1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
use std::borrow::Cow;
use std::io;
use std::iter::FusedIterator;
use std::mem;

use std::io::prelude::*;
use std::num::NonZeroU64;
use std::convert::{TryFrom, TryInto};

use crate::Repeat;
use crate::common::{Block, Frame};

mod decoder;
mod converter;

pub use self::decoder::{
    PLTE_CHANNELS, StreamingDecoder, Decoded, DecodingError, DecodingFormatError,
    Version, FrameDataType, OutputBuffer, FrameDecoder
};

use self::converter::PixelConverter;
pub use self::converter::ColorOutput;

#[derive(Clone, Debug)]
/// The maximum amount of memory the decoder is allowed to use for each frame
pub enum MemoryLimit {
    /// Enforce no memory limit.
    ///
    /// If you intend to process images from unknown origins this is a potentially dangerous
    /// constant to use, as your program could be vulnerable to decompression bombs. That is,
    /// malicious images crafted specifically to require an enormous amount of memory to process
    /// while having a disproportionately small file size.
    ///
    /// The risks for modern machines are a bit smaller as the size of each frame cannot
    /// exceed 16GiB, but this is still a significant amount of memory.
    Unlimited,
    /// Limit the amount of memory that can be used for a single frame to this many bytes.
    ///
    /// It may not be enforced precisely due to allocator overhead
    /// and the decoder potentially allocating small auxiliary buffers,
    /// but it will precisely limit the size of the output buffer for each frame.
    //
    // The `NonZero` type is used to make FFI simpler.
    // Due to the guaranteed niche optimization, `Unlimited` will be represented as `0`,
    // and the whole enum as a simple `u64`.
    Bytes(NonZeroU64),
}

impl MemoryLimit {
    fn check_size(&self, size: usize) -> Result<(), DecodingError> {
        match self {
            MemoryLimit::Unlimited => Ok(()),
            MemoryLimit::Bytes(limit) => {
                if size as u64 <= limit.get() {
                    Ok(())
                } else {
                    Err(DecodingError::format("memory limit reached"))
                }
            },
        }
    }

    fn buffer_size(&self, color: ColorOutput, width: u16, height: u16) -> Option<usize> {
        let pixels = u64::from(width) * u64::from(height);

        let bytes_per_pixel = match color {
            ColorOutput::Indexed => 1,
            ColorOutput::RGBA => 4,
        };

        // This cannot overflow because the maximum possible value is 16GiB, well within u64 range
        let total_bytes = pixels * bytes_per_pixel;

        // On 32-bit platforms the size of the output buffer may not be representable
        let usize_bytes = usize::try_from(total_bytes).ok()?;

        match self {
            MemoryLimit::Unlimited => Some(usize_bytes),
            MemoryLimit::Bytes(limit) => {
                if total_bytes > limit.get() {
                    None
                } else {
                    Some(usize_bytes)
                }
            },
        }
    }
}

/// Options for opening a GIF decoder. [`DecodeOptions::read_info`] will start the decoder.
#[derive(Clone, Debug)]
pub struct DecodeOptions {
    memory_limit: MemoryLimit,
    color_output: ColorOutput,
    check_frame_consistency: bool,
    skip_frame_decoding: bool,
    check_for_end_code: bool,
    allow_unknown_blocks: bool,
}

impl Default for DecodeOptions {
    fn default() -> Self {
        Self::new()
    }
}

impl DecodeOptions {
    /// Creates a new decoder builder
    #[must_use]
    #[inline]
    pub fn new() -> DecodeOptions {
        DecodeOptions {
            memory_limit: MemoryLimit::Bytes(50_000_000.try_into().unwrap()), // 50 MB
            color_output: ColorOutput::Indexed,
            check_frame_consistency: false,
            skip_frame_decoding: false,
            check_for_end_code: false,
            allow_unknown_blocks: false,
        }
    }

    /// Configure how color data is decoded.
    #[inline]
    pub fn set_color_output(&mut self, color: ColorOutput) {
        self.color_output = color;
    }

    /// Configure a memory limit for decoding.
    pub fn set_memory_limit(&mut self, limit: MemoryLimit) {
        self.memory_limit = limit;
    }

