1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*

    TODO:
        Recycle GpuBuffers in a pool (support return from render thread)
        Efficiently allow writing to buffer (better push interface)
        Support other texel types (e.g. i32)

 */

use crate::gpu_types::UvRectKind;
use crate::renderer::MAX_VERTEX_TEXTURE_WIDTH;
use crate::util::ScaleOffset;
use api::units::{DeviceIntPoint, DeviceIntRect, DeviceIntSize, DeviceRect, LayoutRect, PictureRect};
use api::{PremultipliedColorF, ImageFormat};
use crate::device::Texel;
use crate::render_task_graph::{RenderTaskGraph, RenderTaskId};

pub struct GpuBufferBuilder {
    pub i32: GpuBufferBuilderI,
    pub f32: GpuBufferBuilderF,
}

pub type GpuBufferF = GpuBuffer<GpuBufferBlockF>;
pub type GpuBufferBuilderF = GpuBufferBuilderImpl<GpuBufferBlockF>;

pub type GpuBufferI = GpuBuffer<GpuBufferBlockI>;
pub type GpuBufferBuilderI = GpuBufferBuilderImpl<GpuBufferBlockI>;

unsafe impl Texel for GpuBufferBlockF {
    fn image_format() -> ImageFormat { ImageFormat::RGBAF32 }
}

unsafe impl Texel for GpuBufferBlockI {
    fn image_format() -> ImageFormat { ImageFormat::RGBAI32 }
}

impl Default for GpuBufferBlockF {
    fn default() -> Self {
        GpuBufferBlockF::EMPTY
    }
}

impl Default for GpuBufferBlockI {
    fn default() -> Self {
        GpuBufferBlockI::EMPTY
    }
}

/// A single texel in RGBAF32 texture - 16 bytes.
#[derive(Copy, Clone, Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBufferBlockF {
    data: [f32; 4],
}

/// A single texel in RGBAI32 texture - 16 bytes.
#[derive(Copy, Clone, Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBufferBlockI {
    data: [i32; 4],
}

#[derive(Copy, Debug, Clone, MallocSizeOf, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBufferAddress {
    pub u: u16,
    pub v: u16,
}

impl GpuBufferAddress {
    #[allow(dead_code)]
    pub fn as_int(self) -> i32 {
        // TODO(gw): Temporarily encode GPU Cache addresses as a single int.
        //           In the future, we can change the PrimitiveInstanceData struct
        //           to use 2x u16 for the vertex attribute instead of an i32.
        self.v as i32 * MAX_VERTEX_TEXTURE_WIDTH as i32 + self.u as i32
    }

    pub const INVALID: GpuBufferAddress = GpuBufferAddress { u: !0, v: !0 };
}

impl GpuBufferBlockF {
    pub const EMPTY: Self = GpuBufferBlockF { data: [0.0; 4] };
}

impl GpuBufferBlockI {
    pub const EMPTY: Self = GpuBufferBlockI { data: [0; 4] };
}

impl Into<GpuBufferBlockF> for LayoutRect {
    fn into(self) -> GpuBufferBlockF {
        GpuBufferBlockF {
            data: [
                self.min.x,
                self.min.y,
                self.max.x,
                self.max.y,
            ],
        }
    }
}

impl Into<GpuBufferBlockF> for ScaleOffset {
    fn into(self) -> GpuBufferBlockF {
        GpuBufferBlockF {
            data: [
                self.scale.x,
                self.scale.y,
                self.offset.x,
                self.offset.y,
            ],
        }
    }
}

impl Into<GpuBufferBlockF> for PictureRect {
    fn into(self) -> GpuBufferBlockF {
        GpuBufferBlockF {
            data: [
                self.min.x,
                self.min.y,
                self.max.x,
                self.max.y,
            ],
        }
    }
}

impl Into<GpuBufferBlockF> for DeviceRect {
    fn into(self) -> GpuBufferBlockF {
        GpuBufferBlockF {
            data: [
                self.min.x,
                self.min.y,
                self.max.x,
                self.max.y,
            ],
        }
    }
}

impl Into<GpuBufferBlockF> for PremultipliedColorF {
    fn into(self) -> GpuBufferBlockF {
        GpuBufferBlockF {
            data: [
                self.r,
                self.g,
                self.b,
                self.a,
            ],
        }
    }
}

