_grad.extend_mode,
            center: radial_grad.center,
            params: radial_grad.params,
            stretch_size: radial_grad.stretch_size,
            stops: radial_grad.stops,
            tile_spacing: radial_grad.tile_spacing,
            nine_patch: radial_grad.nine_patch,
        }
    }
}

impl InternDebug for RadialGradientKey {}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
#[derive(Debug)]
pub struct RadialGradientTemplate {
    pub common: PrimTemplateCommonData,
    pub extend_mode: ExtendMode,
    pub params: RadialGradientParams,
    pub center: DevicePoint,
    pub task_size: DeviceIntSize,
    pub scale: DeviceVector2D,
    pub stretch_size: LayoutSize,
    pub tile_spacing: LayoutSize,
    pub brush_segments: Vec<BrushSegment>,
    pub stops_opacity: PrimitiveOpacity,
    pub stops: Vec<GradientStop>,
    pub src_color: Option<RenderTaskId>,
}

impl Deref for RadialGradientTemplate {
    type Target = PrimTemplateCommonData;
    fn deref(&self) -> &Self::Target {
        &self.common
    }
}

impl DerefMut for RadialGradientTemplate {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.common
    }
}

impl From<RadialGradientKey> for RadialGradientTemplate {
    fn from(item: RadialGradientKey) -> Self {
        let common = PrimTemplateCommonData::with_key_common(item.common);
        let mut brush_segments = Vec::new();

        if let Some(ref nine_patch) = item.nine_patch {
            brush_segments = nine_patch.create_segments(common.prim_rect.size());
        }

        let (stops, min_alpha) = stops_and_min_alpha(&item.stops);

        // Save opacity of the stops for use in
        // selecting which pass this gradient
        // should be drawn in.
        let stops_opacity = PrimitiveOpacity::from_alpha(min_alpha);

        let mut stretch_size: LayoutSize = item.stretch_size.into();
        stretch_size.width = stretch_size.width.min(common.prim_rect.width());
        stretch_size.height = stretch_size.height.min(common.prim_rect.height());

        // Avoid rendering enormous gradients. Radial gradients are mostly made of soft transitions,
        // so it is unlikely that rendering at a higher resolution that 1024 would produce noticeable
        // differences, especially with 8 bits per channel.
        const MAX_SIZE: f32 = 1024.0;
        let mut task_size: DeviceSize = stretch_size.cast_unit();
        let mut scale = vec2(1.0, 1.0);
        if task_size.width > MAX_SIZE {
            scale.x = task_size.width/ MAX_SIZE;
            task_size.width = MAX_SIZE;
        }
        if task_size.height > MAX_SIZE {
            scale.y = task_size.height /MAX_SIZE;
            task_size.height = MAX_SIZE;
        }

        RadialGradientTemplate {
            common,
            center: DevicePoint::new(item.center.x, item.center.y),
            extend_mode: item.extend_mode,
            params: item.params,
            stretch_size,
            task_size: task_size.ceil().to_i32(),
            scale,
            tile_spacing: item.tile_spacing.into(),
            brush_segments,
            stops_opacity,
            stops,
            src_color: None,
        }
    }
}

impl RadialGradientTemplate {
    /// Update the GPU cache for a given primitive template. This may be called multiple
    /// times per frame, by each primitive reference that refers to this interned
    /// template. The initial request call to the GPU cache ensures that work is only
    /// done if the cache entry is invalid (due to first use or eviction).
    pub fn update(
        &mut self,
        frame_state: &mut FrameBuildingState,
        parent_surface: SurfaceIndex,
    ) {
        if let Some(mut request) =
            frame_state.gpu_cache.request(&mut self.common.gpu_cache_handle) {
            // write_prim_gpu_blocks
            request.push(PremultipliedColorF::WHITE);
            request.push(PremultipliedColorF::WHITE);
            request.push([
                self.stretch_size.width,
                self.stretch_size.height,
                0.0,
                0.0,
            ]);