    /// Configure if frames must be within the screen descriptor.
    ///
    /// The default is `false`.
    ///
    /// When turned on, all frame descriptors being read must fit within the screen descriptor or
    /// otherwise an error is returned and the stream left in an unspecified state.
    ///
    /// When turned off, frames may be arbitrarily larger or offset in relation to the screen. Many
    /// other decoder libraries handle this in highly divergent ways. This moves all checks to the
    /// caller, for example to emulate a specific style.
    pub fn check_frame_consistency(&mut self, check: bool) {
        self.check_frame_consistency = check;
    }

    /// Configure whether to skip decoding frames.
    ///
    /// The default is false.
    ///
    /// When turned on, LZW decoding is skipped. [`Decoder::read_next_frame`] will return
    /// compressed LZW bytes in frame's data.
    /// [`Decoder::next_frame_info`] will return the metadata of the next frame as usual.
    /// This is useful to count frames without incurring the overhead of decoding.
    pub fn skip_frame_decoding(&mut self, skip: bool) {
        self.skip_frame_decoding = skip;
    }

    /// Configure if LZW encoded blocks must end with a marker end code.
    ///
    /// The default is `false`.
    ///
    /// When turned on, all image data blocks—which are LZW encoded—must contain a special bit
    /// sequence signalling the end of the data. LZW processing terminates when this code is
    /// encountered. The specification states that it must be the last code output by the encoder
    /// for an image.
    ///
    /// When turned off then image data blocks can simply end. Note that this might silently ignore
    /// some bits of the last or second to last byte.
    pub fn check_lzw_end_code(&mut self, check: bool) {
        self.check_for_end_code = check;
    }

    /// Configure if unknown blocks are allowed to be decoded.
    ///
    /// The default is `false`.
    ///
    /// When turned on, the decoder will allow unknown blocks to be in the
    /// `BlockStart` position.
    ///
    /// When turned off, decoded block starts must mark an `Image`, `Extension`,
    /// or `Trailer` block. Otherwise, the decoded image will return an error.
    /// If an unknown block error is returned from decoding, enabling this
    /// setting may allow for a further state of decoding on the next attempt.
    pub fn allow_unknown_blocks(&mut self, check: bool) {
        self.allow_unknown_blocks = check;
    }

    /// Reads the logical screen descriptor including the global color palette
    ///
    /// Returns a [`Decoder`]. All decoder configuration has to be done beforehand.
    pub fn read_info<R: Read>(self, r: R) -> Result<Decoder<R>, DecodingError> {
        Decoder::with_no_init(r, StreamingDecoder::with_options(&self), self).init()
    }
}

struct ReadDecoder<R: Read> {
    reader: io::BufReader<R>,
    decoder: StreamingDecoder,
    at_eof: bool,
}

impl<R: Read> ReadDecoder<R> {
    #[inline(never)]
    fn decode_next(&mut self, write_into: &mut OutputBuffer<'_>) -> Result<Option<Decoded>, DecodingError> {
        while !self.at_eof {
            let (consumed, result) = {
                let buf = self.reader.fill_buf()?;
                if buf.is_empty() {
                    return Err(io::ErrorKind::UnexpectedEof.into());
                }

                self.decoder.update(buf, write_into)?
            };
            self.reader.consume(consumed);
            match result {
                Decoded::Nothing => (),
                Decoded::BlockStart(Block::Trailer) => {
                    self.at_eof = true;
                },
                result => return Ok(Some(result))
            }
        }
        Ok(None)
    }

    fn into_inner(self) -> io::BufReader<R> {
        self.reader
    }

    fn decode_next_bytes(&mut self, out: &mut OutputBuffer<'_>) -> Result<usize, DecodingError> {
        match self.decode_next(out)? {
            Some(Decoded::BytesDecoded(len)) => Ok(len.get()),
            Some(Decoded::DataEnd) => Ok(0),
            _ => Err(DecodingError::format("unexpected data")),
        }
    }
}

#[allow(dead_code)]
/// GIF decoder. Create [`DecodeOptions`] to get started, and call [`DecodeOptions::read_info`].
pub struct Decoder<R: Read> {
    decoder: ReadDecoder<R>,
    pixel_converter: PixelConverter,
    bg_color: Option<u8>,
    repeat: Repeat,
    current_frame: Frame<'static>,
    current_frame_data_type: FrameDataType,
}

impl<R> Decoder<R> where R: Read {
    /// Create a new decoder with default options.
    #[inline]
    pub fn new(reader: R) -> Result<Self, DecodingError> {
        DecodeOptions::new().read_info(reader)
    }

