1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
use super::super::plumbing::*;
use crate::SendPtr;
use std::marker::PhantomData;
use std::ptr;
use std::slice;
pub(super) struct CollectConsumer<'c, T: Send> {
/// See `CollectResult` for explanation of why this is not a slice
start: SendPtr<T>,
len: usize,
marker: PhantomData<&'c mut T>,
}
impl<T: Send> CollectConsumer<'_, T> {
/// Create a collector for `len` items in the unused capacity of the vector.
pub(super) fn appender(vec: &mut Vec<T>, len: usize) -> CollectConsumer<'_, T> {
let start = vec.len();
assert!(vec.capacity() - start >= len);
// SAFETY: We already made sure to have the additional space allocated.
// The pointer is derived from `Vec` directly, not through a `Deref`,
// so it has provenance over the whole allocation.
unsafe { CollectConsumer::new(vec.as_mut_ptr().add(start), len) }
}
}
impl<'c, T: Send + 'c> CollectConsumer<'c, T> {
/// The target memory is considered uninitialized, and will be
/// overwritten without reading or dropping existing values.
unsafe fn new(start: *mut T, len: usize) -> Self {
CollectConsumer {
start: SendPtr(start),
len,
marker: PhantomData,
}
}
}
/// CollectResult represents an initialized part of the target slice.
///
/// This is a proxy owner of the elements in the slice; when it drops,
/// the elements will be dropped, unless its ownership is released before then.
#[must_use]
pub(super) struct CollectResult<'c, T> {
/// This pointer and length has the same representation as a slice,
/// but retains the provenance of the entire array so that we can merge
/// these regions together in `CollectReducer`.
start: SendPtr<T>,
total_len: usize,
/// The current initialized length after `start`
initialized_len: usize,
/// Lifetime invariance guarantees that the data flows from consumer to result,
/// especially for the `scope_fn` callback in `Collect::with_consumer`.
invariant_lifetime: PhantomData<&'c mut &'c mut [T]>,
}
unsafe impl<'c, T> Send for CollectResult<'c, T> where T: Send {}
impl<'c, T> CollectResult<'c, T> {
/// The current length of the collect result
pub(super) fn len(&self) -> usize {
self.initialized_len
}
/// Release ownership of the slice of elements, and return the length
pub(super) fn release_ownership(mut self) -> usize {
let ret = self.initialized_len;
self.initialized_len = 0;
ret
}
}
impl<'c, T> Drop for CollectResult<'c, T> {
fn drop(&mut self) {
// Drop the first `self.initialized_len` elements, which have been recorded
// to be initialized by the folder.
unsafe {
ptr::drop_in_place(slice::from_raw_parts_mut(
self.start.0,
self.initialized_len,
));
}
}
}
impl<'c, T: Send + 'c> Consumer<T> for CollectConsumer<'c, T> {
type Folder = CollectResult<'c, T>;
type Reducer = CollectReducer;
type Result = CollectResult<'c, T>;
fn split_at(self, index: usize) -> (Self, Self, CollectReducer) {
let CollectConsumer { start, len, .. } = self;
// Produce new consumers.
// SAFETY: This assert checks that `index` is a valid offset for `start`
unsafe {
assert!(index <= len);
(
CollectConsumer::new(start.0, index),
CollectConsumer::new(start.0.add(index), len - index),
CollectReducer,
)
}
}
fn into_folder(self) -> Self::Folder {
// Create a result/folder that consumes values and writes them
// into the region after start. The initial result has length 0.
CollectResult {
start: self.start,
total_len: self.len,
initialized_len: 0,
invariant_lifetime: PhantomData,
}
}
fn full(&self) -> bool {
false
}
}
impl<'c, T: Send + 'c> Folder<T> for CollectResult<'c, T> {
type Result = Self;
fn consume(mut self, item: T) -> Self {
assert!(
self.initialized_len < self.total_len,
"too many values pushed to consumer"
);
// SAFETY: The assert above is a bounds check for this write, and we
// avoid assignment here so we do not drop an uninitialized T.
unsafe {
// Write item and increase the initialized length
self.start.0.add(self.initialized_len).write(item);
self.initialized_len += 1;
}
self
}
fn complete(self) -> Self::Result {
// NB: We don't explicitly check that the local writes were complete,
// but Collect will assert the total result length in the end.
self
}
fn full(&self) -> bool {
false
}
}
/// Pretend to be unindexed for `special_collect_into_vec`,
/// but we should never actually get used that way...
impl<'c, T: Send + 'c> UnindexedConsumer<T> for CollectConsumer<'c, T> {
fn split_off_left(&self) -> Self {
unreachable!("CollectConsumer must be indexed!")
}
fn to_reducer(&self) -> Self::Reducer {
CollectReducer
}
}
/// CollectReducer combines adjacent chunks; the result must always
/// be contiguous so that it is one combined slice.
pub(super) struct CollectReducer;
impl<'c, T> Reducer<CollectResult<'c, T>> for CollectReducer {
fn reduce(
self,
mut left: CollectResult<'c, T>,
right: CollectResult<'c, T>,
) -> CollectResult<'c, T> {
// Merge if the CollectResults are adjacent and in left to right order
// else: drop the right piece now and total length will end up short in the end,
// when the correctness of the collected result is asserted.
unsafe {
let left_end = left.start.0.add(left.initialized_len);
if left_end == right.start.0 {
left.total_len += right.total_len;
left.initialized_len += right.release_ownership();
}
left
}
}
}