1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

//! Animated values.
//!
//! Some values, notably colors, cannot be interpolated directly with their
//! computed values and need yet another intermediate representation. This
//! module's raison d'être is to ultimately contain all these types.

use crate::color::AbsoluteColor;
use crate::properties::PropertyId;
use crate::values::computed::length::LengthPercentage;
use crate::values::computed::url::ComputedUrl;
use crate::values::computed::Angle as ComputedAngle;
use crate::values::computed::Image;
use crate::values::specified::SVGPathData;
use crate::values::CSSFloat;
use app_units::Au;
use smallvec::SmallVec;
use std::cmp;

pub mod color;
pub mod effects;
mod font;
mod grid;
pub mod lists;
mod svg;
pub mod transform;

/// The category a property falls into for ordering purposes.
///
/// https://drafts.csswg.org/web-animations/#calculating-computed-keyframes
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
enum PropertyCategory {
    Custom,
    PhysicalLonghand,
    LogicalLonghand,
    Shorthand,
}

impl PropertyCategory {
    fn of(id: &PropertyId) -> Self {
        match *id {
            PropertyId::NonCustom(id) => match id.longhand_or_shorthand() {
                Ok(id) => if id.is_logical() {
                    PropertyCategory::LogicalLonghand
                } else {
                    PropertyCategory::PhysicalLonghand
                },
                Err(..) => PropertyCategory::Shorthand,
            },
            PropertyId::Custom(..) => PropertyCategory::Custom,
        }
    }
}

/// A comparator to sort PropertyIds such that physical longhands are sorted
/// before logical longhands and shorthands, shorthands with fewer components
/// are sorted before shorthands with more components, and otherwise shorthands
/// are sorted by IDL name as defined by [Web Animations][property-order].
///
/// Using this allows us to prioritize values specified by longhands (or smaller
/// shorthand subsets) when longhands and shorthands are both specified on the
/// one keyframe.
///
/// [property-order] https://drafts.csswg.org/web-animations/#calculating-computed-keyframes
pub fn compare_property_priority(a: &PropertyId, b: &PropertyId) -> cmp::Ordering {
    let a_category = PropertyCategory::of(a);
    let b_category = PropertyCategory::of(b);

    if a_category != b_category {
        return a_category.cmp(&b_category);
    }

    if a_category != PropertyCategory::Shorthand {
        return cmp::Ordering::Equal;
    }

    let a = a.as_shorthand().unwrap();
    let b = b.as_shorthand().unwrap();
    // Within shorthands, sort by the number of subproperties, then by IDL
    // name.
    let subprop_count_a = a.longhands().count();
    let subprop_count_b = b.longhands().count();
    subprop_count_a
        .cmp(&subprop_count_b)
        .then_with(|| a.idl_name_sort_order().cmp(&b.idl_name_sort_order()))
}

/// A helper function to animate two multiplicative factor.
pub fn animate_multiplicative_factor(
    this: CSSFloat,
    other: CSSFloat,
    procedure: Procedure,
) -> Result<CSSFloat, ()> {
    Ok((this - 1.).animate(&(other - 1.), procedure)? + 1.)
}

/// Animate from one value to another.
///
/// This trait is derivable with `#[derive(Animate)]`. The derived
/// implementation uses a `match` expression with identical patterns for both
/// `self` and `other`, calling `Animate::animate` on each fields of the values.
/// If a field is annotated with `#[animation(constant)]`, the two values should
/// be equal or an error is returned.
///
/// If a variant is annotated with `#[animation(error)]`, the corresponding
/// `match` arm returns an error.
///
/// Trait bounds for type parameter `Foo` can be opted out of with
/// `#[animation(no_bound(Foo))]` on the type definition, trait bounds for
/// fields can be opted into with `#[animation(field_bound)]` on the field.
pub trait Animate: Sized {
    /// Animate a value towards another one, given an animation procedure.
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()>;
}

/// An animation procedure.
///
/// <https://drafts.csswg.org/web-animations/#procedures-for-animating-properties>
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum Procedure {
    /// <https://drafts.csswg.org/web-animations/#animation-interpolation>
    Interpolate { progress: f64 },
    /// <https://drafts.csswg.org/web-animations/#animation-addition>
    Add,
    /// <https://drafts.csswg.org/web-animations/#animation-accumulation>
    Accumulate { count: u64 },
}

