1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use super::{exp, fabs, get_high_word, with_set_low_word};
/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. For |x| in [0, 0.84375]
* erf(x) = x + x*R(x^2)
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
* where R = P/Q where P is an odd poly of degree 8 and
* Q is an odd poly of degree 10.
* -57.90
* | R - (erf(x)-x)/x | <= 2
*
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fix
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
* 1+(c+P1(s)/Q1(s)) if x < 0
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* That is, we use rational approximation to approximate
* erf(1+s) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
* where
* P1(s) = degree 6 poly in s
* Q1(s) = degree 6 poly in s
*
* 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
* erf(x) = 1 - erfc(x)
* where
* R1(z) = degree 7 poly in z, (z=1/x^2)
* S1(z) = degree 8 poly in z
*
* 4. For x in [1/0.35,28]
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
* = 2.0 - tiny (if x <= -6)
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
* erf(x) = sign(x)*(1.0 - tiny)
* where
* R2(z) = degree 6 poly in z, (z=1/x^2)
* S2(z) = degree 7 poly in z
*
* Note1:
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
* exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
* x*sqrt(pi)
* We use rational approximation to approximate
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
* Here is the error bound for R1/S1 and R2/S2
* |R1/S1 - f(x)| < 2**(-62.57)
* |R2/S2 - f(x)| < 2**(-61.52)
*
* 5. For inf > x >= 28
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
const ERX: f64 = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
/*
* Coefficients for approximation to erf on [0,0.84375]
*/
const EFX8: f64 = 1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
const PP0: f64 = 1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
const PP1: f64 = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
const PP2: f64 = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
const PP3: f64 = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
const PP4: f64 = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
const QQ1: f64 = 3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
const QQ2: f64 = 6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
const QQ3: f64 = 5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
const QQ4: f64 = 1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
const QQ5: f64 = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
const PA0: f64 = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
const PA1: f64 = 4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
const PA2: f64 = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
const PA3: f64 = 3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
const PA4: f64 = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
const PA5: f64 = 3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
const PA6: f64 = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
const QA1: f64 = 1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
const QA2: f64 = 5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
const QA3: f64 = 7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
const QA4: f64 = 1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
const QA5: f64 = 1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
const QA6: f64 = 1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
/*
* Coefficients for approximation to erfc in [1.25,1/0.35]
*/
const RA0: f64 = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
const RA1: f64 = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
const RA2: f64 = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
const RA3: f64 = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
const RA4: f64 = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
const RA5: f64 = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
const RA6: f64 = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
const RA7: f64 = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
const SA1: f64 = 1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
const SA2: f64 = 1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
const SA3: f64 = 4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
const SA4: f64 = 6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
const SA5: f64 = 4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
const SA6: f64 = 1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
const SA7: f64 = 6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
const SA8: f64 = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
/*
* Coefficients for approximation to erfc in [1/.35,28]
*/
const RB0: f64 = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
const RB1: f64 = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
const RB2: f64 = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
const RB3: f64 = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
const RB4: f64 = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
const RB5: f64 = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
const RB6: f64 = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
const SB1: f64 = 3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
const SB2: f64 = 3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
const SB3: f64 = 1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
const SB4: f64 = 3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
const SB5: f64 = 2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
const SB6: f64 = 4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
const SB7: f64 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
fn erfc1(x: f64) -> f64 {
let s: f64;
let p: f64;
let q: f64;
s = fabs(x) - 1.0;
p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
1.0 - ERX - p / q
}
fn erfc2(ix: u32, mut x: f64) -> f64 {
let s: f64;
let r: f64;
let big_s: f64;
let z: f64;
if ix < 0x3ff40000 {
/* |x| < 1.25 */
return erfc1(x);
}
x = fabs(x);
s = 1.0 / (x * x);
if ix < 0x4006db6d {
/* |x| < 1/.35 ~ 2.85714 */
r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
big_s = 1.0
+ s * (SA1
+ s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
} else {
/* |x| > 1/.35 */
r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
big_s =
1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
}
z = with_set_low_word(x, 0);
exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / big_s) / x
}
/// Error function (f64)
///
/// Calculates an approximation to the “error function”, which estimates
/// the probability that an observation will fall within x standard
/// deviations of the mean (assuming a normal distribution).
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn erf(x: f64) -> f64 {
let r: f64;
let s: f64;
let z: f64;
let y: f64;
let mut ix: u32;
let sign: usize;
ix = get_high_word(x);
sign = (ix >> 31) as usize;
ix &= 0x7fffffff;
if ix >= 0x7ff00000 {
/* erf(nan)=nan, erf(+-inf)=+-1 */
return 1.0 - 2.0 * (sign as f64) + 1.0 / x;
}
if ix < 0x3feb0000 {
/* |x| < 0.84375 */
if ix < 0x3e300000 {
/* |x| < 2**-28 */
/* avoid underflow */
return 0.125 * (8.0 * x + EFX8 * x);
}
z = x * x;
r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
y = r / s;
return x + x * y;
}
if ix < 0x40180000 {
/* 0.84375 <= |x| < 6 */
y = 1.0 - erfc2(ix, x);
} else {
let x1p_1022 = f64::from_bits(0x0010000000000000);
y = 1.0 - x1p_1022;
}
if sign != 0 { -y } else { y }
}
/// Complementary error function (f64)
///
/// Calculates the complementary probability.
/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
/// the loss of precision that would result from subtracting
/// large probabilities (on large `x`) from 1.
pub fn erfc(x: f64) -> f64 {
let r: f64;
let s: f64;
let z: f64;
let y: f64;
let mut ix: u32;
let sign: usize;
ix = get_high_word(x);
sign = (ix >> 31) as usize;
ix &= 0x7fffffff;
if ix >= 0x7ff00000 {
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
return 2.0 * (sign as f64) + 1.0 / x;
}
if ix < 0x3feb0000 {
/* |x| < 0.84375 */
if ix < 0x3c700000 {
/* |x| < 2**-56 */
return 1.0 - x;
}
z = x * x;
r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
y = r / s;
if sign != 0 || ix < 0x3fd00000 {
/* x < 1/4 */
return 1.0 - (x + x * y);
}
return 0.5 - (x - 0.5 + x * y);
}
if ix < 0x403c0000 {
/* 0.84375 <= |x| < 28 */
if sign != 0 {
return 2.0 - erfc2(ix, x);
} else {
return erfc2(ix, x);
}
}
let x1p_1022 = f64::from_bits(0x0010000000000000);
if sign != 0 { 2.0 - x1p_1022 } else { x1p_1022 * x1p_1022 }
}