1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use crate::ule::*;
use crate::varzerovec::VarZeroVecFormat;
use crate::{VarZeroSlice, VarZeroVec, ZeroSlice, ZeroVec};
use alloc::borrow::{Cow, ToOwned};
use alloc::boxed::Box;
use alloc::string::String;
use alloc::{vec, vec::Vec};
use core::mem;

/// Allows types to be encoded as VarULEs. This is highly useful for implementing VarULE on
/// custom DSTs where the type cannot be obtained as a reference to some other type.
///
/// [`Self::encode_var_ule_as_slices()`] should be implemented by providing an encoded slice for each field
/// of the VarULE type to the callback, in order. For an implementation to be safe, the slices
/// to the callback must, when concatenated, be a valid instance of the VarULE type.
///
/// See the [custom VarULEdocumentation](crate::ule::custom) for examples.
///
/// [`Self::encode_var_ule_as_slices()`] is only used to provide default implementations for [`Self::encode_var_ule_write()`]
/// and [`Self::encode_var_ule_len()`]. If you override the default implementations it is totally valid to
/// replace [`Self::encode_var_ule_as_slices()`]'s body with `unreachable!()`. This can be done for cases where
/// it is not possible to implement [`Self::encode_var_ule_as_slices()`] but the other methods still work.
///
/// A typical implementation will take each field in the order found in the [`VarULE`] type,
/// convert it to ULE, call [`ULE::as_byte_slice()`] on them, and pass the slices to `cb` in order.
/// A trailing [`ZeroVec`](crate::ZeroVec) or [`VarZeroVec`](crate::VarZeroVec) can have their underlying
/// byte representation passed through.
///
/// In case the compiler is not optimizing [`Self::encode_var_ule_len()`], it can be overridden. A typical
/// implementation will add up the sizes of each field on the [`VarULE`] type and then add in the byte length of the
/// dynamically-sized part.
///
/// # Safety
///
/// The safety invariants of [`Self::encode_var_ule_as_slices()`] are:
/// - It must call `cb` (only once)
/// - The slices passed to `cb`, if concatenated, should be a valid instance of the `T` [`VarULE`] type
///   (i.e. if fed to [`VarULE::validate_byte_slice()`] they must produce a successful result)
/// - It must return the return value of `cb` to the caller
///
/// One or more of [`Self::encode_var_ule_len()`] and [`Self::encode_var_ule_write()`] may be provided.
/// If both are, then `zerovec` code is guaranteed to not call [`Self::encode_var_ule_as_slices()`], and it may be replaced
/// with `unreachable!()`.
///
/// The safety invariants of [`Self::encode_var_ule_len()`] are:
/// - It must return the length of the corresponding VarULE type
///
/// The safety invariants of [`Self::encode_var_ule_write()`] are:
/// - The slice written to `dst` must be a valid instance of the `T` [`VarULE`] type
pub unsafe trait EncodeAsVarULE<T: VarULE + ?Sized> {
    /// Calls `cb` with a piecewise list of byte slices that when concatenated
    /// produce the memory pattern of the corresponding instance of `T`.
    ///
    /// Do not call this function directly; instead use the other two. Some implementors
    /// may define this function to panic.
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R;

    /// Return the length, in bytes, of the corresponding [`VarULE`] type
    fn encode_var_ule_len(&self) -> usize {
        self.encode_var_ule_as_slices(|slices| slices.iter().map(|s| s.len()).sum())
    }

    /// Write the corresponding [`VarULE`] type to the `dst` buffer. `dst` should
    /// be the size of [`Self::encode_var_ule_len()`]
    fn encode_var_ule_write(&self, mut dst: &mut [u8]) {
        debug_assert_eq!(self.encode_var_ule_len(), dst.len());
        self.encode_var_ule_as_slices(move |slices| {
            #[allow(clippy::indexing_slicing)] // by debug_assert
            for slice in slices {
                dst[..slice.len()].copy_from_slice(slice);
                dst = &mut dst[slice.len()..];
            }
        });
    }
}

