1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Animated types for transform.
// There are still some implementation on Matrix3D in animated_properties.mako.rs
// because they still need mako to generate the code.
use super::animate_multiplicative_factor;
use super::{Animate, Procedure, ToAnimatedZero};
use crate::values::computed::transform::Rotate as ComputedRotate;
use crate::values::computed::transform::Scale as ComputedScale;
use crate::values::computed::transform::Transform as ComputedTransform;
use crate::values::computed::transform::TransformOperation as ComputedTransformOperation;
use crate::values::computed::transform::Translate as ComputedTranslate;
use crate::values::computed::transform::{DirectionVector, Matrix, Matrix3D};
use crate::values::computed::Angle;
use crate::values::computed::{Length, LengthPercentage};
use crate::values::computed::{Number, Percentage};
use crate::values::distance::{ComputeSquaredDistance, SquaredDistance};
use crate::values::generics::transform::{self, Transform, TransformOperation};
use crate::values::generics::transform::{Rotate, Scale, Translate};
use crate::values::CSSFloat;
use crate::Zero;
use std::cmp;
use std::ops::Add;
// ------------------------------------
// Animations for Matrix/Matrix3D.
// ------------------------------------
/// A 2d matrix for interpolation.
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
#[allow(missing_docs)]
// FIXME: We use custom derive for ComputeSquaredDistance. However, If possible, we should convert
// the InnerMatrix2D into types with physical meaning. This custom derive computes the squared
// distance from each matrix item, and this makes the result different from that in Gecko if we
// have skew factor in the Matrix3D.
pub struct InnerMatrix2D {
pub m11: CSSFloat,
pub m12: CSSFloat,
pub m21: CSSFloat,
pub m22: CSSFloat,
}
impl Animate for InnerMatrix2D {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
Ok(InnerMatrix2D {
m11: animate_multiplicative_factor(self.m11, other.m11, procedure)?,
m12: self.m12.animate(&other.m12, procedure)?,
m21: self.m21.animate(&other.m21, procedure)?,
m22: animate_multiplicative_factor(self.m22, other.m22, procedure)?,
})
}
}
/// A 2d translation function.
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
pub struct Translate2D(f32, f32);
/// A 2d scale function.
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
pub struct Scale2D(f32, f32);
impl Animate for Scale2D {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
Ok(Scale2D(
animate_multiplicative_factor(self.0, other.0, procedure)?,
animate_multiplicative_factor(self.1, other.1, procedure)?,
))
}
}
/// A decomposed 2d matrix.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
pub struct MatrixDecomposed2D {
/// The translation function.
pub translate: Translate2D,
/// The scale function.
pub scale: Scale2D,
/// The rotation angle.
pub angle: f32,
/// The inner matrix.
pub matrix: InnerMatrix2D,
}
impl Animate for MatrixDecomposed2D {
/// <https://drafts.csswg.org/css-transforms/#interpolation-of-decomposed-2d-matrix-values>
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
// If x-axis of one is flipped, and y-axis of the other,
// convert to an unflipped rotation.
let mut scale = self.scale;
let mut angle = self.angle;
let mut other_angle = other.angle;
if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) {
scale.0 = -scale.0;
scale.1 = -scale.1;
angle += if angle < 0.0 { 180. } else { -180. };
}
// Don't rotate the long way around.
if angle == 0.0 {
angle = 360.
}
if other_angle == 0.0 {
other_angle = 360.
}
if (angle - other_angle).abs() > 180. {
if angle > other_angle {
angle -= 360.
} else {
other_angle -= 360.
}
}
// Interpolate all values.
let translate = self.translate.animate(&other.translate, procedure)?;
let scale = scale.animate(&other.scale, procedure)?;
let angle = angle.animate(&other_angle, procedure)?;
let matrix = self.matrix.animate(&other.matrix, procedure)?;
Ok(MatrixDecomposed2D {
translate,
scale,
angle,
matrix,
})
}
}
impl ComputeSquaredDistance for MatrixDecomposed2D {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
// Use Radian to compute the distance.
const RAD_PER_DEG: f64 = std::f64::consts::PI / 180.0;
let angle1 = self.angle as f64 * RAD_PER_DEG;
let angle2 = other.angle as f64 * RAD_PER_DEG;
Ok(self.translate.compute_squared_distance(&other.translate)? +
self.scale.compute_squared_distance(&other.scale)? +
angle1.compute_squared_distance(&angle2)? +
self.matrix.compute_squared_distance(&other.matrix)?)
}
}
impl From<Matrix3D> for MatrixDecomposed2D {
/// Decompose a 2D matrix.
/// <https://drafts.csswg.org/css-transforms/#decomposing-a-2d-matrix>
fn from(matrix: Matrix3D) -> MatrixDecomposed2D {
let mut row0x = matrix.m11;
let mut row0y = matrix.m12;
let mut row1x = matrix.m21;
let mut row1y = matrix.m22;
let translate = Translate2D(matrix.m41, matrix.m42);
let mut scale = Scale2D(
(row0x * row0x + row0y * row0y).sqrt(),
(row1x * row1x + row1y * row1y).sqrt(),
);
// If determinant is negative, one axis was flipped.
let determinant = row0x * row1y - row0y * row1x;
if determinant < 0. {
if row0x < row1y {
scale.0 = -scale.0;
} else {
scale.1 = -scale.1;
}
}
// Renormalize matrix to remove scale.
if scale.0 != 0.0 {
row0x *= 1. / scale.0;
row0y *= 1. / scale.0;
}
if scale.1 != 0.0 {
row1x *= 1. / scale.1;
row1y *= 1. / scale.1;
}
// Compute rotation and renormalize matrix.
let mut angle = row0y.atan2(row0x);
if angle != 0.0 {
let sn = -row0y;
let cs = row0x;
let m11 = row0x;
let m12 = row0y;
let m21 = row1x;
let m22 = row1y;
row0x = cs * m11 + sn * m21;
row0y = cs * m12 + sn * m22;
row1x = -sn * m11 + cs * m21;
row1y = -sn * m12 + cs * m22;
}
let m = InnerMatrix2D {
m11: row0x,
m12: row0y,
m21: row1x,
m22: row1y,
};
// Convert into degrees because our rotation functions expect it.
angle = angle.to_degrees();
MatrixDecomposed2D {
translate: translate,
scale: scale,
angle: angle,
matrix: m,
}
}
}
impl From<MatrixDecomposed2D> for Matrix3D {
/// Recompose a 2D matrix.
/// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-2d-matrix>
fn from(decomposed: MatrixDecomposed2D) -> Matrix3D {
let mut computed_matrix = Matrix3D::identity();
computed_matrix.m11 = decomposed.matrix.m11;
computed_matrix.m12 = decomposed.matrix.m12;
computed_matrix.m21 = decomposed.matrix.m21;
computed_matrix.m22 = decomposed.matrix.m22;
// Translate matrix.
computed_matrix.m41 = decomposed.translate.0;
computed_matrix.m42 = decomposed.translate.1;
// Rotate matrix.
let angle = decomposed.angle.to_radians();
let cos_angle = angle.cos();
let sin_angle = angle.sin();
let mut rotate_matrix = Matrix3D::identity();
rotate_matrix.m11 = cos_angle;
rotate_matrix.m12 = sin_angle;
rotate_matrix.m21 = -sin_angle;
rotate_matrix.m22 = cos_angle;
// Multiplication of computed_matrix and rotate_matrix
computed_matrix = rotate_matrix.multiply(&computed_matrix);
// Scale matrix.
computed_matrix.m11 *= decomposed.scale.0;
computed_matrix.m12 *= decomposed.scale.0;
computed_matrix.m21 *= decomposed.scale.1;
computed_matrix.m22 *= decomposed.scale.1;
computed_matrix
}
}
impl Animate for Matrix {
#[cfg(feature = "servo")]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
let this = Matrix3D::from(*self);
let other = Matrix3D::from(*other);
let this = MatrixDecomposed2D::from(this);
let other = MatrixDecomposed2D::from(other);
Matrix3D::from(this.animate(&other, procedure)?).into_2d()
}
#[cfg(feature = "gecko")]
// Gecko doesn't exactly follow the spec here; we use a different procedure
// to match it
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
let this = Matrix3D::from(*self);
let other = Matrix3D::from(*other);
let from = decompose_2d_matrix(&this)?;
let to = decompose_2d_matrix(&other)?;
Matrix3D::from(from.animate(&to, procedure)?).into_2d()
}
}
/// A 3d translation.
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
pub struct Translate3D(pub f32, pub f32, pub f32);
/// A 3d scale function.
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
pub struct Scale3D(pub f32, pub f32, pub f32);
impl Scale3D {
/// Negate self.
fn negate(&mut self) {
self.0 *= -1.0;
self.1 *= -1.0;
self.2 *= -1.0;
}
}
impl Animate for Scale3D {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
Ok(Scale3D(
animate_multiplicative_factor(self.0, other.0, procedure)?,
animate_multiplicative_factor(self.1, other.1, procedure)?,
animate_multiplicative_factor(self.2, other.2, procedure)?,
))
}
}
/// A 3d skew function.
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
#[derive(Animate, Clone, Copy, Debug)]
pub struct Skew(f32, f32, f32);
impl ComputeSquaredDistance for Skew {
// We have to use atan() to convert the skew factors into skew angles, so implement
// ComputeSquaredDistance manually.
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
Ok(self.0.atan().compute_squared_distance(&other.0.atan())? +
self.1.atan().compute_squared_distance(&other.1.atan())? +
self.2.atan().compute_squared_distance(&other.2.atan())?)
}
}
/// A 3d perspective transformation.
#[derive(Clone, ComputeSquaredDistance, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
pub struct Perspective(pub f32, pub f32, pub f32, pub f32);
impl Animate for Perspective {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
Ok(Perspective(
self.0.animate(&other.0, procedure)?,
self.1.animate(&other.1, procedure)?,
self.2.animate(&other.2, procedure)?,
animate_multiplicative_factor(self.3, other.3, procedure)?,
))
}
}
/// A quaternion used to represent a rotation.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
pub struct Quaternion(f64, f64, f64, f64);
impl Quaternion {
/// Return a quaternion from a unit direction vector and angle (unit: radian).
#[inline]
fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self {
debug_assert!(
(vector.length() - 1.).abs() < 0.0001,
"Only accept an unit direction vector to create a quaternion"
);
// Quaternions between the range [360, 720] will treated as rotations at the other
// direction: [-360, 0]. And quaternions between the range [720*k, 720*(k+1)] will be
// treated as rotations [0, 720]. So it does not make sense to use quaternions to rotate
// the element more than ±360deg. Therefore, we have to make sure its range is (-360, 360).
let half_angle = angle
.abs()
.rem_euclid(std::f64::consts::TAU)
.copysign(angle) /
2.;
// Reference:
// https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
//
// if the direction axis is (x, y, z) = xi + yj + zk,
// and the angle is |theta|, this formula can be done using
// an extension of Euler's formula:
// q = cos(theta/2) + (xi + yj + zk)(sin(theta/2))
// = cos(theta/2) +
// x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k
Quaternion(
vector.x as f64 * half_angle.sin(),
vector.y as f64 * half_angle.sin(),
vector.z as f64 * half_angle.sin(),
half_angle.cos(),
)
}
/// Calculate the dot product.
#[inline]
fn dot(&self, other: &Self) -> f64 {
self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3
}
/// Return the scaled quaternion by a factor.
#[inline]
fn scale(&self, factor: f64) -> Self {
Quaternion(
self.0 * factor,
self.1 * factor,
self.2 * factor,
self.3 * factor,
)
}
}
impl Add for Quaternion {
type Output = Self;
fn add(self, other: Self) -> Self {
Self(
self.0 + other.0,
self.1 + other.1,
self.2 + other.2,
self.3 + other.3,
)
}
}
impl Animate for Quaternion {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
let (this_weight, other_weight) = procedure.weights();
debug_assert!(
// Doule EPSILON since both this_weight and other_weght have calculation errors
// which are approximately equal to EPSILON.
(this_weight + other_weight - 1.0f64).abs() <= f64::EPSILON * 2.0 ||
other_weight == 1.0f64 ||
other_weight == 0.0f64,
"animate should only be used for interpolating or accumulating transforms"
);
// We take a specialized code path for accumulation (where other_weight
// is 1).
if let Procedure::Accumulate { .. } = procedure {
debug_assert_eq!(other_weight, 1.0);
if this_weight == 0.0 {
return Ok(*other);
}
let clamped_w = self.3.min(1.0).max(-1.0);
// Determine the scale factor.
let mut theta = clamped_w.acos();
let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() };
theta *= this_weight;
scale *= theta.sin();
// Scale the self matrix by this_weight.
let mut scaled_self = *self;
scaled_self.0 *= scale;
scaled_self.1 *= scale;
scaled_self.2 *= scale;
scaled_self.3 = theta.cos();
// Multiply scaled-self by other.
let a = &scaled_self;
let b = other;
return Ok(Quaternion(
a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1,
a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0,
a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3,
a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2,
));
}
// https://drafts.csswg.org/css-transforms-2/#interpolation-of-decomposed-3d-matrix-values
//
// Dot product, clamped between -1 and 1.
let cos_half_theta =
(self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3)
.min(1.0)
.max(-1.0);
if cos_half_theta.abs() == 1.0 {
return Ok(*self);
}
let half_theta = cos_half_theta.acos();
let sin_half_theta = (1.0 - cos_half_theta * cos_half_theta).sqrt();
let right_weight = (other_weight * half_theta).sin() / sin_half_theta;
// The spec would like to use
// "(other_weight * half_theta).cos() - cos_half_theta * right_weight". However, this
// formula may produce some precision issues of floating-point number calculation, e.g.
// when the progress is 100% (i.e. |other_weight| is 1), the |left_weight| may not be
// perfectly equal to 0. It could be something like -2.22e-16, which is approximately equal
// to zero, in the test. And after we recompose the Matrix3D, these approximated zeros
// make us failed to treat this Matrix3D as a Matrix2D, when serializating it.
