1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
// This is a simple path stroker. It flattens the path and strokes each segment individually.
// For a recent survey of stroking approaches see "Converting stroked primitives to filled primitives" by Diego Nehab
use crate::path_builder::{Path, PathBuilder, PathOp};
use crate::{Point, Vector};
#[derive(Clone, PartialEq, Debug)]
pub struct StrokeStyle {
pub width: f32,
pub cap: LineCap,
pub join: LineJoin,
pub miter_limit: f32,
pub dash_array: Vec<f32>,
pub dash_offset: f32,
}
impl Default for StrokeStyle {
fn default() -> Self {
StrokeStyle {
width: 1.,
cap: LineCap::Butt,
join: LineJoin::Miter,
miter_limit: 10.,
dash_array: Vec::new(),
dash_offset: 0.,
}
}
}
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum LineCap {
Round,
Square,
Butt,
}
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum LineJoin {
Round,
Miter,
Bevel,
}
fn compute_normal(p0: Point, p1: Point) -> Option<Vector> {
let ux = p1.x - p0.x;
let uy = p1.y - p0.y;
// this could overflow f32. Skia in SkPoint::Normalize used to
// checks for this and used a double in that situation, but was
// simplified to always use doubles.
let ulen = ux.hypot(uy);
if ulen == 0. {
return None;
}
// the normal is perpendicular to the *unit* vector
Some(Vector::new(-uy / ulen, ux / ulen))
}
fn flip(v: Vector) -> Vector {
Vector::new(-v.x, -v.y)
}
/* Compute a spline approximation of the arc
centered at xc, yc from the angle a to the angle b
The angle between a and b should not be more than a
quarter circle (pi/2)
The approximation is similar to an approximation given in:
"Approximation of a cubic bezier curve by circular arcs and vice versa"
by Alekas Riškus. However that approximation becomes unstable when the
angle of the arc approaches 0.
This approximation is inspired by a discussion with Boris Zbarsky
and essentially just computes:
h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0);
without converting to polar coordinates.
A different way to do this is covered in "Approximation of a cubic bezier
curve by circular arcs and vice versa" by Alekas Riškus. However, the method
presented there doesn't handle arcs with angles close to 0 because it
divides by the perp dot product of the two angle vectors.
*/
fn arc_segment(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) {
let r_sin_a = radius * a.y;
let r_cos_a = radius * a.x;
let r_sin_b = radius * b.y;
let r_cos_b = radius * b.x;
/* bisect the angle between 'a' and 'b' with 'mid' */
let mut mid = a + b;
mid /= mid.length();
/* bisect the angle between 'a' and 'mid' with 'mid2' this is parallel to a
* line with angle (B - A)/4 */
let mid2 = a + mid;
let h = (4. / 3.) * dot(perp(a), mid2) / dot(a, mid2);
path.cubic_to(
xc + r_cos_a - h * r_sin_a,
yc + r_sin_a + h * r_cos_a,
xc + r_cos_b + h * r_sin_b,
yc + r_sin_b - h * r_cos_b,
xc + r_cos_b,
yc + r_sin_b,
);
}
/* The angle between the vectors must be <= pi */
fn bisect(a: Vector, b: Vector) -> Vector {
let mut mid;
if dot(a, b) >= 0. {
/* if the angle between a and b is accute, then we can
* just add the vectors and normalize */
mid = a + b;
} else {
/* otherwise, we can flip a, add it
* and then use the perpendicular of the result */
mid = flip(a) + b;
mid = perp(mid);
}
/* normalize */
/* because we assume that 'a' and 'b' are normalized, we can use
* sqrt instead of hypot because the range of mid is limited */
let mid_len = mid.x * mid.x + mid.y * mid.y;
let len = mid_len.sqrt();
return mid / len;
}
fn arc(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) {
/* find a vector that bisects the angle between a and b */
let mid_v = bisect(a, b);
/* construct the arc using two curve segments */
arc_segment(path, xc, yc, radius, a, mid_v);
arc_segment(path, xc, yc, radius, mid_v, b);
}
fn join_round(path: &mut PathBuilder, center: Point, a: Vector, b: Vector, radius: f32) {
/*
int ccw = dot (perp (b), a) >= 0; // XXX: is this always true?