/// Given an [`EncodeAsVarULE`] type `S`, encode it into a `Box<T>`
///
/// This is primarily useful for generating `Deserialize` impls for VarULE types
pub fn encode_varule_to_box<S: EncodeAsVarULE<T>, T: VarULE + ?Sized>(x: &S) -> Box<T> {
    // zero-fill the vector to avoid uninitialized data UB
    let mut vec: Vec<u8> = vec![0; x.encode_var_ule_len()];
    x.encode_var_ule_write(&mut vec);
    let boxed = mem::ManuallyDrop::new(vec.into_boxed_slice());
    unsafe {
        // Safety: `ptr` is a box, and `T` is a VarULE which guarantees it has the same memory layout as `[u8]`
        // and can be recouped via from_byte_slice_unchecked()
        let ptr: *mut T = T::from_byte_slice_unchecked(&boxed) as *const T as *mut T;

        // Safety: we can construct an owned version since we have mem::forgotten the older owner
        Box::from_raw(ptr)
    }
}

unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for T {
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
        cb(&[T::as_byte_slice(self)])
    }
}

unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for &'_ T {
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
        cb(&[T::as_byte_slice(self)])
    }
}

unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Cow<'_, T>
where
    T: ToOwned,
{
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
        cb(&[T::as_byte_slice(self.as_ref())])
    }
}

unsafe impl<T: VarULE + ?Sized> EncodeAsVarULE<T> for Box<T> {
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
        cb(&[T::as_byte_slice(self)])
    }
}

unsafe impl EncodeAsVarULE<str> for String {
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
        cb(&[self.as_bytes()])
    }
}

// Note: This impl could technically use `T: AsULE`, but we want users to prefer `ZeroSlice<T>`
// for cases where T is not a ULE. Therefore, we can use the more efficient `memcpy` impl here.
unsafe impl<T> EncodeAsVarULE<[T]> for Vec<T>
where
    T: ULE,
{
    fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
        cb(&[<[T] as VarULE>::as_byte_slice(self)])
    }
}

unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for &'_ [T]
where
    T: AsULE + 'static,
{
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unreachable!()
    }

    #[inline]
    fn encode_var_ule_len(&self) -> usize {
        self.len() * core::mem::size_of::<T::ULE>()
    }

    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        #[allow(non_snake_case)]
        let S = core::mem::size_of::<T::ULE>();
        debug_assert_eq!(self.len() * S, dst.len());
        for (item, ref mut chunk) in self.iter().zip(dst.chunks_mut(S)) {
            let ule = item.to_unaligned();
            chunk.copy_from_slice(ULE::as_byte_slice(core::slice::from_ref(&ule)));
        }
    }
}

unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for Vec<T>
where
    T: AsULE + 'static,
{
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unreachable!()
    }

    #[inline]
    fn encode_var_ule_len(&self) -> usize {
        self.as_slice().encode_var_ule_len()
    }

    #[inline]
    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        self.as_slice().encode_var_ule_write(dst)
    }
}

unsafe impl<T> EncodeAsVarULE<ZeroSlice<T>> for ZeroVec<'_, T>
where
    T: AsULE + 'static,
{
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unreachable!()
    }

    #[inline]
    fn encode_var_ule_len(&self) -> usize {
        self.as_bytes().len()
    }

    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        debug_assert_eq!(self.as_bytes().len(), dst.len());
        dst.copy_from_slice(self.as_bytes());
    }
}

unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for &'_ [E]
where
    T: VarULE + ?Sized,
    E: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unimplemented!()
    }

    #[allow(clippy::unwrap_used)] // TODO(#1410): Rethink length errors in VZV.
    fn encode_var_ule_len(&self) -> usize {
        crate::varzerovec::components::compute_serializable_len::<T, E, F>(self).unwrap() as usize
    }