//
// Therefore, we use another formula to calculate |left_weight| here. Blink and WebKit also
// use this formula, which is defined in:
// https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/index.htm
// https://github.com/w3c/csswg-drafts/issues/9338
let left_weight = (this_weight * half_theta).sin() / sin_half_theta;
Ok(self.scale(left_weight) + other.scale(right_weight))
}
}
impl ComputeSquaredDistance for Quaternion {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
// Use quaternion vectors to get the angle difference. Both q1 and q2 are unit vectors,
// so we can get their angle difference by:
// cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2.
let distance = self.dot(other).max(-1.0).min(1.0).acos() * 2.0;
Ok(SquaredDistance::from_sqrt(distance))
}
}
/// A decomposed 3d matrix.
#[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)]
#[cfg_attr(feature = "servo", derive(MallocSizeOf))]
pub struct MatrixDecomposed3D {
/// A translation function.
pub translate: Translate3D,
/// A scale function.
pub scale: Scale3D,
/// The skew component of the transformation.
pub skew: Skew,
/// The perspective component of the transformation.
pub perspective: Perspective,
/// The quaternion used to represent the rotation.
pub quaternion: Quaternion,
}
impl From<MatrixDecomposed3D> for Matrix3D {
/// Recompose a 3D matrix.
/// <https://drafts.csswg.org/css-transforms/#recomposing-to-a-3d-matrix>
fn from(decomposed: MatrixDecomposed3D) -> Matrix3D {
let mut matrix = Matrix3D::identity();
// Apply perspective
matrix.set_perspective(&decomposed.perspective);
// Apply translation
matrix.apply_translate(&decomposed.translate);
// Apply rotation
{
let x = decomposed.quaternion.0;
let y = decomposed.quaternion.1;
let z = decomposed.quaternion.2;
let w = decomposed.quaternion.3;
// Construct a composite rotation matrix from the quaternion values
// rotationMatrix is a identity 4x4 matrix initially
let mut rotation_matrix = Matrix3D::identity();
rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32;
rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32;
rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32;
rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32;
rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32;
rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32;
rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32;
rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32;
rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32;
matrix = rotation_matrix.multiply(&matrix);
}
// Apply skew
{
let mut temp = Matrix3D::identity();
if decomposed.skew.2 != 0.0 {
temp.m32 = decomposed.skew.2;
matrix = temp.multiply(&matrix);
temp.m32 = 0.0;
}
if decomposed.skew.1 != 0.0 {
temp.m31 = decomposed.skew.1;
matrix = temp.multiply(&matrix);
temp.m31 = 0.0;
}
if decomposed.skew.0 != 0.0 {
temp.m21 = decomposed.skew.0;
matrix = temp.multiply(&matrix);
}
}
// Apply scale
matrix.apply_scale(&decomposed.scale);
matrix
}
}
/// Decompose a 3D matrix.
/// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix
/// http://www.realtimerendering.com/resources/GraphicsGems/gemsii/unmatrix.c
fn decompose_3d_matrix(mut matrix: Matrix3D) -> Result<MatrixDecomposed3D, ()> {
// Combine 2 point.
let combine = |a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32| {
[
(ascl * a[0]) + (bscl * b[0]),
(ascl * a[1]) + (bscl * b[1]),
(ascl * a[2]) + (bscl * b[2]),
]
};
// Dot product.
let dot = |a: [f32; 3], b: [f32; 3]| a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
// Cross product.
let cross = |row1: [f32; 3], row2: [f32; 3]| {
[
row1[1] * row2[2] - row1[2] * row2[1],
row1[2] * row2[0] - row1[0] * row2[2],
row1[0] * row2[1] - row1[1] * row2[0],
]
};
if matrix.m44 == 0.0 {
return Err(());
}
let scaling_factor = matrix.m44;
// Normalize the matrix.
matrix.scale_by_factor(1.0 / scaling_factor);
// perspective_matrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
let mut perspective_matrix = matrix;
perspective_matrix.m14 = 0.0;
perspective_matrix.m24 = 0.0;
perspective_matrix.m34 = 0.0;
perspective_matrix.m44 = 1.0;
if perspective_matrix.determinant() == 0.0 {
return Err(());
}
// First, isolate perspective.
let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 {
let right_hand_side: [f32; 4] = [matrix.m14, matrix.m24, matrix.m34, matrix.m44];
perspective_matrix = perspective_matrix.inverse().unwrap().transpose();
let perspective = perspective_matrix.pre_mul_point4(&right_hand_side);
// NOTE(emilio): Even though the reference algorithm clears the
// fourth column here (matrix.m14..matrix.m44), they're not used below
// so it's not really needed.
Perspective(
perspective[0],
perspective[1],
perspective[2],
perspective[3],
)
} else {
Perspective(0.0, 0.0, 0.0, 1.0)
};
// Next take care of translation (easy).
let translate = Translate3D(matrix.m41, matrix.m42, matrix.m43);
// Now get scale and shear. 'row' is a 3 element array of 3 component vectors
let mut row = matrix.get_matrix_3x3_part();
// Compute X scale factor and normalize first row.
let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt();
let mut scale = Scale3D(row0len, 0.0, 0.0);
row[0] = [
row[0][0] / row0len,
row[0][1] / row0len,
row[0][2] / row0len,
];
// Compute XY shear factor and make 2nd row orthogonal to 1st.
let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0);
row[1] = combine(row[1], row[0], 1.0, -skew.0);
// Now, compute Y scale and normalize 2nd row.
let row1len = (row[1][0] * row[1][0] + row[1][1] * row[1][1] + row[1][2] * row[1][2]).sqrt();
scale.1 = row1len;
row[1] = [
row[1][0] / row1len,
row[1][1] / row1len,
row[1][2] / row1len,
];
skew.0 /= scale.1;
// Compute XZ and YZ shears, orthogonalize 3rd row
skew.1 = dot(row[0], row[2]);
row[2] = combine(row[2], row[0], 1.0, -skew.1);
skew.2 = dot(row[1], row[2]);
row[2] = combine(row[2], row[1], 1.0, -skew.2);
// Next, get Z scale and normalize 3rd row.
let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt();
scale.2 = row2len;
row[2] = [
row[2][0] / row2len,
row[2][1] / row2len,
row[2][2] / row2len,
];
skew.1 /= scale.2;
skew.2 /= scale.2;
// At this point, the matrix (in rows) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
if dot(row[0], cross(row[1], row[2])) < 0.0 {
scale.negate();
for i in 0..3 {
row[i][0] *= -1.0;
row[i][1] *= -1.0;
row[i][2] *= -1.0;
}
}
// Now, get the rotations out.
let mut quaternion = Quaternion(
0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(),
0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt(),
);
if row[2][1] > row[1][2] {
quaternion.0 = -quaternion.0
}
if row[0][2] > row[2][0] {
quaternion.1 = -quaternion.1
}
if row[1][0] > row[0][1] {
quaternion.2 = -quaternion.2
}
Ok(MatrixDecomposed3D {
translate,
scale,
skew,
perspective,
quaternion,
})
}
/**
* The relevant section of the transitions specification:
* https://drafts.csswg.org/web-animations-1/#animation-types
* http://dev.w3.org/csswg/css3-transitions/#animation-of-property-types-
* defers all of the details to the 2-D and 3-D transforms specifications.
