1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ---
//
// The C++ implementation preserved here in comments is licensed as follows:
//
// Tencent is pleased to support the open source community by making RapidJSON
// available.
//
// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All
// rights reserved.
//
// Licensed under the MIT License (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of the License
// at
//
// http://opensource.org/licenses/MIT
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
use core::ops::{Mul, Sub};
#[cfg(feature = "no-panic")]
use no_panic::no_panic;
#[derive(Copy, Clone, Debug)]
pub struct DiyFp<F, E> {
pub f: F,
pub e: E,
}
impl<F, E> DiyFp<F, E> {
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn new(f: F, e: E) -> Self {
DiyFp { f, e }
}
}
impl<F, E> Sub for DiyFp<F, E>
where
F: Sub<F, Output = F>,
{
type Output = Self;
#[cfg_attr(feature = "no-panic", no_panic)]
fn sub(self, rhs: Self) -> Self {
DiyFp {
f: self.f - rhs.f,
e: self.e,
}
}
}
impl Mul for DiyFp<u32, i32> {
type Output = Self;
#[cfg_attr(feature = "no-panic", no_panic)]
fn mul(self, rhs: Self) -> Self {
let mut tmp = self.f as u64 * rhs.f as u64;
tmp += 1u64 << 31; // mult_round
DiyFp {
f: (tmp >> 32) as u32,
e: self.e + rhs.e + 32,
}
}
}
impl Mul for DiyFp<u64, isize> {
type Output = Self;
#[cfg_attr(feature = "no-panic", no_panic)]
fn mul(self, rhs: Self) -> Self {
let m32 = 0xFFFFFFFFu64;
let a = self.f >> 32;
let b = self.f & m32;
let c = rhs.f >> 32;
let d = rhs.f & m32;
let ac = a * c;
let bc = b * c;
let ad = a * d;
let bd = b * d;
let mut tmp = (bd >> 32) + (ad & m32) + (bc & m32);
tmp += 1u64 << 31; // mult_round
DiyFp {
f: ac + (ad >> 32) + (bc >> 32) + (tmp >> 32),
e: self.e + rhs.e + 64,
}
}
}
macro_rules! diyfp {
(
floating_type: $fty:ty,
significand_type: $sigty:ty,
exponent_type: $expty:ty,
diy_significand_size: $diy_significand_size:expr,
significand_size: $significand_size:expr,
exponent_bias: $exponent_bias:expr,
mask_type: $mask_type:ty,
exponent_mask: $exponent_mask:expr,
significand_mask: $significand_mask:expr,
hidden_bit: $hidden_bit:expr,
cached_powers_f: $cached_powers_f:expr,
cached_powers_e: $cached_powers_e:expr,
min_power: $min_power:expr,
) => {
type DiyFp = diyfp::DiyFp<$sigty, $expty>;
impl DiyFp {
// Preconditions:
// `d` must have a positive sign and must not be infinity or NaN.
/*
explicit DiyFp(double d) {
union {
double d;
uint64_t u64;
} u = { d };
int biased_e = static_cast<int>((u.u64 & kDpExponentMask) >> kDpSignificandSize);
uint64_t significand = (u.u64 & kDpSignificandMask);
if (biased_e != 0) {
f = significand + kDpHiddenBit;
e = biased_e - kDpExponentBias;
}
else {
f = significand;
e = kDpMinExponent + 1;
}
}
*/
#[cfg_attr(feature = "no-panic", no_panic)]
unsafe fn from(d: $fty) -> Self {
let u: $mask_type = mem::transmute(d);
let biased_e = ((u & $exponent_mask) >> $significand_size) as $expty;
let significand = u & $significand_mask;
if biased_e != 0 {
DiyFp {
f: significand + $hidden_bit,
e: biased_e - $exponent_bias - $significand_size,
}
} else {
DiyFp {
f: significand,
e: 1 - $exponent_bias - $significand_size,
}
}
}
// Normalizes so that the highest bit of the diy significand is 1.
/*
DiyFp Normalize() const {
DiyFp res = *this;
while (!(res.f & (static_cast<uint64_t>(1) << 63))) {
res.f <<= 1;
res.e--;
}
return res;
}
*/
#[cfg_attr(feature = "no-panic", no_panic)]
fn normalize(self) -> DiyFp {
let mut res = self;
while (res.f & (1 << ($diy_significand_size - 1))) == 0 {
res.f <<= 1;
res.e -= 1;
}
res
}
// Normalizes so that the highest bit of the diy significand is 1.
//
// Precondition:
// `self.f` must be no more than 2 bits longer than the f64 significand.
/*
DiyFp NormalizeBoundary() const {
DiyFp res = *this;
while (!(res.f & (kDpHiddenBit << 1))) {
res.f <<= 1;
res.e--;
}
res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
return res;
}
*/
#[cfg_attr(feature = "no-panic", no_panic)]
fn normalize_boundary(self) -> DiyFp {
let mut res = self;
while (res.f & $hidden_bit << 1) == 0 {
res.f <<= 1;
res.e -= 1;
}
res.f <<= $diy_significand_size - $significand_size - 2;
res.e -= $diy_significand_size - $significand_size - 2;
res
}
// Normalizes `self - e` and `self + e` where `e` is half of the least
// significant digit of `self`. The plus is normalized so that the highest
// bit of the diy significand is 1. The minus is normalized so that it has
// the same exponent as the plus.
//
// Preconditions:
// `self` must have been returned directly from `DiyFp::from_f64`.
// `self.f` must not be zero.
/*
void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
mi.f <<= mi.e - pl.e;
mi.e = pl.e;
*plus = pl;
*minus = mi;
}
*/
#[cfg_attr(feature = "no-panic", no_panic)]
fn normalized_boundaries(self) -> (DiyFp, DiyFp) {
let pl = DiyFp::new((self.f << 1) + 1, self.e - 1).normalize_boundary();
let mut mi = if self.f == $hidden_bit {
DiyFp::new((self.f << 2) - 1, self.e - 2)
} else {
DiyFp::new((self.f << 1) - 1, self.e - 1)
};
mi.f <<= mi.e - pl.e;
mi.e = pl.e;
(mi, pl)
}
}
/*
inline DiyFp GetCachedPower(int e, int* K) {
//int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
double dk = (-61 - e) * 0.30102999566398114 + 347; // dk must be positive, so can do ceiling in positive
int k = static_cast<int>(dk);
if (dk - k > 0.0)
k++;
unsigned index = static_cast<unsigned>((k >> 3) + 1);
*K = -(-348 + static_cast<int>(index << 3)); // decimal exponent no need lookup table
return GetCachedPowerByIndex(index);
}
*/
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
fn get_cached_power(e: $expty) -> (DiyFp, isize) {
let dk = (3 - $diy_significand_size - e) as f64 * 0.30102999566398114f64
- ($min_power + 1) as f64;
let mut k = dk as isize;
if dk - k as f64 > 0.0 {
k += 1;
}
let index = ((k >> 3) + 1) as usize;
let k = -($min_power + (index << 3) as isize);
(
DiyFp::new(*unsafe { $cached_powers_f.get_unchecked(index) }, *unsafe {
$cached_powers_e.get_unchecked(index)
}
as $expty),
k,
)
}
};
}