1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
use crate::{is_zero, Line, Plane};
use euclid::{
approxeq::ApproxEq,
default::{Point2D, Point3D, Rect, Transform3D, Vector3D},
};
use smallvec::SmallVec;
use std::{iter, mem};
/// The projection of a `Polygon` on a line.
pub struct LineProjection {
/// Projected value of each point in the polygon.
pub markers: [f64; 4],
}
impl LineProjection {
/// Get the min/max of the line projection markers.
pub fn get_bounds(&self) -> (f64, f64) {
let (mut a, mut b, mut c, mut d) = (
self.markers[0],
self.markers[1],
self.markers[2],
self.markers[3],
);
// bitonic sort of 4 elements
// we could not just use `min/max` since they require `Ord` bound
//TODO: make it nicer
if a > c {
mem::swap(&mut a, &mut c);
}
if b > d {
mem::swap(&mut b, &mut d);
}
if a > b {
mem::swap(&mut a, &mut b);
}
if c > d {
mem::swap(&mut c, &mut d);
}
if b > c {
mem::swap(&mut b, &mut c);
}
debug_assert!(a <= b && b <= c && c <= d);
(a, d)
}
/// Check intersection with another line projection.
pub fn intersect(&self, other: &Self) -> bool {
// compute the bounds of both line projections
let span = self.get_bounds();
let other_span = other.get_bounds();
// compute the total footprint
let left = if span.0 < other_span.0 {
span.0
} else {
other_span.0
};
let right = if span.1 > other_span.1 {
span.1
} else {
other_span.1
};
// they intersect if the footprint is smaller than the sum
right - left < span.1 - span.0 + other_span.1 - other_span.0
}
}
/// Polygon intersection results.
pub enum Intersection<T> {
/// Polygons are coplanar, including the case of being on the same plane.
Coplanar,
/// Polygon planes are intersecting, but polygons are not.
Outside,
/// Polygons are actually intersecting.
Inside(T),
}
impl<T> Intersection<T> {
/// Return true if the intersection is completely outside.
pub fn is_outside(&self) -> bool {
match *self {
Intersection::Outside => true,
_ => false,
}
}
/// Return true if the intersection cuts the source polygon.
pub fn is_inside(&self) -> bool {
match *self {
Intersection::Inside(_) => true,
_ => false,
}
}
}
/// A convex polygon with 4 points lying on a plane.
#[derive(Debug, PartialEq)]
pub struct Polygon<A> {
/// Points making the polygon.
pub points: [Point3D<f64>; 4],
/// A plane describing polygon orientation.
pub plane: Plane,
/// A simple anchoring index to allow association of the
/// produced split polygons with the original one.
pub anchor: A,
}
impl<A: Copy> Clone for Polygon<A> {
fn clone(&self) -> Self {
Polygon {
points: [
self.points[0].clone(),
self.points[1].clone(),
self.points[2].clone(),
self.points[3].clone(),
],
plane: self.plane.clone(),
anchor: self.anchor,
}
}
}
impl<A> Polygon<A>
where
A: Copy,
{
/// Construct a polygon from points that are already transformed.
/// Return None if the polygon doesn't contain any space.
pub fn from_points(points: [Point3D<f64>; 4], anchor: A) -> Option<Self> {
let edge1 = points[1] - points[0];
let edge2 = points[2] - points[0];
let edge3 = points[3] - points[0];
let edge4 = points[3] - points[1];
if edge2.square_length() < f64::EPSILON || edge4.square_length() < f64::EPSILON {
return None;
}
// one of them can be zero for redundant polygons produced by plane splitting
//Note: this would be nicer if we used triangles instead of quads in the first place...
// see https://github.com/servo/plane-split/issues/17
let normal_rough1 = edge1.cross(edge2);
let normal_rough2 = edge2.cross(edge3);
let square_length1 = normal_rough1.square_length();
let square_length2 = normal_rough2.square_length();
let normal = if square_length1 > square_length2 {
normal_rough1 / square_length1.sqrt()
} else {
normal_rough2 / square_length2.sqrt()
};
let offset = -points[0].to_vector().dot(normal);
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
/// Construct a polygon from a non-transformed rectangle.
pub fn from_rect(rect: Rect<f64>, anchor: A) -> Self {
let min = rect.min();
let max = rect.max();
Polygon {
points: [
min.to_3d(),
Point3D::new(max.x, min.y, 0.0),
max.to_3d(),
Point3D::new(min.x, max.y, 0.0),
],
plane: Plane {
normal: Vector3D::new(0.0, 0.0, 1.0),
offset: 0.0,
},
anchor,
}
}
/// Construct a polygon from a rectangle with 3D transform.