* For the 2-D transforms specification (all that's relevant for us, right
* now), the relevant section is:
* https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
* This, in turn, refers to the unmatrix program in Graphics Gems,
* available from http://graphicsgems.org/ , and in
* particular as the file GraphicsGems/gemsii/unmatrix.c
* in http://graphicsgems.org/AllGems.tar.gz
*
* The unmatrix reference is for general 3-D transform matrices (any of the
* 16 components can have any value).
*
* For CSS 2-D transforms, we have a 2-D matrix with the bottom row constant:
*
* [ A C E ]
* [ B D F ]
* [ 0 0 1 ]
*
* For that case, I believe the algorithm in unmatrix reduces to:
*
* (1) If A * D - B * C == 0, the matrix is singular. Fail.
*
* (2) Set translation components (Tx and Ty) to the translation parts of
* the matrix (E and F) and then ignore them for the rest of the time.
* (For us, E and F each actually consist of three constants: a
* length, a multiplier for the width, and a multiplier for the
* height. This actually requires its own decomposition, but I'll
* keep that separate.)
*
* (3) Let the X scale (Sx) be sqrt(A^2 + B^2). Then divide both A and B
* by it.
*
* (4) Let the XY shear (K) be A * C + B * D. From C, subtract A times
* the XY shear. From D, subtract B times the XY shear.
*
* (5) Let the Y scale (Sy) be sqrt(C^2 + D^2). Divide C, D, and the XY
* shear (K) by it.
*
* (6) At this point, A * D - B * C is either 1 or -1. If it is -1,
* negate the XY shear (K), the X scale (Sx), and A, B, C, and D.
* (Alternatively, we could negate the XY shear (K) and the Y scale
* (Sy).)
*
* (7) Let the rotation be R = atan2(B, A).
*
* Then the resulting decomposed transformation is:
*
* translate(Tx, Ty) rotate(R) skewX(atan(K)) scale(Sx, Sy)
*
* An interesting result of this is that all of the simple transform
* functions (i.e., all functions other than matrix()), in isolation,
* decompose back to themselves except for:
* 'skewY(φ)', which is 'matrix(1, tan(φ), 0, 1, 0, 0)', which decomposes
* to 'rotate(φ) skewX(φ) scale(sec(φ), cos(φ))' since (ignoring the
* alternate sign possibilities that would get fixed in step 6):
* In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
* sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
* sin(φ). In step 4, the XY shear is sin(φ). Thus, after step 4, C =
* -cos(φ)sin(φ) and D = 1 - sin²(φ) = cos²(φ). Thus, in step 5, the Y scale is
* sqrt(cos²(φ)(sin²(φ) + cos²(φ)) = cos(φ). Thus, after step 5, C = -sin(φ), D
* = cos(φ), and the XY shear is tan(φ). Thus, in step 6, A * D - B * C =
* cos²(φ) + sin²(φ) = 1. In step 7, the rotation is thus φ.
*
* skew(θ, φ), which is matrix(1, tan(φ), tan(θ), 1, 0, 0), which decomposes
* to 'rotate(φ) skewX(θ + φ) scale(sec(φ), cos(φ))' since (ignoring
* the alternate sign possibilities that would get fixed in step 6):
* In step 3, the X scale factor is sqrt(1+tan²(φ)) = sqrt(sec²(φ)) =
* sec(φ). Thus, after step 3, A = 1/sec(φ) = cos(φ) and B = tan(φ) / sec(φ) =
* sin(φ). In step 4, the XY shear is cos(φ)tan(θ) + sin(φ). Thus, after step 4,
* C = tan(θ) - cos(φ)(cos(φ)tan(θ) + sin(φ)) = tan(θ)sin²(φ) - cos(φ)sin(φ)
* D = 1 - sin(φ)(cos(φ)tan(θ) + sin(φ)) = cos²(φ) - sin(φ)cos(φ)tan(θ)
* Thus, in step 5, the Y scale is sqrt(C² + D²) =
* sqrt(tan²(θ)(sin⁴(φ) + sin²(φ)cos²(φ)) -
* 2 tan(θ)(sin³(φ)cos(φ) + sin(φ)cos³(φ)) +
* (sin²(φ)cos²(φ) + cos⁴(φ))) =
* sqrt(tan²(θ)sin²(φ) - 2 tan(θ)sin(φ)cos(φ) + cos²(φ)) =
* cos(φ) - tan(θ)sin(φ) (taking the negative of the obvious solution so
* we avoid flipping in step 6).
* After step 5, C = -sin(φ) and D = cos(φ), and the XY shear is
* (cos(φ)tan(θ) + sin(φ)) / (cos(φ) - tan(θ)sin(φ)) =
* (dividing both numerator and denominator by cos(φ))
* (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)) = tan(θ + φ).
* (See http://en.wikipedia.org/wiki/List_of_trigonometric_identities .)
* Thus, in step 6, A * D - B * C = cos²(φ) + sin²(φ) = 1.
* In step 7, the rotation is thus φ.
*
* To check this result, we can multiply things back together:
*
* [ cos(φ) -sin(φ) ] [ 1 tan(θ + φ) ] [ sec(φ) 0 ]
* [ sin(φ) cos(φ) ] [ 0 1 ] [ 0 cos(φ) ]
*
* [ cos(φ) cos(φ)tan(θ + φ) - sin(φ) ] [ sec(φ) 0 ]
* [ sin(φ) sin(φ)tan(θ + φ) + cos(φ) ] [ 0 cos(φ) ]
*
* but since tan(θ + φ) = (tan(θ) + tan(φ)) / (1 - tan(θ)tan(φ)),
* cos(φ)tan(θ + φ) - sin(φ)
* = cos(φ)(tan(θ) + tan(φ)) - sin(φ) + sin(φ)tan(θ)tan(φ)
* = cos(φ)tan(θ) + sin(φ) - sin(φ) + sin(φ)tan(θ)tan(φ)
* = cos(φ)tan(θ) + sin(φ)tan(θ)tan(φ)
* = tan(θ) (cos(φ) + sin(φ)tan(φ))
* = tan(θ) sec(φ) (cos²(φ) + sin²(φ))
* = tan(θ) sec(φ)
* and
* sin(φ)tan(θ + φ) + cos(φ)
* = sin(φ)(tan(θ) + tan(φ)) + cos(φ) - cos(φ)tan(θ)tan(φ)
* = tan(θ) (sin(φ) - sin(φ)) + sin(φ)tan(φ) + cos(φ)
* = sec(φ) (sin²(φ) + cos²(φ))
* = sec(φ)
* so the above is:
* [ cos(φ) tan(θ) sec(φ) ] [ sec(φ) 0 ]
* [ sin(φ) sec(φ) ] [ 0 cos(φ) ]
*
* [ 1 tan(θ) ]
* [ tan(φ) 1 ]
*/
/// Decompose a 2D matrix for Gecko. This implements the above decomposition algorithm.