/// Conversion between computed values and intermediate values for animations.
///
/// Notably, colors are represented as four floats during animations.
///
/// This trait is derivable with `#[derive(ToAnimatedValue)]`.
pub trait ToAnimatedValue {
    /// The type of the animated value.
    type AnimatedValue;

    /// Converts this value to an animated value.
    fn to_animated_value(self) -> Self::AnimatedValue;

    /// Converts back an animated value into a computed value.
    fn from_animated_value(animated: Self::AnimatedValue) -> Self;
}

/// Returns a value similar to `self` that represents zero.
///
/// This trait is derivable with `#[derive(ToAnimatedValue)]`. If a field is
/// annotated with `#[animation(constant)]`, a clone of its value will be used
/// instead of calling `ToAnimatedZero::to_animated_zero` on it.
///
/// If a variant is annotated with `#[animation(error)]`, the corresponding
/// `match` arm is not generated.
///
/// Trait bounds for type parameter `Foo` can be opted out of with
/// `#[animation(no_bound(Foo))]` on the type definition.
pub trait ToAnimatedZero: Sized {
    /// Returns a value that, when added with an underlying value, will produce the underlying
    /// value. This is used for SMIL animation's "by-animation" where SMIL first interpolates from
    /// the zero value to the 'by' value, and then adds the result to the underlying value.
    ///
    /// This is not the necessarily the same as the initial value of a property. For example, the
    /// initial value of 'stroke-width' is 1, but the zero value is 0, since adding 1 to the
    /// underlying value will not produce the underlying value.
    fn to_animated_zero(&self) -> Result<Self, ()>;
}

impl Procedure {
    /// Returns this procedure as a pair of weights.
    ///
    /// This is useful for animations that don't animate differently
    /// depending on the used procedure.
    #[inline]
    pub fn weights(self) -> (f64, f64) {
        match self {
            Procedure::Interpolate { progress } => (1. - progress, progress),
            Procedure::Add => (1., 1.),
            Procedure::Accumulate { count } => (count as f64, 1.),
        }
    }
}

/// <https://drafts.csswg.org/css-transitions/#animtype-number>
impl Animate for i32 {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(((*self as f64).animate(&(*other as f64), procedure)? + 0.5).floor() as i32)
    }
}

/// <https://drafts.csswg.org/css-transitions/#animtype-number>
impl Animate for f32 {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        let ret = (*self as f64).animate(&(*other as f64), procedure)?;
        Ok(ret.min(f32::MAX as f64).max(f32::MIN as f64) as f32)
    }
}

/// <https://drafts.csswg.org/css-transitions/#animtype-number>
impl Animate for f64 {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        let (self_weight, other_weight) = procedure.weights();

        let ret = *self * self_weight + *other * other_weight;
        Ok(ret.min(f64::MAX).max(f64::MIN))
    }
}

impl<T> Animate for Option<T>
where
    T: Animate,
{
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        match (self.as_ref(), other.as_ref()) {
            (Some(ref this), Some(ref other)) => Ok(Some(this.animate(other, procedure)?)),
            (None, None) => Ok(None),
            _ => Err(()),
        }
    }
}

impl Animate for Au {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(Au::new(self.0.animate(&other.0, procedure)?))
    }
}

impl<T: Animate> Animate for Box<T> {
    #[inline]
    fn animate(&self, other: &Self, procedure: Procedure) -> Result<Self, ()> {
        Ok(Box::new((**self).animate(&other, procedure)?))
    }
}

impl<T> ToAnimatedValue for Option<T>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = Option<<T as ToAnimatedValue>::AnimatedValue>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.map(T::to_animated_value)
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.map(T::from_animated_value)
    }
}

impl<T> ToAnimatedValue for Vec<T>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = Vec<<T as ToAnimatedValue>::AnimatedValue>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.into_iter().map(T::to_animated_value).collect()
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.into_iter().map(T::from_animated_value).collect()
    }
}

impl<T> ToAnimatedValue for Box<T>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = Box<<T as ToAnimatedValue>::AnimatedValue>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        Box::new((*self).to_animated_value())
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        Box::new(T::from_animated_value(*animated))
    }
}