            // write_segment_gpu_blocks
            for segment in &self.brush_segments {
                // has to match VECS_PER_SEGMENT
                request.write_segment(
                    segment.local_rect,
                    segment.extra_data,
                );
            }
        }

        let task_size = self.task_size;
        let cache_key = RadialGradientCacheKey {
            size: task_size,
            center: PointKey { x: self.center.x, y: self.center.y },
            scale: PointKey { x: self.scale.x, y: self.scale.y },
            start_radius: FloatKey(self.params.start_radius),
            end_radius: FloatKey(self.params.end_radius),
            ratio_xy: FloatKey(self.params.ratio_xy),
            extend_mode: self.extend_mode,
            stops: self.stops.iter().map(|stop| (*stop).into()).collect(),
        };

        let task_id = frame_state.resource_cache.request_render_task(
            RenderTaskCacheKey {
                size: task_size,
                kind: RenderTaskCacheKeyKind::RadialGradient(cache_key),
            },
            frame_state.gpu_cache,
            &mut frame_state.frame_gpu_data.f32,
            frame_state.rg_builder,
            None,
            false,
            RenderTaskParent::Surface(parent_surface),
            &mut frame_state.surface_builder,
            |rg_builder, gpu_buffer_builder| {
                let stops = GradientGpuBlockBuilder::build(
                    false,
                    gpu_buffer_builder,
                    &self.stops,
                );

                rg_builder.add().init(RenderTask::new_dynamic(
                    task_size,
                    RenderTaskKind::RadialGradient(RadialGradientTask {
                        extend_mode: self.extend_mode,
                        center: self.center,
                        scale: self.scale,
                        params: self.params.clone(),
                        stops,
                    }),
                ))
            }
        );

        self.src_color = Some(task_id);

        // Tile spacing is always handled by decomposing into separate draw calls so the
        // primitive opacity is equivalent to stops opacity. This might change to being
        // set to non-opaque in the presence of tile spacing if/when tile spacing is handled
        // in the same way as with the image primitive.
        self.opacity = self.stops_opacity;
    }
}

pub type RadialGradientDataHandle = InternHandle<RadialGradient>;

#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RadialGradient {
    pub extend_mode: ExtendMode,
    pub center: PointKey,
    pub params: RadialGradientParams,
    pub stretch_size: SizeKey,
    pub stops: Vec<GradientStopKey>,
    pub tile_spacing: SizeKey,
    pub nine_patch: Option<Box<NinePatchDescriptor>>,
}

impl Internable for RadialGradient {
    type Key = RadialGradientKey;
    type StoreData = RadialGradientTemplate;
    type InternData = ();
    const PROFILE_COUNTER: usize = crate::profiler::INTERNED_RADIAL_GRADIENTS;
}

impl InternablePrimitive for RadialGradient {
    fn into_key(
        self,
        info: &LayoutPrimitiveInfo,
    ) -> RadialGradientKey {
        RadialGradientKey::new(info, self)
    }

    fn make_instance_kind(
        _key: RadialGradientKey,
        data_handle: RadialGradientDataHandle,
        _prim_store: &mut PrimitiveStore,
        _reference_frame_relative_offset: LayoutVector2D,
    ) -> PrimitiveInstanceKind {
        PrimitiveInstanceKind::RadialGradient {
            data_handle,
            visible_tiles_range: GradientTileRange::empty(),
        }
    }
}

impl IsVisible for RadialGradient {
    fn is_visible(&self) -> bool {
        true
    }
}

#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RadialGradientTask {
    pub extend_mode: ExtendMode,
    pub center: DevicePoint,
    pub scale: DeviceVector2D,
    pub params: RadialGradientParams,
    pub stops: GpuBufferAddress,
}

impl RadialGradientTask {
    pub fn to_instance(&self, target_rect: &DeviceIntRect) -> RadialGradientInstance {
        RadialGradientInstance {
            task_rect: target_rect.to_f32(),
            center: self.center,
            scale: self.scale,
            start_radius: self.params.start_radius,
            end_radius: self.params.end_radius,
            ratio_xy: self.params.ratio_xy,
            extend_mode: self.extend_mode as i32,
            gradient_stops_address: self.stops.as_int(),
        }
    }
}

/// The per-instance shader input of a radial gradient render task.
///
/// Must match the RADIAL_GRADIENT instance description in renderer/vertex.rs.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(C)]
#[derive(Clone, Debug)]
pub struct RadialGradientInstance {
    pub task_rect: DeviceRect,
    pub center: DevicePoint,
    pub scale: DeviceVector2D,
    pub start_radius: f32,
    pub end_radius: f32,
    pub ratio_xy: f32,
    pub extend_mode: i32,
    pub gradient_stops_address: i32,
}

#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RadialGradientCacheKey {
    pub size: DeviceIntSize,
    pub center: PointKey,
    pub scale: PointKey,
    pub start_radius: FloatKey,
    pub end_radius: FloatKey,
    pub ratio_xy: FloatKey,
    pub extend_mode: ExtendMode,
    pub stops: Vec<GradientStopKey>,
}