    /// Return a builder that allows configuring limits etc.
    #[must_use]
    #[inline]
    pub fn build() -> DecodeOptions {
        DecodeOptions::new()
    }

    fn with_no_init(reader: R, decoder: StreamingDecoder, options: DecodeOptions) -> Decoder<R> {
        Decoder {
            decoder: ReadDecoder {
                reader: io::BufReader::new(reader),
                decoder,
                at_eof: false,
            },
            bg_color: None,
            pixel_converter: PixelConverter::new(options.color_output, options.memory_limit),
            repeat: Repeat::default(),
            current_frame: Frame::default(),
            current_frame_data_type: FrameDataType::Pixels,
        }
    }

    fn init(mut self) -> Result<Self, DecodingError> {
        loop {
            match self.decoder.decode_next(&mut OutputBuffer::None)? {
                Some(Decoded::BackgroundColor(bg_color)) => {
                    self.bg_color = Some(bg_color);
                }
                Some(Decoded::GlobalPalette(palette)) => {
                    self.pixel_converter.set_global_palette(palette.into());
                },
                Some(Decoded::Repetitions(repeat)) => {
                    self.repeat = repeat;
                },
                Some(Decoded::HeaderEnd) => {
                    break
                },
                Some(_) => {
                    // There will be extra events when parsing application extension
                    continue
                },
                None => return Err(DecodingError::format(
                    "file does not contain any image data"
                ))
            }
        }
        // If the background color is invalid, ignore it
        if let Some(palette) = self.pixel_converter.global_palette() {
            if self.bg_color.unwrap_or(0) as usize >= (palette.len() / PLTE_CHANNELS) {
                self.bg_color = None;
            }
        }
        Ok(self)
    }

    /// Returns the next frame info
    pub fn next_frame_info(&mut self) -> Result<Option<&Frame<'static>>, DecodingError> {
        loop {
            match self.decoder.decode_next(&mut OutputBuffer::None)? {
                Some(Decoded::FrameMetadata(frame_data_type)) => {
                    self.current_frame = self.decoder.decoder.current_frame_mut().take();
                    self.current_frame_data_type = frame_data_type;
                    if self.current_frame.palette.is_none() && self.global_palette().is_none() {
                        return Err(DecodingError::format(
                            "no color table available for current frame",
                        ));
                    }
                    break;
                }
                Some(_) => (),
                None => return Ok(None),
            }
        }
        Ok(Some(&self.current_frame))
    }

    /// Reads the next frame from the image.
    ///
    /// Do not call `Self::next_frame_info` beforehand.
    /// Deinterlaces the result.
    ///
    /// You can also call `.into_iter()` on the decoder to use it as a regular iterator.
    pub fn read_next_frame(&mut self) -> Result<Option<&Frame<'static>>, DecodingError> {
        if let Some(_) = self.next_frame_info()? {
            match self.current_frame_data_type {
                FrameDataType::Pixels => {
                    self.pixel_converter.read_frame(&mut self.current_frame, &mut |out| self.decoder.decode_next_bytes(out))?;
                },
                FrameDataType::Lzw { min_code_size } => {
                    let mut vec = if matches!(self.current_frame.buffer, Cow::Owned(_)) {
                        let mut vec = mem::replace(&mut self.current_frame.buffer, Cow::Borrowed(&[])).into_owned();
                        vec.clear();
                        vec
                    } else {
                        Vec::new()
                    };
                    // Guesstimate 2bpp
                    vec.try_reserve(usize::from(self.current_frame.width) * usize::from(self.current_frame.height) / 4)
                        .map_err(|_| io::Error::from(io::ErrorKind::OutOfMemory))?;
                    self.copy_lzw_into_buffer(min_code_size, &mut vec)?;
                    self.current_frame.buffer = Cow::Owned(vec);
                },
            }
            Ok(Some(&self.current_frame))
        } else {
            Ok(None)
        }
    }

    /// This is private for iterator's use
    fn take_current_frame(&mut self) -> Option<Frame<'static>> {
        if self.current_frame.buffer.is_empty() {
            return None;
        }
        Some(self.current_frame.take())
    }