yes, otherwise we have an interior angle.
assert (ccw);
*/
arc(path, center.x, center.y, radius, a, b);
}
fn cap_line(dest: &mut PathBuilder, style: &StrokeStyle, pt: Point, normal: Vector) {
let offset = style.width / 2.;
match style.cap {
LineCap::Butt => { /* nothing to do */ }
LineCap::Round => {
dest.move_to(pt.x + normal.x * offset, pt.y + normal.y * offset);
arc(dest, pt.x, pt.y, offset, normal, flip(normal));
dest.line_to(pt.x, pt.y);
dest.close();
}
LineCap::Square => {
// parallel vector
let v = Vector::new(normal.y, -normal.x);
let end = pt + v * offset;
dest.move_to(pt.x + normal.x * offset, pt.y + normal.y * offset);
dest.line_to(end.x + normal.x * offset, end.y + normal.y * offset);
dest.line_to(end.x + -normal.x * offset, end.y + -normal.y * offset);
dest.line_to(pt.x - normal.x * offset, pt.y - normal.y * offset);
dest.line_to(pt.x, pt.y);
dest.close();
}
}
}
fn bevel(
dest: &mut PathBuilder,
style: &StrokeStyle,
pt: Point,
s1_normal: Vector,
s2_normal: Vector,
) {
let offset = style.width / 2.;
dest.move_to(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset);
dest.line_to(pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset);
dest.line_to(pt.x, pt.y);
dest.close();
}
/* given a normal rotate the vector 90 degrees to the right clockwise
* This function has a period of 4. e.g. swap(swap(swap(swap(x) == x */
fn swap(a: Vector) -> Vector {
/* one of these needs to be negative. We choose a.x so that we rotate to the right instead of negating */
Vector::new(a.y, -a.x)
}
fn unperp(a: Vector) -> Vector {
swap(a)
}
/* rotate a vector 90 degrees to the left */
fn perp(v: Vector) -> Vector {
Vector::new(-v.y, v.x)
}
fn dot(a: Vector, b: Vector) -> f32 {
a.x * b.x + a.y * b.y
}
/* Finds the intersection of two lines each defined by a point and a normal.
From "Example 2: Find the intersection of two lines" of
"The Pleasures of "Perp Dot" Products"
F. S. Hill, Jr. */
fn line_intersection(a: Point, a_perp: Vector, b: Point, b_perp: Vector) -> Option<Point> {
let a_parallel = unperp(a_perp);
let c = b - a;
let denom = dot(b_perp, a_parallel);
if denom == 0.0 {
return None;
}
let t = dot(b_perp, c) / denom;
let intersection = Point::new(a.x + t * (a_parallel.x), a.y + t * (a_parallel.y));
Some(intersection)
}
fn is_interior_angle(a: Vector, b: Vector) -> bool {
/* angles of 180 and 0 degrees will evaluate to 0, however
* we to treat 180 as an interior angle and 180 as an exterior angle */
dot(perp(a), b) > 0. || a == b /* 0 degrees is interior */
}
fn join_line(
dest: &mut PathBuilder,
style: &StrokeStyle,
pt: Point,
mut s1_normal: Vector,
mut s2_normal: Vector,
) {
if is_interior_angle(s1_normal, s2_normal) {
s2_normal = flip(s2_normal);
s1_normal = flip(s1_normal);
std::mem::swap(&mut s1_normal, &mut s2_normal);
}
// XXX: joining uses `pt` which can cause seams because it lies halfway on a line and the
// rasterizer may not find exactly the same spot
let offset = style.width / 2.;
match style.join {
LineJoin::Round => {
dest.move_to(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset);
join_round(dest, pt, s1_normal, s2_normal, offset);
dest.line_to(pt.x, pt.y);
dest.close();
}
LineJoin::Miter => {
let in_dot_out = -s1_normal.x * s2_normal.x + -s1_normal.y * s2_normal.y;
if 2. <= style.miter_limit * style.miter_limit * (1. - in_dot_out) {
let start = pt + s1_normal * offset;
let end = pt + s2_normal * offset;