#[cfg(feature = "gecko")]
fn decompose_2d_matrix(matrix: &Matrix3D) -> Result<MatrixDecomposed3D, ()> {
// The index is column-major, so the equivalent transform matrix is:
// | m11 m21 0 m41 | => | m11 m21 | and translate(m41, m42)
// | m12 m22 0 m42 | | m12 m22 |
// | 0 0 1 0 |
// | 0 0 0 1 |
let (mut m11, mut m12) = (matrix.m11, matrix.m12);
let (mut m21, mut m22) = (matrix.m21, matrix.m22);
// Check if this is a singular matrix.
if m11 * m22 == m12 * m21 {
return Err(());
}
let mut scale_x = (m11 * m11 + m12 * m12).sqrt();
m11 /= scale_x;
m12 /= scale_x;
let mut shear_xy = m11 * m21 + m12 * m22;
m21 -= m11 * shear_xy;
m22 -= m12 * shear_xy;
let scale_y = (m21 * m21 + m22 * m22).sqrt();
m21 /= scale_y;
m22 /= scale_y;
shear_xy /= scale_y;
let determinant = m11 * m22 - m12 * m21;
// Determinant should now be 1 or -1.
if 0.99 > determinant.abs() || determinant.abs() > 1.01 {
return Err(());
}
if determinant < 0. {
m11 = -m11;
m12 = -m12;
shear_xy = -shear_xy;
scale_x = -scale_x;
}
Ok(MatrixDecomposed3D {
translate: Translate3D(matrix.m41, matrix.m42, 0.),
scale: Scale3D(scale_x, scale_y, 1.),
skew: Skew(shear_xy, 0., 0.),
perspective: Perspective(0., 0., 0., 1.),
quaternion: Quaternion::from_direction_and_angle(
&DirectionVector::new(0., 0., 1.),
m12.atan2(m11) as f64,
),
})
}
impl Animate for Matrix3D {
#[cfg(feature = "servo")]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
if self.is_3d() || other.is_3d() {
let decomposed_from = decompose_3d_matrix(*self);
let decomposed_to = decompose_3d_matrix(*other);
match (decomposed_from, decomposed_to) {
(Ok(this), Ok(other)) => Ok(Matrix3D::from(this.animate(&other, procedure)?)),
// Matrices can be undecomposable due to couple reasons, e.g.,
// non-invertible matrices. In this case, we should report Err
// here, and let the caller do the fallback procedure.
_ => Err(()),
}
} else {
let this = MatrixDecomposed2D::from(*self);
let other = MatrixDecomposed2D::from(*other);
Ok(Matrix3D::from(this.animate(&other, procedure)?))
}
}
#[cfg(feature = "gecko")]
// Gecko doesn't exactly follow the spec here; we use a different procedure
// to match it
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
let (from, to) = if self.is_3d() || other.is_3d() {
(decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?)
} else {
(decompose_2d_matrix(self)?, decompose_2d_matrix(other)?)
};
// Matrices can be undecomposable due to couple reasons, e.g.,
// non-invertible matrices. In this case, we should report Err here,
// and let the caller do the fallback procedure.
Ok(Matrix3D::from(from.animate(&to, procedure)?))
}
}
impl ComputeSquaredDistance for Matrix3D {
#[inline]
#[cfg(feature = "servo")]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
if self.is_3d() || other.is_3d() {
let from = decompose_3d_matrix(*self)?;
let to = decompose_3d_matrix(*other)?;
from.compute_squared_distance(&to)
} else {
let from = MatrixDecomposed2D::from(*self);
let to = MatrixDecomposed2D::from(*other);
from.compute_squared_distance(&to)
}
}
#[inline]
#[cfg(feature = "gecko")]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
let (from, to) = if self.is_3d() || other.is_3d() {
(decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?)
} else {
(decompose_2d_matrix(self)?, decompose_2d_matrix(other)?)
};
from.compute_squared_distance(&to)
}
}
// ------------------------------------
// Animation for Transform list.
// ------------------------------------
fn is_matched_operation(
first: &ComputedTransformOperation,
second: &ComputedTransformOperation,
) -> bool {
match (first, second) {
(&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) |
(&TransformOperation::Matrix3D(..), &TransformOperation::Matrix3D(..)) |
(&TransformOperation::Skew(..), &TransformOperation::Skew(..)) |
(&TransformOperation::SkewX(..), &TransformOperation::SkewX(..)) |
(&TransformOperation::SkewY(..), &TransformOperation::SkewY(..)) |
(&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) |
(&TransformOperation::Rotate3D(..), &TransformOperation::Rotate3D(..)) |
(&TransformOperation::RotateX(..), &TransformOperation::RotateX(..)) |
(&TransformOperation::RotateY(..), &TransformOperation::RotateY(..)) |
(&TransformOperation::RotateZ(..), &TransformOperation::RotateZ(..)) |
(&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => true,
// Match functions that have the same primitive transform function
(a, b) if a.is_translate() && b.is_translate() => true,
(a, b) if a.is_scale() && b.is_scale() => true,
(a, b) if a.is_rotate() && b.is_rotate() => true,
// InterpolateMatrix and AccumulateMatrix are for mismatched transforms
_ => false,
}
}
/// <https://drafts.csswg.org/css-transforms/#interpolation-of-transforms>
impl Animate for ComputedTransform {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
use std::borrow::Cow;
// Addition for transforms simply means appending to the list of
// transform functions. This is different to how we handle the other
// animation procedures so we treat it separately here rather than
// handling it in TransformOperation.
if procedure == Procedure::Add {
let result = self.0.iter().chain(&*other.0).cloned().collect();
return Ok(Transform(result));
}
let this = Cow::Borrowed(&self.0);
let other = Cow::Borrowed(&other.0);
// Interpolate the common prefix
let mut result = this
.iter()
.zip(other.iter())
.take_while(|(this, other)| is_matched_operation(this, other))
.map(|(this, other)| this.animate(other, procedure))
.collect::<Result<Vec<_>, _>>()?;
// Deal with the remainders
let this_remainder = if this.len() > result.len() {
Some(&this[result.len()..])
} else {
None
};
let other_remainder = if other.len() > result.len() {
Some(&other[result.len()..])
} else {
None
};
match (this_remainder, other_remainder) {
// If there is a remainder from *both* lists we must have had mismatched functions.
// => Add the remainders to a suitable ___Matrix function.
(Some(this_remainder), Some(other_remainder)) => {
result.push(TransformOperation::animate_mismatched_transforms(
this_remainder,
other_remainder,
procedure,
)?);
},
// If there is a remainder from just one list, then one list must be shorter but
// completely match the type of the corresponding functions in the longer list.
// => Interpolate the remainder with identity transforms.
(Some(remainder), None) | (None, Some(remainder)) => {
let fill_right = this_remainder.is_some();
result.append(
&mut remainder
.iter()
.map(|transform| {
let identity = transform.to_animated_zero().unwrap();
match transform {
TransformOperation::AccumulateMatrix { .. } |
TransformOperation::InterpolateMatrix { .. } => {
let (from, to) = if fill_right {
(transform, &identity)
} else {
(&identity, transform)
};
TransformOperation::animate_mismatched_transforms(
&[from.clone()],
&[to.clone()],
procedure,
)
},
_ => {
let (lhs, rhs) = if fill_right {
(transform, &identity)
} else {
(&identity, transform)
};
lhs.animate(rhs, procedure)
},
}
})
.collect::<Result<Vec<_>, _>>()?,
);
},
(None, None) => {},
}
Ok(Transform(result.into()))
}
}
impl ComputeSquaredDistance for ComputedTransform {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
let squared_dist = super::lists::with_zero::squared_distance(&self.0, &other.0);
// Roll back to matrix interpolation if there is any Err(()) in the
// transform lists, such as mismatched transform functions.