    /// Reads the data of the current frame into a pre-allocated buffer.
    ///
    /// `Self::next_frame_info` needs to be called beforehand.
    /// The length of `buf` must be at least `Self::buffer_size`.
    /// Deinterlaces the result.
    pub fn read_into_buffer(&mut self, buf: &mut [u8]) -> Result<(), DecodingError> {
        self.pixel_converter.read_into_buffer(&mut self.current_frame, buf, &mut |out| self.decoder.decode_next_bytes(out))
    }

    fn copy_lzw_into_buffer(&mut self, min_code_size: u8, buf: &mut Vec<u8>) -> Result<(), DecodingError> {
        // `write_lzw_pre_encoded_frame` smuggles `min_code_size` in the first byte.
        buf.push(min_code_size);
        loop {
            match self.decoder.decode_next(&mut OutputBuffer::Vec(buf))? {
                Some(Decoded::LzwDataCopied(_len)) => {},
                Some(Decoded::DataEnd) => return Ok(()),
                _ => return Err(DecodingError::format("unexpected data")),
            }
        }
    }

    /// Reads data of the current frame into a pre-allocated buffer until the buffer has been
    /// filled completely.
    ///
    /// The buffer length must be an even number of pixels (multiple of 4 if decoding RGBA).
    ///
    /// `Self::next_frame_info` needs to be called beforehand. Returns `true` if the supplied
    /// buffer could be filled completely. Should not be called after `false` had been returned.
    pub fn fill_buffer(&mut self, buf: &mut [u8]) -> Result<bool, DecodingError> {
        self.pixel_converter.fill_buffer(&mut self.current_frame, buf, &mut |out| self.decoder.decode_next_bytes(out))
    }

    /// Output buffer size
    pub fn buffer_size(&self) -> usize {
        self.pixel_converter.buffer_size(&self.current_frame).unwrap()
    }

    /// Line length of the current frame
    pub fn line_length(&self) -> usize {
        self.pixel_converter.line_length(&self.current_frame)
    }

    /// Returns the color palette relevant for the frame that has been decoded
    #[inline]
    pub fn palette(&self) -> Result<&[u8], DecodingError> {
        Ok(match self.current_frame.palette {
            Some(ref table) => table,
            None => self.global_palette().ok_or(DecodingError::format(
                "no color table available for current frame",
            ))?,
        })
    }

    /// The global color palette
    pub fn global_palette(&self) -> Option<&[u8]> {
        self.pixel_converter.global_palette()
    }

    /// Width of the image
    #[inline]
    pub fn width(&self) -> u16 {
        self.decoder.decoder.width()
    }

    /// Height of the image
    #[inline]
    pub fn height(&self) -> u16 {
        self.decoder.decoder.height()
    }

    /// Abort decoding and recover the `io::Read` instance
    pub fn into_inner(self) -> io::BufReader<R> {
        self.decoder.into_inner()
    }

    /// Index of the background color in the global palette
    ///
    /// In practice this is not used, and the background is
    /// always transparent
    pub fn bg_color(&self) -> Option<usize> {
        self.bg_color.map(|v| v as usize)
    }

    /// Number of loop repetitions
    #[inline]
    pub fn repeat(&self) -> Repeat {
        self.repeat
    }
}

impl<R: Read> IntoIterator for Decoder<R> {
    type Item = Result<Frame<'static>, DecodingError>;
    type IntoIter = DecoderIter<R>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        DecoderIter {
            inner: self,
            ended: false,
        }
    }
}

/// Use `decoder.into_iter()` to iterate over the frames
pub struct DecoderIter<R: Read> {
    inner: Decoder<R>,
    ended: bool,
}

impl<R: Read> DecoderIter<R> {
    /// Abort decoding and recover the `io::Read` instance
    ///
    /// Use `for frame in iter.by_ref()` to be able to call this afterwards.
    pub fn into_inner(self) -> io::BufReader<R> {
        self.inner.into_inner()
    }
}

impl<R: Read> FusedIterator for DecoderIter<R> {}

impl<R: Read> Iterator for DecoderIter<R> {
    type Item = Result<Frame<'static>, DecodingError>;

    fn next(&mut self) -> Option<Self::Item> {
        if !self.ended {
            match self.inner.read_next_frame() {
                Ok(Some(_)) => self.inner.take_current_frame().map(Ok),
                Ok(None) => {
                    self.ended = true;
                    None
                },
                Err(err) => {
                    self.ended = true;
                    Some(Err(err))
                },
            }
        } else {
            None
        }
    }
}