impl From<DeviceIntRect> for GpuBufferBlockF {
    fn from(rect: DeviceIntRect) -> Self {
        GpuBufferBlockF {
            data: [
                rect.min.x as f32,
                rect.min.y as f32,
                rect.max.x as f32,
                rect.max.y as f32,
            ],
        }
    }
}

impl From<DeviceIntRect> for GpuBufferBlockI {
    fn from(rect: DeviceIntRect) -> Self {
        GpuBufferBlockI {
            data: [
                rect.min.x,
                rect.min.y,
                rect.max.x,
                rect.max.y,
            ],
        }
    }
}

impl Into<GpuBufferBlockF> for [f32; 4] {
    fn into(self) -> GpuBufferBlockF {
        GpuBufferBlockF {
            data: self,
        }
    }
}

impl Into<GpuBufferBlockI> for [i32; 4] {
    fn into(self) -> GpuBufferBlockI {
        GpuBufferBlockI {
            data: self,
        }
    }
}

/// Record a patch to the GPU buffer for a render task
struct DeferredBlock {
    task_id: RenderTaskId,
    index: usize,
}

/// Interface to allow writing multiple GPU blocks, possibly of different types
pub struct GpuBufferWriter<'a, T> {
    buffer: &'a mut Vec<T>,
    deferred: &'a mut Vec<DeferredBlock>,
    index: usize,
    block_count: usize,
}

impl<'a, T> GpuBufferWriter<'a, T> where T: Texel {
    fn new(
        buffer: &'a mut Vec<T>,
        deferred: &'a mut Vec<DeferredBlock>,
        index: usize,
        block_count: usize,
    ) -> Self {
        GpuBufferWriter {
            buffer,
            deferred,
            index,
            block_count,
        }
    }

    /// Push one (16 byte) block of data in to the writer
    pub fn push_one<B>(&mut self, block: B) where B: Into<T> {
        self.buffer.push(block.into());
    }

    /// Push a reference to a render task in to the writer. Once the render
    /// task graph is resolved, this will be patched with the UV rect of the task
    pub fn push_render_task(&mut self, task_id: RenderTaskId) {
        match task_id {
            RenderTaskId::INVALID => {
                self.buffer.push(T::default());
            }
            task_id => {
                self.deferred.push(DeferredBlock {
                    task_id,
                    index: self.buffer.len(),
                });
                self.buffer.push(T::default());
            }
        }
    }

    /// Close this writer, returning the GPU address of this set of block(s).
    pub fn finish(self) -> GpuBufferAddress {
        assert_eq!(self.buffer.len(), self.index + self.block_count);

        GpuBufferAddress {
            u: (self.index % MAX_VERTEX_TEXTURE_WIDTH) as u16,
            v: (self.index / MAX_VERTEX_TEXTURE_WIDTH) as u16,
        }
    }
}

impl<'a, T> Drop for GpuBufferWriter<'a, T> {
    fn drop(&mut self) {
        assert_eq!(self.buffer.len(), self.index + self.block_count, "Claimed block_count was not written");
    }
}

pub struct GpuBufferBuilderImpl<T> {
    data: Vec<T>,
    deferred: Vec<DeferredBlock>,
}

impl<T> GpuBufferBuilderImpl<T> where T: Texel + std::convert::From<DeviceIntRect> {
    pub fn new() -> Self {
        GpuBufferBuilderImpl {
            data: Vec::new(),
            deferred: Vec::new(),
        }
    }

    #[allow(dead_code)]
    pub fn push(
        &mut self,
        blocks: &[T],
    ) -> GpuBufferAddress {
        assert!(blocks.len() <= MAX_VERTEX_TEXTURE_WIDTH);

        if (self.data.len() % MAX_VERTEX_TEXTURE_WIDTH) + blocks.len() > MAX_VERTEX_TEXTURE_WIDTH {
            while self.data.len() % MAX_VERTEX_TEXTURE_WIDTH != 0 {
                self.data.push(T::default());
            }
        }

        let index = self.data.len();

        self.data.extend_from_slice(blocks);

        GpuBufferAddress {
            u: (index % MAX_VERTEX_TEXTURE_WIDTH) as u16,
            v: (index / MAX_VERTEX_TEXTURE_WIDTH) as u16,
        }
    }

