servo_arc/
lib.rs

1// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Fork of Arc for Servo. This has the following advantages over std::sync::Arc:
12//!
13//! * We don't waste storage on the weak reference count.
14//! * We don't do extra RMU operations to handle the possibility of weak references.
15//! * We can experiment with arena allocation (todo).
16//! * We can add methods to support our custom use cases [1].
17//! * We have support for dynamically-sized types (see from_header_and_iter).
18//! * We have support for thin arcs to unsized types (see ThinArc).
19//! * We have support for references to static data, which don't do any
20//!   refcounting.
21//!
22//! [1]: https://bugzilla.mozilla.org/show_bug.cgi?id=1360883
23
24// The semantics of `Arc` are already documented in the Rust docs, so we don't
25// duplicate those here.
26#![allow(missing_docs)]
27
28#[cfg(feature = "servo")]
29use serde::{Deserialize, Serialize};
30use stable_deref_trait::{CloneStableDeref, StableDeref};
31use std::alloc::{self, Layout};
32use std::borrow;
33use std::cmp::Ordering;
34use std::fmt;
35use std::hash::{Hash, Hasher};
36use std::marker::PhantomData;
37use std::mem::{self, align_of, size_of};
38use std::ops::{Deref, DerefMut};
39use std::os::raw::c_void;
40use std::process;
41use std::ptr;
42use std::sync::atomic;
43use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};
44use std::{isize, usize};
45
46/// A soft limit on the amount of references that may be made to an `Arc`.
47///
48/// Going above this limit will abort your program (although not
49/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
50const MAX_REFCOUNT: usize = (isize::MAX) as usize;
51
52/// Special refcount value that means the data is not reference counted,
53/// and that the `Arc` is really acting as a read-only static reference.
54const STATIC_REFCOUNT: usize = usize::MAX;
55
56/// An atomically reference counted shared pointer
57///
58/// See the documentation for [`Arc`] in the standard library. Unlike the
59/// standard library `Arc`, this `Arc` does not support weak reference counting.
60///
61/// See the discussion in https://github.com/rust-lang/rust/pull/60594 for the
62/// usage of PhantomData.
63///
64/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
65///
66/// cbindgen:derive-eq=false
67/// cbindgen:derive-neq=false
68#[repr(C)]
69pub struct Arc<T: ?Sized> {
70    p: ptr::NonNull<ArcInner<T>>,
71    phantom: PhantomData<T>,
72}
73
74/// An `Arc` that is known to be uniquely owned
75///
76/// When `Arc`s are constructed, they are known to be
77/// uniquely owned. In such a case it is safe to mutate
78/// the contents of the `Arc`. Normally, one would just handle
79/// this by mutating the data on the stack before allocating the
80/// `Arc`, however it's possible the data is large or unsized
81/// and you need to heap-allocate it earlier in such a way
82/// that it can be freely converted into a regular `Arc` once you're
83/// done.
84///
85/// `UniqueArc` exists for this purpose, when constructed it performs
86/// the same allocations necessary for an `Arc`, however it allows mutable access.
87/// Once the mutation is finished, you can call `.shareable()` and get a regular `Arc`
88/// out of it.
89///
90/// Ignore the doctest below there's no way to skip building with refcount
91/// logging during doc tests (see rust-lang/rust#45599).
92///
93/// ```rust,ignore
94/// # use servo_arc::UniqueArc;
95/// let data = [1, 2, 3, 4, 5];
96/// let mut x = UniqueArc::new(data);
97/// x[4] = 7; // mutate!
98/// let y = x.shareable(); // y is an Arc<T>
99/// ```
100pub struct UniqueArc<T: ?Sized>(Arc<T>);
101
102impl<T> UniqueArc<T> {
103    #[inline]
104    /// Construct a new UniqueArc
105    pub fn new(data: T) -> Self {
106        UniqueArc(Arc::new(data))
107    }
108
109    /// Construct an uninitialized arc
110    #[inline]
111    pub fn new_uninit() -> UniqueArc<mem::MaybeUninit<T>> {
112        unsafe {
113            let layout = Layout::new::<ArcInner<mem::MaybeUninit<T>>>();
114            let ptr = alloc::alloc(layout);
115            let mut p = ptr::NonNull::new(ptr)
116                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
117                .cast::<ArcInner<mem::MaybeUninit<T>>>();
118            ptr::write(&mut p.as_mut().count, atomic::AtomicUsize::new(1));
119            #[cfg(feature = "track_alloc_size")]
120            ptr::write(&mut p.as_mut().alloc_size, layout.size());
121
122            #[cfg(feature = "gecko_refcount_logging")]
123            {
124                NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
125            }
126
127            UniqueArc(Arc {
128                p,
129                phantom: PhantomData,
130            })
131        }
132    }
133
134    #[inline]
135    /// Convert to a shareable Arc<T> once we're done mutating it
136    pub fn shareable(self) -> Arc<T> {
137        self.0
138    }
139}
140
141impl<T> UniqueArc<mem::MaybeUninit<T>> {
142    /// Convert to an initialized Arc.