//
// FIXME: Using a zero size here seems a bit sketchy but matches the
// previous behavior.
if squared_dist.is_err() {
let rect = euclid::Rect::zero();
let matrix1: Matrix3D = self.to_transform_3d_matrix(Some(&rect))?.0.into();
let matrix2: Matrix3D = other.to_transform_3d_matrix(Some(&rect))?.0.into();
return matrix1.compute_squared_distance(&matrix2);
}
squared_dist
}
}
/// <http://dev.w3.org/csswg/css-transforms/#interpolation-of-transforms>
impl Animate for ComputedTransformOperation {
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
match (self, other) {
(&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
Ok(TransformOperation::Matrix3D(
this.animate(other, procedure)?,
))
},
(&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
Ok(TransformOperation::Matrix(this.animate(other, procedure)?))
},
(
&TransformOperation::Skew(ref fx, ref fy),
&TransformOperation::Skew(ref tx, ref ty),
) => Ok(TransformOperation::Skew(
fx.animate(tx, procedure)?,
fy.animate(ty, procedure)?,
)),
(&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) => {
Ok(TransformOperation::SkewX(f.animate(t, procedure)?))
},
(&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
Ok(TransformOperation::SkewY(f.animate(t, procedure)?))
},
(
&TransformOperation::Translate3D(ref fx, ref fy, ref fz),
&TransformOperation::Translate3D(ref tx, ref ty, ref tz),
) => Ok(TransformOperation::Translate3D(
fx.animate(tx, procedure)?,
fy.animate(ty, procedure)?,
fz.animate(tz, procedure)?,
)),
(
&TransformOperation::Translate(ref fx, ref fy),
&TransformOperation::Translate(ref tx, ref ty),
) => Ok(TransformOperation::Translate(
fx.animate(tx, procedure)?,
fy.animate(ty, procedure)?,
)),
(&TransformOperation::TranslateX(ref f), &TransformOperation::TranslateX(ref t)) => {
Ok(TransformOperation::TranslateX(f.animate(t, procedure)?))
},
(&TransformOperation::TranslateY(ref f), &TransformOperation::TranslateY(ref t)) => {
Ok(TransformOperation::TranslateY(f.animate(t, procedure)?))
},
(&TransformOperation::TranslateZ(ref f), &TransformOperation::TranslateZ(ref t)) => {
Ok(TransformOperation::TranslateZ(f.animate(t, procedure)?))
},
(
&TransformOperation::Scale3D(ref fx, ref fy, ref fz),
&TransformOperation::Scale3D(ref tx, ref ty, ref tz),
) => Ok(TransformOperation::Scale3D(
animate_multiplicative_factor(*fx, *tx, procedure)?,
animate_multiplicative_factor(*fy, *ty, procedure)?,
animate_multiplicative_factor(*fz, *tz, procedure)?,
)),
(&TransformOperation::ScaleX(ref f), &TransformOperation::ScaleX(ref t)) => Ok(
TransformOperation::ScaleX(animate_multiplicative_factor(*f, *t, procedure)?),
),
(&TransformOperation::ScaleY(ref f), &TransformOperation::ScaleY(ref t)) => Ok(
TransformOperation::ScaleY(animate_multiplicative_factor(*f, *t, procedure)?),
),
(&TransformOperation::ScaleZ(ref f), &TransformOperation::ScaleZ(ref t)) => Ok(
TransformOperation::ScaleZ(animate_multiplicative_factor(*f, *t, procedure)?),
),
(
&TransformOperation::Scale(ref fx, ref fy),
&TransformOperation::Scale(ref tx, ref ty),
) => Ok(TransformOperation::Scale(
animate_multiplicative_factor(*fx, *tx, procedure)?,
animate_multiplicative_factor(*fy, *ty, procedure)?,
)),
(
&TransformOperation::Rotate3D(fx, fy, fz, fa),
&TransformOperation::Rotate3D(tx, ty, tz, ta),
) => {
let animated = Rotate::Rotate3D(fx, fy, fz, fa)
.animate(&Rotate::Rotate3D(tx, ty, tz, ta), procedure)?;
let (fx, fy, fz, fa) = ComputedRotate::resolve(&animated);
Ok(TransformOperation::Rotate3D(fx, fy, fz, fa))
},
(&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) => {
Ok(TransformOperation::RotateX(fa.animate(&ta, procedure)?))
},
(&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) => {
Ok(TransformOperation::RotateY(fa.animate(&ta, procedure)?))
},
(&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) => {
Ok(TransformOperation::RotateZ(fa.animate(&ta, procedure)?))
},
(&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
},
(&TransformOperation::Rotate(fa), &TransformOperation::RotateZ(ta)) => {
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
},
(&TransformOperation::RotateZ(fa), &TransformOperation::Rotate(ta)) => {
Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?))
},
(
&TransformOperation::Perspective(ref fd),
&TransformOperation::Perspective(ref td),
) => {
use crate::values::computed::CSSPixelLength;
use crate::values::generics::transform::create_perspective_matrix;
// From https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions:
//
// The transform functions matrix(), matrix3d() and
// perspective() get converted into 4x4 matrices first and
// interpolated as defined in section Interpolation of
// Matrices afterwards.
//
let from = create_perspective_matrix(fd.infinity_or(|l| l.px()));
let to = create_perspective_matrix(td.infinity_or(|l| l.px()));
let interpolated = Matrix3D::from(from).animate(&Matrix3D::from(to), procedure)?;
let decomposed = decompose_3d_matrix(interpolated)?;
let perspective_z = decomposed.perspective.2;
// Clamp results outside of the -1 to 0 range so that we get perspective
// function values between 1 and infinity.
let used_value = if perspective_z >= 0. {
transform::PerspectiveFunction::None
} else {
transform::PerspectiveFunction::Length(CSSPixelLength::new(
if perspective_z <= -1. {
1.
} else {
-1. / perspective_z
},
))
};
Ok(TransformOperation::Perspective(used_value))
},
_ if self.is_translate() && other.is_translate() => self
.to_translate_3d()
.animate(&other.to_translate_3d(), procedure),
_ if self.is_scale() && other.is_scale() => {
self.to_scale_3d().animate(&other.to_scale_3d(), procedure)
},
_ if self.is_rotate() && other.is_rotate() => self
.to_rotate_3d()
.animate(&other.to_rotate_3d(), procedure),
_ => Err(()),
}
}
}
impl ComputedTransformOperation {
/// If there are no size dependencies, we try to animate in-place, to avoid
/// creating deeply nested Interpolate* operations.