pub fn from_transformed_rect(
rect: Rect<f64>,
transform: Transform3D<f64>,
anchor: A,
) -> Option<Self> {
let min = rect.min();
let max = rect.max();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, 0.0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, 0.0))?,
];
Self::from_points(points, anchor)
}
/// Construct a polygon from a rectangle with an invertible 3D transform.
pub fn from_transformed_rect_with_inverse(
rect: Rect<f64>,
transform: &Transform3D<f64>,
inv_transform: &Transform3D<f64>,
anchor: A,
) -> Option<Self> {
let min = rect.min();
let max = rect.max();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, 0.0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, 0.0))?,
];
// Compute the normal directly from the transformation. This guarantees consistent polygons
// generated from various local rectanges on the same geometry plane.
let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33);
let normal_sql = normal_raw.square_length();
if normal_sql.approx_eq(&0.0) || transform.m44.approx_eq(&0.0) {
None
} else {
let normal = normal_raw / normal_sql.sqrt();
let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal)
/ transform.m44;
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
}
/// Bring a point into the local coordinate space, returning
/// the 2D normalized coordinates.
pub fn untransform_point(&self, point: Point3D<f64>) -> Point2D<f64> {
//debug_assert!(self.contains(point));
// get axises and target vector
let a = self.points[1] - self.points[0];
let b = self.points[3] - self.points[0];
let c = point - self.points[0];
// get pair-wise dot products
let a2 = a.dot(a);
let ab = a.dot(b);
let b2 = b.dot(b);
let ca = c.dot(a);
let cb = c.dot(b);
// compute the final coordinates
let denom = ab * ab - a2 * b2;
let x = ab * cb - b2 * ca;
let y = ab * ca - a2 * cb;
Point2D::new(x, y) / denom
}
/// Transform a polygon by an affine transform (preserving straight lines).
pub fn transform(&self, transform: &Transform3D<f64>) -> Option<Polygon<A>> {
let mut points = [Point3D::origin(); 4];
for (out, point) in points.iter_mut().zip(self.points.iter()) {
let mut homo = transform.transform_point3d_homogeneous(*point);
homo.w = homo.w.max(f64::approx_epsilon());
*out = homo.to_point3d()?;
}
//Note: this code path could be more efficient if we had inverse-transpose
//let n4 = transform.transform_point4d(&Point4D::new(0.0, 0.0, T::one(), 0.0));
//let normal = Point3D::new(n4.x, n4.y, n4.z);
Polygon::from_points(points, self.anchor)
}
/// Check if all the points are indeed placed on the plane defined by
/// the normal and offset, and the winding order is consistent.
pub fn is_valid(&self) -> bool {
let is_planar = self
.points
.iter()
.all(|p| is_zero(self.plane.signed_distance_to(p)));
let edges = [
self.points[1] - self.points[0],
self.points[2] - self.points[1],
self.points[3] - self.points[2],
self.points[0] - self.points[3],
];
let anchor = edges[3].cross(edges[0]);
let is_winding = edges
.iter()
.zip(edges[1..].iter())
.all(|(a, &b)| a.cross(b).dot(anchor) >= 0.0);
is_planar && is_winding
}
/// Check if the polygon doesn't contain any space. This may happen
/// after a sequence of splits, and such polygons should be discarded.
pub fn is_empty(&self) -> bool {
(self.points[0] - self.points[2]).square_length() < f64::EPSILON
|| (self.points[1] - self.points[3]).square_length() < f64::EPSILON
}
/// Check if this polygon contains another one.
pub fn contains(&self, other: &Self) -> bool {
//TODO: actually check for inside/outside
self.plane.contains(&other.plane)
}
/// Project this polygon onto a 3D vector, returning a line projection.