    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        crate::varzerovec::components::write_serializable_bytes::<T, E, F>(self, dst)
    }
}

unsafe impl<T, E, F> EncodeAsVarULE<VarZeroSlice<T, F>> for Vec<E>
where
    T: VarULE + ?Sized,
    E: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unreachable!()
    }

    #[inline]
    fn encode_var_ule_len(&self) -> usize {
        <_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_len(&self.as_slice())
    }

    #[inline]
    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        <_ as EncodeAsVarULE<VarZeroSlice<T, F>>>::encode_var_ule_write(&self.as_slice(), dst)
    }
}

unsafe impl<T, F> EncodeAsVarULE<VarZeroSlice<T, F>> for VarZeroVec<'_, T, F>
where
    T: VarULE + ?Sized,
    F: VarZeroVecFormat,
{
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unreachable!()
    }

    #[inline]
    fn encode_var_ule_len(&self) -> usize {
        self.as_bytes().len()
    }

    #[inline]
    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        debug_assert_eq!(self.as_bytes().len(), dst.len());
        dst.copy_from_slice(self.as_bytes());
    }
}

#[cfg(test)]
mod test {
    use super::*;

    const STRING_ARRAY: [&str; 2] = ["hello", "world"];

    const STRING_SLICE: &[&str] = &STRING_ARRAY;

    const U8_ARRAY: [u8; 8] = [0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07];

    const U8_2D_ARRAY: [&[u8]; 2] = [&U8_ARRAY, &U8_ARRAY];

    const U8_2D_SLICE: &[&[u8]] = &[&U8_ARRAY, &U8_ARRAY];

    const U8_3D_ARRAY: [&[&[u8]]; 2] = [U8_2D_SLICE, U8_2D_SLICE];

    const U8_3D_SLICE: &[&[&[u8]]] = &[U8_2D_SLICE, U8_2D_SLICE];

    const U32_ARRAY: [u32; 4] = [0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F];

    const U32_2D_ARRAY: [&[u32]; 2] = [&U32_ARRAY, &U32_ARRAY];

    const U32_2D_SLICE: &[&[u32]] = &[&U32_ARRAY, &U32_ARRAY];

    const U32_3D_ARRAY: [&[&[u32]]; 2] = [U32_2D_SLICE, U32_2D_SLICE];

    const U32_3D_SLICE: &[&[&[u32]]] = &[U32_2D_SLICE, U32_2D_SLICE];

    #[test]
    fn test_vzv_from() {
        type VZV<'a, T> = VarZeroVec<'a, T>;
        type ZS<T> = ZeroSlice<T>;
        type VZS<T> = VarZeroSlice<T>;

        let u8_zerovec: ZeroVec<u8> = ZeroVec::from_slice_or_alloc(&U8_ARRAY);
        let u8_2d_zerovec: [ZeroVec<u8>; 2] = [u8_zerovec.clone(), u8_zerovec.clone()];
        let u8_2d_vec: Vec<Vec<u8>> = vec![U8_ARRAY.into(), U8_ARRAY.into()];
        let u8_3d_vec: Vec<Vec<Vec<u8>>> = vec![u8_2d_vec.clone(), u8_2d_vec.clone()];

        let u32_zerovec: ZeroVec<u32> = ZeroVec::from_slice_or_alloc(&U32_ARRAY);
        let u32_2d_zerovec: [ZeroVec<u32>; 2] = [u32_zerovec.clone(), u32_zerovec.clone()];
        let u32_2d_vec: Vec<Vec<u32>> = vec![U32_ARRAY.into(), U32_ARRAY.into()];
        let u32_3d_vec: Vec<Vec<Vec<u32>>> = vec![u32_2d_vec.clone(), u32_2d_vec.clone()];

        let a: VZV<str> = VarZeroVec::from(&STRING_ARRAY);
        let b: VZV<str> = VarZeroVec::from(STRING_SLICE);
        let c: VZV<str> = VarZeroVec::from(&Vec::from(STRING_SLICE));
        assert_eq!(a, STRING_SLICE);
        assert_eq!(a, b);
        assert_eq!(a, c);