if let Some(intersection) = line_intersection(start, s1_normal, end, s2_normal) {
// We won't have an intersection if the segments are parallel
dest.move_to(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset);
dest.line_to(intersection.x, intersection.y);
dest.line_to(pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset);
dest.line_to(pt.x, pt.y);
dest.close();
}
} else {
bevel(dest, style, pt, s1_normal, s2_normal);
}
}
LineJoin::Bevel => {
bevel(dest, style, pt, s1_normal, s2_normal);
}
}
}
pub fn stroke_to_path(path: &Path, style: &StrokeStyle) -> Path {
let mut stroked_path = PathBuilder::new();
if style.width <= 0. {
return stroked_path.finish();
}
let mut cur_pt = None;
let mut last_normal = Vector::zero();
let half_width = style.width / 2.;
let mut start_point = None;
for op in &path.ops {
match *op {
PathOp::MoveTo(pt) => {
if let (Some(cur_pt), Some((point, normal))) = (cur_pt, start_point) {
// cap end
cap_line(&mut stroked_path, style, cur_pt, last_normal);
// cap beginning
cap_line(&mut stroked_path, style, point, flip(normal));
}
start_point = None;
cur_pt = Some(pt);
}
PathOp::LineTo(pt) => {
if cur_pt.is_none() {
start_point = None;
} else if let Some(cur_pt) = cur_pt {
if let Some(normal) = compute_normal(cur_pt, pt) {
if start_point.is_none() {
start_point = Some((cur_pt, normal));
} else {
join_line(&mut stroked_path, style, cur_pt, last_normal, normal);
}
stroked_path.move_to(
cur_pt.x + normal.x * half_width,
cur_pt.y + normal.y * half_width,
);
stroked_path.line_to(pt.x + normal.x * half_width, pt.y + normal.y * half_width);
// we add a point at the midpoint of the line so that our edge has matching
// end points with the edges used for joining. This avoids seams during
// rasterization caused by precision differences in the slope and endpoints
stroked_path.line_to(pt.x, pt.y);
stroked_path.line_to(pt.x + -normal.x * half_width, pt.y + -normal.y * half_width);
stroked_path.line_to(
cur_pt.x - normal.x * half_width,
cur_pt.y - normal.y * half_width,
);
stroked_path.line_to(cur_pt.x, cur_pt.y);
stroked_path.close();
last_normal = normal;
}
}
cur_pt = Some(pt);
}
PathOp::Close => {
if let (Some(cur_pt), Some((end_point, start_normal))) = (cur_pt, start_point) {
if let Some(normal) = compute_normal(cur_pt, end_point) {
join_line(&mut stroked_path, style, cur_pt, last_normal, normal);
// the closing line segment
stroked_path.move_to(
cur_pt.x + normal.x * half_width,
cur_pt.y + normal.y * half_width,
);
stroked_path.line_to(
end_point.x + normal.x * half_width,
end_point.y + normal.y * half_width,
);
stroked_path.line_to(
end_point.x,
end_point.y,
);
stroked_path.line_to(
end_point.x + -normal.x * half_width,
end_point.y + -normal.y * half_width,
);
stroked_path.line_to(
cur_pt.x - normal.x * half_width,
cur_pt.y - normal.y * half_width,
);
stroked_path.line_to(
cur_pt.x,
cur_pt.y,
);
stroked_path.close();
join_line(&mut stroked_path, style, end_point, normal, start_normal);
} else {
join_line(&mut stroked_path, style, end_point, last_normal, start_normal);
}
}
cur_pt = start_point.map(|x| x.0);
start_point = None;
}
PathOp::QuadTo(..) => panic!("Only flat paths handled"),
PathOp::CubicTo(..) => panic!("Only flat paths handled"),
}
}
if let (Some(cur_pt), Some((point, normal))) = (cur_pt, start_point) {
// cap end
cap_line(&mut stroked_path, style, cur_pt, last_normal);
// cap beginning
cap_line(&mut stroked_path, style, point, flip(normal));
}
stroked_path.finish()
}