fn try_animate_mismatched_transforms_in_place(
left: &[Self],
right: &[Self],
procedure: Procedure,
) -> Result<Self, ()> {
let (left, _left_3d) = Transform::components_to_transform_3d_matrix(left, None)?;
let (right, _right_3d) = Transform::components_to_transform_3d_matrix(right, None)?;
Ok(Self::Matrix3D(
Matrix3D::from(left).animate(&Matrix3D::from(right), procedure)?,
))
}
fn animate_mismatched_transforms(
left: &[Self],
right: &[Self],
procedure: Procedure,
) -> Result<Self, ()> {
if let Ok(op) = Self::try_animate_mismatched_transforms_in_place(left, right, procedure) {
return Ok(op);
}
let from_list = Transform(left.to_vec().into());
let to_list = Transform(right.to_vec().into());
Ok(match procedure {
Procedure::Add => {
debug_assert!(false, "Addition should've been handled earlier");
return Err(());
},
Procedure::Interpolate { progress } => Self::InterpolateMatrix {
from_list,
to_list,
progress: Percentage(progress as f32),
},
Procedure::Accumulate { count } => Self::AccumulateMatrix {
from_list,
to_list,
count: cmp::min(count, i32::max_value() as u64) as i32,
},
})
}
}
// This might not be the most useful definition of distance. It might be better, for example,
// to trace the distance travelled by a point as its transform is interpolated between the two
// lists. That, however, proves to be quite complicated so we take a simple approach for now.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0.
impl ComputeSquaredDistance for ComputedTransformOperation {
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
match (self, other) {
(&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => {
this.compute_squared_distance(other)
},
(&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => {
let this: Matrix3D = (*this).into();
let other: Matrix3D = (*other).into();
this.compute_squared_distance(&other)
},
(
&TransformOperation::Skew(ref fx, ref fy),
&TransformOperation::Skew(ref tx, ref ty),
) => Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)?),
(&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) |
(&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => {
f.compute_squared_distance(&t)
},
(
&TransformOperation::Translate3D(ref fx, ref fy, ref fz),
&TransformOperation::Translate3D(ref tx, ref ty, ref tz),
) => {
// For translate, We don't want to require doing layout in order
// to calculate the result, so drop the percentage part.
//
// However, dropping percentage makes us impossible to compute
// the distance for the percentage-percentage case, but Gecko
// uses the same formula, so it's fine for now.
let basis = Length::new(0.);
let fx = fx.resolve(basis).px();
let fy = fy.resolve(basis).px();
let tx = tx.resolve(basis).px();
let ty = ty.resolve(basis).px();
Ok(fx.compute_squared_distance(&tx)? +
fy.compute_squared_distance(&ty)? +
fz.compute_squared_distance(&tz)?)
},
(
&TransformOperation::Scale3D(ref fx, ref fy, ref fz),
&TransformOperation::Scale3D(ref tx, ref ty, ref tz),
) => Ok(fx.compute_squared_distance(&tx)? +
fy.compute_squared_distance(&ty)? +
fz.compute_squared_distance(&tz)?),
(
&TransformOperation::Rotate3D(fx, fy, fz, fa),
&TransformOperation::Rotate3D(tx, ty, tz, ta),
) => Rotate::Rotate3D(fx, fy, fz, fa)
.compute_squared_distance(&Rotate::Rotate3D(tx, ty, tz, ta)),
(&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) |
(&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) |
(&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) |
(&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => {
fa.compute_squared_distance(&ta)
},
(
&TransformOperation::Perspective(ref fd),
&TransformOperation::Perspective(ref td),
) => fd
.infinity_or(|l| l.px())
.compute_squared_distance(&td.infinity_or(|l| l.px())),
(&TransformOperation::Perspective(ref p), &TransformOperation::Matrix3D(ref m)) |
(&TransformOperation::Matrix3D(ref m), &TransformOperation::Perspective(ref p)) => {
// FIXME(emilio): Is this right? Why interpolating this with
// Perspective but not with anything else?
let mut p_matrix = Matrix3D::identity();
let p = p.infinity_or(|p| p.px());
if p >= 0. {
p_matrix.m34 = -1. / p.max(1.);
}
p_matrix.compute_squared_distance(&m)
},
// Gecko cross-interpolates amongst all translate and all scale
// functions (See ToPrimitive in layout/style/StyleAnimationValue.cpp)
// without falling back to InterpolateMatrix
_ if self.is_translate() && other.is_translate() => self
.to_translate_3d()
.compute_squared_distance(&other.to_translate_3d()),
_ if self.is_scale() && other.is_scale() => self
.to_scale_3d()
.compute_squared_distance(&other.to_scale_3d()),
_ if self.is_rotate() && other.is_rotate() => self
.to_rotate_3d()
.compute_squared_distance(&other.to_rotate_3d()),
_ => Err(()),
}
}
}
// ------------------------------------
// Individual transforms.
// ------------------------------------
/// <https://drafts.csswg.org/css-transforms-2/#propdef-rotate>
impl ComputedRotate {
fn resolve(&self) -> (Number, Number, Number, Angle) {
// According to the spec:
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
//
// If the axis is unspecified, it defaults to "0 0 1"
match *self {
Rotate::None => (0., 0., 1., Angle::zero()),
Rotate::Rotate3D(rx, ry, rz, angle) => (rx, ry, rz, angle),
Rotate::Rotate(angle) => (0., 0., 1., angle),
}
}
}
impl Animate for ComputedRotate {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
use euclid::approxeq::ApproxEq;
match (self, other) {
(&Rotate::None, &Rotate::None) => Ok(Rotate::None),
(&Rotate::Rotate3D(fx, fy, fz, fa), &Rotate::None) => {
// We always normalize direction vector for rotate3d() first, so we should also
// apply the same rule for rotate property. In other words, we promote none into
// a 3d rotate, and normalize both direction vector first, and then do
// interpolation.
let (fx, fy, fz, fa) = transform::get_normalized_vector_and_angle(fx, fy, fz, fa);
Ok(Rotate::Rotate3D(
fx,
fy,
fz,
fa.animate(&Angle::zero(), procedure)?,
))
},
(&Rotate::None, &Rotate::Rotate3D(tx, ty, tz, ta)) => {
// Normalize direction vector first.
let (tx, ty, tz, ta) = transform::get_normalized_vector_and_angle(tx, ty, tz, ta);
Ok(Rotate::Rotate3D(
tx,
ty,
tz,
Angle::zero().animate(&ta, procedure)?,
))
},
(&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
// https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions
let (from, to) = (self.resolve(), other.resolve());
// For interpolations with the primitive rotate3d(), the direction vectors of the
// transform functions get normalized first.
let (fx, fy, fz, fa) =
transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
let (tx, ty, tz, ta) =
transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
// The rotation angle gets interpolated numerically and the rotation vector of the
// non-zero angle is used or (0, 0, 1) if both angles are zero.
//
// Note: the normalization may get two different vectors because of the
// floating-point precision, so we have to use approx_eq to compare two
// vectors.
let fv = DirectionVector::new(fx, fy, fz);
let tv = DirectionVector::new(tx, ty, tz);
if fa.is_zero() || ta.is_zero() || fv.approx_eq(&tv) {
let (x, y, z) = if fa.is_zero() && ta.is_zero() {
(0., 0., 1.)
} else if fa.is_zero() {
(tx, ty, tz)
} else {
// ta.is_zero() or both vectors are equal.
(fx, fy, fz)
};
return Ok(Rotate::Rotate3D(x, y, z, fa.animate(&ta, procedure)?));
}
// Slerp algorithm doesn't work well for Procedure::Add, which makes both
// |this_weight| and |other_weight| be 1.0, and this may make the cosine value of
// the angle be out of the range (i.e. the 4th component of the quaternion vector).