        let a: VZV<[u8]> = VarZeroVec::from(&U8_2D_ARRAY);
        let b: VZV<[u8]> = VarZeroVec::from(U8_2D_SLICE);
        let c: VZV<[u8]> = VarZeroVec::from(&u8_2d_vec);
        assert_eq!(a, U8_2D_SLICE);
        assert_eq!(a, b);
        assert_eq!(a, c);
        let u8_3d_vzv_brackets = &[a.clone(), a.clone()];

        let a: VZV<ZS<u8>> = VarZeroVec::from(&U8_2D_ARRAY);
        let b: VZV<ZS<u8>> = VarZeroVec::from(U8_2D_SLICE);
        let c: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_vec);
        let d: VZV<ZS<u8>> = VarZeroVec::from(&u8_2d_zerovec);
        assert_eq!(a, U8_2D_SLICE);
        assert_eq!(a, b);
        assert_eq!(a, c);
        assert_eq!(a, d);
        let u8_3d_vzv_zeroslice = &[a.clone(), a.clone()];

        let a: VZV<VZS<[u8]>> = VarZeroVec::from(&U8_3D_ARRAY);
        let b: VZV<VZS<[u8]>> = VarZeroVec::from(U8_3D_SLICE);
        let c: VZV<VZS<[u8]>> = VarZeroVec::from(&u8_3d_vec);
        let d: VZV<VZS<[u8]>> = VarZeroVec::from(u8_3d_vzv_brackets);
        assert_eq!(
            a.iter()
                .map(|x| x.iter().map(|y| y.to_vec()).collect::<Vec<Vec<u8>>>())
                .collect::<Vec<Vec<Vec<u8>>>>(),
            u8_3d_vec
        );
        assert_eq!(a, b);
        assert_eq!(a, c);
        assert_eq!(a, d);

        let a: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&U8_3D_ARRAY);
        let b: VZV<VZS<ZS<u8>>> = VarZeroVec::from(U8_3D_SLICE);
        let c: VZV<VZS<ZS<u8>>> = VarZeroVec::from(&u8_3d_vec);
        let d: VZV<VZS<ZS<u8>>> = VarZeroVec::from(u8_3d_vzv_zeroslice);
        assert_eq!(
            a.iter()
                .map(|x| x
                    .iter()
                    .map(|y| y.iter().collect::<Vec<u8>>())
                    .collect::<Vec<Vec<u8>>>())
                .collect::<Vec<Vec<Vec<u8>>>>(),
            u8_3d_vec
        );
        assert_eq!(a, b);
        assert_eq!(a, c);
        assert_eq!(a, d);

        let a: VZV<ZS<u32>> = VarZeroVec::from(&U32_2D_ARRAY);
        let b: VZV<ZS<u32>> = VarZeroVec::from(U32_2D_SLICE);
        let c: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_vec);
        let d: VZV<ZS<u32>> = VarZeroVec::from(&u32_2d_zerovec);
        assert_eq!(a, u32_2d_zerovec);
        assert_eq!(a, b);
        assert_eq!(a, c);
        assert_eq!(a, d);
        let u32_3d_vzv = &[a.clone(), a.clone()];

        let a: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&U32_3D_ARRAY);
        let b: VZV<VZS<ZS<u32>>> = VarZeroVec::from(U32_3D_SLICE);
        let c: VZV<VZS<ZS<u32>>> = VarZeroVec::from(&u32_3d_vec);
        let d: VZV<VZS<ZS<u32>>> = VarZeroVec::from(u32_3d_vzv);
        assert_eq!(
            a.iter()
                .map(|x| x
                    .iter()
                    .map(|y| y.iter().collect::<Vec<u32>>())
                    .collect::<Vec<Vec<u32>>>())
                .collect::<Vec<Vec<Vec<u32>>>>(),
            u32_3d_vec
        );
        assert_eq!(a, b);
        assert_eq!(a, c);
        assert_eq!(a, d);
    }
}