impl<T> ToAnimatedValue for Box<[T]>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = Box<[<T as ToAnimatedValue>::AnimatedValue]>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.into_vec()
            .into_iter()
            .map(T::to_animated_value)
            .collect::<Vec<_>>()
            .into_boxed_slice()
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated
            .into_vec()
            .into_iter()
            .map(T::from_animated_value)
            .collect::<Vec<_>>()
            .into_boxed_slice()
    }
}

impl<T> ToAnimatedValue for crate::OwnedSlice<T>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = crate::OwnedSlice<<T as ToAnimatedValue>::AnimatedValue>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.into_box().to_animated_value().into()
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        Self::from(Box::from_animated_value(animated.into_box()))
    }
}

impl<T> ToAnimatedValue for SmallVec<[T; 1]>
where
    T: ToAnimatedValue,
{
    type AnimatedValue = SmallVec<[T::AnimatedValue; 1]>;

    #[inline]
    fn to_animated_value(self) -> Self::AnimatedValue {
        self.into_iter().map(T::to_animated_value).collect()
    }

    #[inline]
    fn from_animated_value(animated: Self::AnimatedValue) -> Self {
        animated.into_iter().map(T::from_animated_value).collect()
    }
}

macro_rules! trivial_to_animated_value {
    ($ty:ty) => {
        impl $crate::values::animated::ToAnimatedValue for $ty {
            type AnimatedValue = Self;

            #[inline]
            fn to_animated_value(self) -> Self {
                self
            }

            #[inline]
            fn from_animated_value(animated: Self::AnimatedValue) -> Self {
                animated
            }
        }
    };
}

trivial_to_animated_value!(Au);
trivial_to_animated_value!(LengthPercentage);
trivial_to_animated_value!(ComputedAngle);
trivial_to_animated_value!(ComputedUrl);
trivial_to_animated_value!(bool);
trivial_to_animated_value!(f32);
trivial_to_animated_value!(i32);
trivial_to_animated_value!(AbsoluteColor);
trivial_to_animated_value!(crate::values::generics::color::ColorMixFlags);
// Note: This implementation is for ToAnimatedValue of ShapeSource.
//
// SVGPathData uses Box<[T]>. If we want to derive ToAnimatedValue for all the
// types, we have to do "impl ToAnimatedValue for Box<[T]>" first.
// However, the general version of "impl ToAnimatedValue for Box<[T]>" needs to
// clone |T| and convert it into |T::AnimatedValue|. However, for SVGPathData
// that is unnecessary--moving |T| is sufficient. So here, we implement this
// trait manually.
trivial_to_animated_value!(SVGPathData);
// FIXME: Bug 1514342, Image is not animatable, but we still need to implement
// this to avoid adding this derive to generic::Image and all its arms. We can
// drop this after landing Bug 1514342.
trivial_to_animated_value!(Image);

impl ToAnimatedZero for Au {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        Ok(Au(0))
    }
}

impl ToAnimatedZero for f32 {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        Ok(0.)
    }
}

impl ToAnimatedZero for f64 {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        Ok(0.)
    }
}

impl ToAnimatedZero for i32 {
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        Ok(0)
    }
}

impl<T> ToAnimatedZero for Box<T>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        Ok(Box::new((**self).to_animated_zero()?))
    }
}

impl<T> ToAnimatedZero for Option<T>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        match *self {
            Some(ref value) => Ok(Some(value.to_animated_zero()?)),
            None => Ok(None),
        }
    }
}

impl<T> ToAnimatedZero for Vec<T>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        self.iter().map(|v| v.to_animated_zero()).collect()
    }
}

impl<T> ToAnimatedZero for Box<[T]>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        self.iter().map(|v| v.to_animated_zero()).collect()
    }
}

impl<T> ToAnimatedZero for crate::OwnedSlice<T>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        self.iter().map(|v| v.to_animated_zero()).collect()
    }
}

impl<T> ToAnimatedZero for crate::ArcSlice<T>
where
    T: ToAnimatedZero,
{
    #[inline]
    fn to_animated_zero(&self) -> Result<Self, ()> {
        let v = self
            .iter()
            .map(|v| v.to_animated_zero())
            .collect::<Result<Vec<_>, _>>()?;
        Ok(crate::ArcSlice::from_iter(v.into_iter()))
    }
}