    /// Begin writing a specific number of blocks
    pub fn write_blocks(
        &mut self,
        block_count: usize,
    ) -> GpuBufferWriter<T> {
        assert!(block_count <= MAX_VERTEX_TEXTURE_WIDTH);

        if (self.data.len() % MAX_VERTEX_TEXTURE_WIDTH) + block_count > MAX_VERTEX_TEXTURE_WIDTH {
            while self.data.len() % MAX_VERTEX_TEXTURE_WIDTH != 0 {
                self.data.push(T::default());
            }
        }

        let index = self.data.len();

        GpuBufferWriter::new(
            &mut self.data,
            &mut self.deferred,
            index,
            block_count,
        )
    }

    pub fn finalize(
        mut self,
        render_tasks: &RenderTaskGraph,
    ) -> GpuBuffer<T> {
        let required_len = (self.data.len() + MAX_VERTEX_TEXTURE_WIDTH-1) & !(MAX_VERTEX_TEXTURE_WIDTH-1);

        for _ in 0 .. required_len - self.data.len() {
            self.data.push(T::default());
        }

        let len = self.data.len();
        assert!(len % MAX_VERTEX_TEXTURE_WIDTH == 0);

        // At this point, we know that the render task graph has been built, and we can
        // query the location of any dynamic (render target) or static (texture cache)
        // task. This allows us to patch the UV rects in to the GPU buffer before upload
        // to the GPU.
        for block in self.deferred.drain(..) {
            let render_task = &render_tasks[block.task_id];
            let target_rect = render_task.get_target_rect();

            let uv_rect = match render_task.uv_rect_kind() {
                UvRectKind::Rect => {
                    target_rect
                }
                UvRectKind::Quad { top_left, bottom_right, .. } => {
                    let size = target_rect.size();

                    DeviceIntRect::new(
                        DeviceIntPoint::new(
                            target_rect.min.x + (top_left.x * size.width as f32).round() as i32,
                            target_rect.min.y + (top_left.y * size.width as f32).round() as i32,
                        ),
                        DeviceIntPoint::new(
                            target_rect.min.x + (bottom_right.x * size.width as f32).round() as i32,
                            target_rect.min.y + (bottom_right.x * size.width as f32).round() as i32,
                        ),
                    )
                }
            };

            self.data[block.index] = uv_rect.into();
        }

        GpuBuffer {
            data: self.data,
            size: DeviceIntSize::new(MAX_VERTEX_TEXTURE_WIDTH as i32, (len / MAX_VERTEX_TEXTURE_WIDTH) as i32),
            format: T::image_format(),
        }
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct GpuBuffer<T> {
    pub data: Vec<T>,
    pub size: DeviceIntSize,
    pub format: ImageFormat,
}

impl<T> GpuBuffer<T> {
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }
}


#[test]
fn test_gpu_buffer_sizing_push() {
    let render_task_graph = RenderTaskGraph::new_for_testing();
    let mut builder = GpuBufferBuilderF::new();

    let row = vec![GpuBufferBlockF::EMPTY; MAX_VERTEX_TEXTURE_WIDTH];
    builder.push(&row);

    builder.push(&[GpuBufferBlockF::EMPTY]);
    builder.push(&[GpuBufferBlockF::EMPTY]);

    let buffer = builder.finalize(&render_task_graph);
    assert_eq!(buffer.data.len(), MAX_VERTEX_TEXTURE_WIDTH * 2);
}

#[test]
fn test_gpu_buffer_sizing_writer() {
    let render_task_graph = RenderTaskGraph::new_for_testing();
    let mut builder = GpuBufferBuilderF::new();

    let mut writer = builder.write_blocks(MAX_VERTEX_TEXTURE_WIDTH);
    for _ in 0 .. MAX_VERTEX_TEXTURE_WIDTH {
        writer.push_one(GpuBufferBlockF::EMPTY);
    }
    writer.finish();

    let mut writer = builder.write_blocks(1);
    writer.push_one(GpuBufferBlockF::EMPTY);
    writer.finish();

    let mut writer = builder.write_blocks(1);
    writer.push_one(GpuBufferBlockF::EMPTY);
    writer.finish();

    let buffer = builder.finalize(&render_task_graph);
    assert_eq!(buffer.data.len(), MAX_VERTEX_TEXTURE_WIDTH * 2);
}