/// Note: we can think of it as a projection to a ray placed at the origin.
pub fn project_on(&self, vector: &Vector3D<f64>) -> LineProjection {
LineProjection {
markers: [
vector.dot(self.points[0].to_vector()),
vector.dot(self.points[1].to_vector()),
vector.dot(self.points[2].to_vector()),
vector.dot(self.points[3].to_vector()),
],
}
}
/// Compute the line of intersection with an infinite plane.
pub fn intersect_plane(&self, other: &Plane) -> Intersection<Line> {
if other.are_outside(&self.points) {
log::debug!("\t\tOutside of the plane");
return Intersection::Outside;
}
match self.plane.intersect(&other) {
Some(line) => Intersection::Inside(line),
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
/// Compute the line of intersection with another polygon.
pub fn intersect(&self, other: &Self) -> Intersection<Line> {
if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) {
log::debug!("\t\tOne is completely outside of the other");
return Intersection::Outside;
}
match self.plane.intersect(&other.plane) {
Some(line) => {
let self_proj = self.project_on(&line.dir);
let other_proj = other.project_on(&line.dir);
if self_proj.intersect(&other_proj) {
Intersection::Inside(line)
} else {
// projections on the line don't intersect
log::debug!("\t\tProjection is outside");
Intersection::Outside
}
}
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
fn split_impl(
&mut self,
first: (usize, Point3D<f64>),
second: (usize, Point3D<f64>),
) -> (Option<Self>, Option<Self>) {
//TODO: can be optimized for when the polygon has a redundant 4th vertex
//TODO: can be simplified greatly if only working with triangles
log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0);
let base = first.0;
assert!(base < self.points.len());
match second.0 - first.0 {
1 => {
// rect between the cut at the diagonal
let other1 = Polygon {
points: [
first.1,
second.1,
self.points[(base + 2) & 3],
self.points[base],
],
..self.clone()
};
// triangle on the near side of the diagonal
let other2 = Polygon {
points: [
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[base],
self.points[base],
],
..self.clone()
};
// triangle being cut out
self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1];
(Some(other1), Some(other2))
}
2 => {
// rect on the far side
let other = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
second.1,
],
..self.clone()
};
// rect on the near side
self.points = [
first.1,
second.1,
self.points[(base + 3) & 3],
self.points[base],
];
(Some(other), None)
}
3 => {
// rect between the cut at the diagonal
let other1 = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 3) & 3],
second.1,
],
..self.clone()
};
// triangle on the far side of the diagonal
let other2 = Polygon {
points: [
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[(base + 3) & 3],
],
..self.clone()
};
// triangle being cut out
self.points = [first.1, second.1, self.points[base], self.points[base]];
(Some(other1), Some(other2))
}
_ => panic!("Unexpected indices {} {}", first.0, second.0),
}
}
/// Split the polygon along the specified `Line`.
/// Will do nothing if the line doesn't belong to the polygon plane.
#[deprecated(note = "Use split_with_normal instead")]
pub fn split(&mut self, line: &Line) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting");
// check if the cut is within the polygon plane first
if !is_zero(self.plane.normal.dot(line.dir))
|| !is_zero(self.plane.signed_distance_to(&line.origin))
{
log::debug!(
"\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}",
self.plane.normal.dot(line.dir),
self.plane.signed_distance_to(&line.origin)
);
return (None, None);
}
// compute the intersection points for each edge
let mut cuts = [None; 4];
for ((&b, &a), cut) in self
.points
.iter()
.cycle()
.skip(1)
.zip(self.points.iter())
.zip(cuts.iter_mut())
{
if let Some(t) = line.intersect_edge(a..b) {
if t >= 0.0 && t < 1.0 {
*cut = Some(a + (b - a) * t);
}
}
}
let first = match cuts.iter().position(|c| c.is_some()) {
Some(pos) => pos,
None => return (None, None),
};
let second = match cuts[first + 1..].iter().position(|c| c.is_some()) {
Some(pos) => first + 1 + pos,
None => return (None, None),
};
self.split_impl(
(first, cuts[first].unwrap()),
(second, cuts[second].unwrap()),
)
}
/// Split the polygon along the specified `Line`, with a normal to the split line provided.
/// This is useful when called by the plane splitter, since the other plane's normal
/// forms the side direction here, and figuring out the actual line of split isn't needed.
/// Will do nothing if the line doesn't belong to the polygon plane.
pub fn split_with_normal(
&mut self,
line: &Line,
normal: &Vector3D<f64>,
) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting with normal");
// figure out which side of the split does each point belong to
let mut sides = [0.0; 4];
let (mut cut_positive, mut cut_negative) = (None, None);
for (side, point) in sides.iter_mut().zip(&self.points) {
*side = normal.dot(*point - line.origin);
}
// compute the edge intersection points
for (i, ((&side1, point1), (&side0, point0))) in sides[1..]