/// Avoid invoking the radial gradient shader on large areas where the color is
/// constant.
///
/// If the extend mode is set to clamp, the "interesting" part
/// of the gradient is only in the bounds of the gradient's ellipse, and the rest
/// is the color of the last gradient stop.
///
/// Sometimes we run into radial gradient with a small radius compared to the
/// primitive bounds, which means a large area of the primitive is a constant color
/// This function tries to detect that, potentially shrink the gradient primitive to only
/// the useful part and if needed insert solid color primitives around the gradient where
/// parts of it have been removed.
pub fn optimize_radial_gradient(
    prim_rect: &mut LayoutRect,
    stretch_size: &mut LayoutSize,
    center: &mut LayoutPoint,
    tile_spacing: &mut LayoutSize,
    clip_rect: &LayoutRect,
    radius: LayoutSize,
    end_offset: f32,
    extend_mode: ExtendMode,
    stops: &[GradientStopKey],
    solid_parts: &mut dyn FnMut(&LayoutRect, ColorU),
) {
    let offset = apply_gradient_local_clip(
        prim_rect,
        stretch_size,
        tile_spacing,
        clip_rect
    );

    *center += offset;

    if extend_mode != ExtendMode::Clamp || stops.is_empty() {
        return;
    }

    // Bounding box of the "interesting" part of the gradient.
    let min = prim_rect.min + center.to_vector() - radius.to_vector() * end_offset;
    let max = prim_rect.min + center.to_vector() + radius.to_vector() * end_offset;

    // The (non-repeated) gradient primitive rect.
    let gradient_rect = LayoutRect::from_origin_and_size(
        prim_rect.min,
        *stretch_size,
    );

    // How much internal margin between the primitive bounds and the gradient's
    // bounding rect (areas that are a constant color).
    let mut l = (min.x - gradient_rect.min.x).max(0.0).floor();
    let mut t = (min.y - gradient_rect.min.y).max(0.0).floor();
    let mut r = (gradient_rect.max.x - max.x).max(0.0).floor();
    let mut b = (gradient_rect.max.y - max.y).max(0.0).floor();

    let is_tiled = prim_rect.width() > stretch_size.width + tile_spacing.width
        || prim_rect.height() > stretch_size.height + tile_spacing.height;

    let bg_color = stops.last().unwrap().color;

    if bg_color.a != 0 && is_tiled {
        // If the primitive has repetitions, it's not enough to insert solid rects around it,
        // so bail out.
        return;
    }

    // If the background is fully transparent, shrinking the primitive bounds as much as possible
    // is always a win. If the background is not transparent, we have to insert solid rectangles
    // around the shrunk parts.
    // If the background is transparent and the primitive is tiled, the optimization may introduce
    // tile spacing which forces the tiling to be manually decomposed.
    // Either way, don't bother optimizing unless it saves a significant amount of pixels.
    if bg_color.a != 0 || (is_tiled && tile_spacing.is_empty()) {
        let threshold = 128.0;
        if l < threshold { l = 0.0 }
        if t < threshold { t = 0.0 }
        if r < threshold { r = 0.0 }
        if b < threshold { b = 0.0 }
    }

    if l + t + r + b == 0.0 {
        // No adjustment to make;
        return;
    }

    // Insert solid rectangles around the gradient, in the places where the primitive will be
    // shrunk.
    if bg_color.a != 0 {
        if l != 0.0 && t != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.min,
                size2(l, t),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if l != 0.0 && b != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.bottom_left() - vec2(0.0, b),
                size2(l, b),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if t != 0.0 && r != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.top_right() - vec2(r, 0.0),
                size2(r, t),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if r != 0.0 && b != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.bottom_right() - vec2(r, b),
                size2(r, b),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if l != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.min + vec2(0.0, t),
                size2(l, gradient_rect.height() - t - b),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if r != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.top_right() + vec2(-r, t),
                size2(r, gradient_rect.height() - t - b),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if t != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.min + vec2(l, 0.0),
                size2(gradient_rect.width() - l - r, t),
            );
            solid_parts(&solid_rect, bg_color);
        }

        if b != 0.0 {
            let solid_rect = LayoutRect::from_origin_and_size(
                gradient_rect.bottom_left() + vec2(l, -b),
                size2(gradient_rect.width() - l - r, b),
            );
            solid_parts(&solid_rect, bg_color);
        }
    }

    // Shrink the gradient primitive.

    prim_rect.min.x += l;
    prim_rect.min.y += t;

    stretch_size.width -= l + r;
    stretch_size.height -= b + t;

    center.x -= l;
    center.y -= t;

    tile_spacing.width += l + r;
    tile_spacing.height += t + b;
}