// (See Quaternion::animate() for more details about the Slerp formula.)
// Therefore, if the cosine value is out of range, we get an NaN after applying
// acos() on it, and so the result is invalid.
// Note: This is specialized for `rotate` property. The addition of `transform`
// property has been handled in `ComputedTransform::animate()` by merging two list
// directly.
let rq = if procedure == Procedure::Add {
// In Transform::animate(), it converts two rotations into transform matrices,
// and do matrix multiplication. This match the spec definition for the
// addition.
// https://drafts.csswg.org/css-transforms-2/#combining-transform-lists
let f = ComputedTransformOperation::Rotate3D(fx, fy, fz, fa);
let t = ComputedTransformOperation::Rotate3D(tx, ty, tz, ta);
let v =
Transform(vec![f].into()).animate(&Transform(vec![t].into()), procedure)?;
let (m, _) = v.to_transform_3d_matrix(None)?;
// Decompose the matrix and retrive the quaternion vector.
decompose_3d_matrix(Matrix3D::from(m))?.quaternion
} else {
// If the normalized vectors are not equal and both rotation angles are
// non-zero the transform functions get converted into 4x4 matrices first and
// interpolated as defined in section Interpolation of Matrices afterwards.
// However, per the spec issue [1], we prefer to converting the rotate3D into
// quaternion vectors directly, and then apply Slerp algorithm.
//
// Both ways should be identical, and converting rotate3D into quaternion
// vectors directly can avoid redundant math operations, e.g. the generation of
// the equivalent matrix3D and the unnecessary decomposition parts of
// translation, scale, skew, and persepctive in the matrix3D.
//
// [1] https://github.com/w3c/csswg-drafts/issues/9278
let fq = Quaternion::from_direction_and_angle(&fv, fa.radians64());
let tq = Quaternion::from_direction_and_angle(&tv, ta.radians64());
Quaternion::animate(&fq, &tq, procedure)?
};
debug_assert!(rq.3 <= 1.0 && rq.3 >= -1.0, "Invalid cosine value");
let (x, y, z, angle) = transform::get_normalized_vector_and_angle(
rq.0 as f32,
rq.1 as f32,
rq.2 as f32,
rq.3.acos() as f32 * 2.0,
);
Ok(Rotate::Rotate3D(x, y, z, Angle::from_radians(angle)))
},
(&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => {
// If this is a 2D rotation, we just animate the <angle>
let (from, to) = (self.resolve().3, other.resolve().3);
Ok(Rotate::Rotate(from.animate(&to, procedure)?))
},
}
}
}
impl ComputeSquaredDistance for ComputedRotate {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
use euclid::approxeq::ApproxEq;
match (self, other) {
(&Rotate::None, &Rotate::None) => Ok(SquaredDistance::from_sqrt(0.)),
(&Rotate::Rotate3D(_, _, _, a), &Rotate::None) |
(&Rotate::None, &Rotate::Rotate3D(_, _, _, a)) => {
a.compute_squared_distance(&Angle::zero())
},
(&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => {
let (from, to) = (self.resolve(), other.resolve());
let (mut fx, mut fy, mut fz, angle1) =
transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3);
let (mut tx, mut ty, mut tz, angle2) =
transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3);
if angle1.is_zero() && angle2.is_zero() {
(fx, fy, fz) = (0., 0., 1.);
(tx, ty, tz) = (0., 0., 1.);
} else if angle1.is_zero() {
(fx, fy, fz) = (tx, ty, tz);
} else if angle2.is_zero() {
(tx, ty, tz) = (fx, fy, fz);
}
let v1 = DirectionVector::new(fx, fy, fz);
let v2 = DirectionVector::new(tx, ty, tz);
if v1.approx_eq(&v2) {
angle1.compute_squared_distance(&angle2)
} else {
let q1 = Quaternion::from_direction_and_angle(&v1, angle1.radians64());
let q2 = Quaternion::from_direction_and_angle(&v2, angle2.radians64());
q1.compute_squared_distance(&q2)
}
},
(&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => self
.resolve()
.3
.compute_squared_distance(&other.resolve().3),
}
}
}
/// <https://drafts.csswg.org/css-transforms-2/#propdef-translate>
impl ComputedTranslate {
fn resolve(&self) -> (LengthPercentage, LengthPercentage, Length) {
// According to the spec:
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
//
// Unspecified translations default to 0px
match *self {
Translate::None => (
LengthPercentage::zero(),
LengthPercentage::zero(),
Length::zero(),
),
Translate::Translate(ref tx, ref ty, ref tz) => (tx.clone(), ty.clone(), tz.clone()),
}
}
}
impl Animate for ComputedTranslate {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
match (self, other) {
(&Translate::None, &Translate::None) => Ok(Translate::None),
(&Translate::Translate(_, ..), _) | (_, &Translate::Translate(_, ..)) => {
let (from, to) = (self.resolve(), other.resolve());
Ok(Translate::Translate(
from.0.animate(&to.0, procedure)?,
from.1.animate(&to.1, procedure)?,
from.2.animate(&to.2, procedure)?,
))
},
}
}
}
impl ComputeSquaredDistance for ComputedTranslate {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
let (from, to) = (self.resolve(), other.resolve());
Ok(from.0.compute_squared_distance(&to.0)? +
from.1.compute_squared_distance(&to.1)? +
from.2.compute_squared_distance(&to.2)?)
}
}
/// <https://drafts.csswg.org/css-transforms-2/#propdef-scale>
impl ComputedScale {
fn resolve(&self) -> (Number, Number, Number) {
// According to the spec:
// https://drafts.csswg.org/css-transforms-2/#individual-transforms
//
// Unspecified scales default to 1
match *self {
Scale::None => (1.0, 1.0, 1.0),
Scale::Scale(sx, sy, sz) => (sx, sy, sz),
}
}
}
impl Animate for ComputedScale {
#[inline]
fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
match (self, other) {
(&Scale::None, &Scale::None) => Ok(Scale::None),
(&Scale::Scale(_, ..), _) | (_, &Scale::Scale(_, ..)) => {
let (from, to) = (self.resolve(), other.resolve());
// For transform lists, we add by appending to the list of
// transform functions. However, ComputedScale cannot be
// simply concatenated, so we have to calculate the additive
// result here.
if procedure == Procedure::Add {
// scale(x1,y1,z1)*scale(x2,y2,z2) = scale(x1*x2, y1*y2, z1*z2)
return Ok(Scale::Scale(from.0 * to.0, from.1 * to.1, from.2 * to.2));
}
Ok(Scale::Scale(
animate_multiplicative_factor(from.0, to.0, procedure)?,
animate_multiplicative_factor(from.1, to.1, procedure)?,
animate_multiplicative_factor(from.2, to.2, procedure)?,
))
},
}
}
}
impl ComputeSquaredDistance for ComputedScale {
#[inline]
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
let (from, to) = (self.resolve(), other.resolve());
Ok(from.0.compute_squared_distance(&to.0)? +
from.1.compute_squared_distance(&to.1)? +
from.2.compute_squared_distance(&to.2)?)
}
}