.iter()
.chain(iter::once(&sides[0]))
.zip(self.points[1..].iter().chain(iter::once(&self.points[0])))
.zip(sides.iter().zip(&self.points))
.enumerate()
{
// figure out if an edge between 0 and 1 needs to be cut
let cut = if side0 < 0.0 && side1 >= 0.0 {
&mut cut_positive
} else if side0 > 0.0 && side1 <= 0.0 {
&mut cut_negative
} else {
continue;
};
// compute the cut point by weighting the opposite distances
//
// Note: this algorithm is designed to not favor one end of the edge over the other.
// The previous approach of calling `intersect_edge` sometimes ended up with "t" ever
// slightly outside of [0, 1] range, since it was computing it relative to the first point only.
//
// Given that we are intersecting two straight lines, the triangles on both
// sides of intersection are alike, so distances along the [point0, point1] line
// are proportional to the side vector lengths we just computed: (side0, side1).
let point =
(*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs();
if cut.is_some() {
// We don't expect that the direction changes more than once, unless
// the polygon is close to redundant, and we hit precision issues when
// computing the sides.
log::warn!("Splitting failed due to precision issues: {:?}", sides);
break;
}
*cut = Some((i, point));
}
// form new polygons
if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) {
if second.0 < first.0 {
second.0 += 4;
}
self.split_impl(first, second)
} else {
(None, None)
}
}
/// Cut a polygon with another one.
///
/// Write the resulting polygons in `front` and `back` if the polygon needs to be split.
pub fn cut(
&self,
poly: &Self,
front: &mut SmallVec<[Polygon<A>; 2]>,
back: &mut SmallVec<[Polygon<A>; 2]>,
) -> PlaneCut {
//Note: we treat `self` as a plane, and `poly` as a concrete polygon here
let (intersection, dist) = match self.plane.intersect(&poly.plane) {
None => {
let ndot = self.plane.normal.dot(poly.plane.normal);
let dist = self.plane.offset - ndot * poly.plane.offset;
(Intersection::Coplanar, dist)
}
Some(_) if self.plane.are_outside(&poly.points[..]) => {
//Note: we can't start with `are_outside` because it's subject to FP precision
let dist = self.plane.signed_distance_sum_to(&poly);
(Intersection::Outside, dist)
}
Some(line) => {
//Note: distance isn't relevant here
(Intersection::Inside(line), 0.0)
}
};
match intersection {
//Note: we deliberately make the comparison wider than just with T::epsilon().
// This is done to avoid mistakenly ordering items that should be on the same
// plane but end up slightly different due to the floating point precision.
Intersection::Coplanar if is_zero(dist) => PlaneCut::Sibling,
Intersection::Coplanar | Intersection::Outside => {
if dist > 0.0 {
front.push(poly.clone());
} else {
back.push(poly.clone());
}
PlaneCut::Cut
}
Intersection::Inside(line) => {
let mut poly = poly.clone();
let (res_add1, res_add2) = poly.split_with_normal(&line, &self.plane.normal);
for sub in iter::once(poly)
.chain(res_add1)
.chain(res_add2)
.filter(|p| !p.is_empty())
{
let dist = self.plane.signed_distance_sum_to(&sub);
if dist > 0.0 {
front.push(sub)
} else {
back.push(sub)
}
}
PlaneCut::Cut
}
}
}
/// Returns whether both polygon's planes are parallel.
pub fn is_aligned(&self, other: &Self) -> bool {
self.plane.normal.dot(other.plane.normal) > 0.0
}
}
/// The result of a polygon being cut by a plane.
/// The "cut" here is an attempt to classify a plane as being
/// in front or in the back of another one.
#[derive(Debug, PartialEq)]
pub enum PlaneCut {
/// The planes are one the same geometrical plane.
Sibling,
/// Planes are different, thus we can either determine that
/// our plane is completely in front/back of another one,
/// or split it into these sub-groups.
Cut,
}
#[test]
fn test_split_precision() {
// regression test for https://bugzilla.mozilla.org/show_bug.cgi?id=1678454
let mut polygon = Polygon::<()> {
points: [
Point3D::new(300.0102, 150.00958, 0.0),
Point3D::new(606.0, 306.0, 0.0),
Point3D::new(300.21954, 150.11946, 0.0),
Point3D::new(300.08844, 150.05064, 0.0),
],
plane: Plane {
normal: Vector3D::zero(),
offset: 0.0,
},
anchor: (),
};
let line = Line {
origin: Point3D::new(3.0690663, -5.8472385, 0.0),
dir: Vector3D::new(0.8854436, 0.46474677, -0.0),
};
let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789);
polygon.split_with_normal(&line, &normal);
}