143    #[inline]
144    pub unsafe fn assume_init(this: Self) -> UniqueArc<T> {
145        UniqueArc(Arc {
146            p: mem::ManuallyDrop::new(this).0.p.cast(),
147            phantom: PhantomData,
148        })
149    }
150}
151
152impl<T> Deref for UniqueArc<T> {
153    type Target = T;
154    fn deref(&self) -> &T {
155        &*self.0
156    }
157}
158
159impl<T> DerefMut for UniqueArc<T> {
160    fn deref_mut(&mut self) -> &mut T {
161        // We know this to be uniquely owned
162        unsafe { &mut (*self.0.ptr()).data }
163    }
164}
165
166unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
167unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
168
169/// The object allocated by an Arc<T>
170///
171/// See https://github.com/mozilla/cbindgen/issues/937 for the derive-{eq,neq}=false. But we don't
172/// use those anyways so we can just disable them.
173/// cbindgen:derive-eq=false
174/// cbindgen:derive-neq=false
175#[repr(C)]
176struct ArcInner<T: ?Sized> {
177    count: atomic::AtomicUsize,
178    // NOTE(emilio): This needs to be here so that HeaderSlice<> is deallocated properly if the
179    // allocator relies on getting the right Layout. We don't need to track the right alignment,
180    // since we know that statically.
181    //
182    // This member could be completely avoided once min_specialization feature is stable (by
183    // implementing a trait for HeaderSlice that gives you the right layout). For now, servo-only
184    // since Gecko doesn't need it (its allocator doesn't need the size for the alignments we care
185    // about). See https://github.com/rust-lang/rust/issues/31844.
186    #[cfg(feature = "track_alloc_size")]
187    alloc_size: usize,
188    data: T,
189}
190
191unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
192unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
193
194/// Computes the offset of the data field within ArcInner.
195fn data_offset<T>() -> usize {
196    let size = size_of::<ArcInner<()>>();
197    let align = align_of::<T>();
198    // https://github.com/rust-lang/rust/blob/1.36.0/src/libcore/alloc.rs#L187-L207
199    size.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1)
200}
201
202impl<T> Arc<T> {
203    /// Construct an `Arc<T>`
204    #[inline]
205    pub fn new(data: T) -> Self {
206        let layout = Layout::new::<ArcInner<T>>();
207        let p = unsafe {
208            let ptr = ptr::NonNull::new(alloc::alloc(layout))
209                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
210                .cast::<ArcInner<T>>();
211            ptr::write(
212                ptr.as_ptr(),
213                ArcInner {
214                    count: atomic::AtomicUsize::new(1),
215                    #[cfg(feature = "track_alloc_size")]
216                    alloc_size: layout.size(),
217                    data,
218                },
219            );
220            ptr
221        };
222
223        #[cfg(feature = "gecko_refcount_logging")]
224        unsafe {
225            // FIXME(emilio): Would be so amazing to have
226            // std::intrinsics::type_name() around, so that we could also report
227            // a real size.
228            NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
229        }
230
231        Arc {
232            p,
233            phantom: PhantomData,
234        }
235    }
236
237    /// Construct an intentionally-leaked arc.
238    #[inline]
239    pub fn new_leaked(data: T) -> Self {
240        let arc = Self::new(data);
241        arc.mark_as_intentionally_leaked();
242        arc
243    }
244
245    /// Convert the Arc<T> to a raw pointer, suitable for use across FFI
246    ///
247    /// Note: This returns a pointer to the data T, which is offset in the allocation.
248    #[inline]
249    pub fn into_raw(this: Self) -> *const T {
250        let ptr = unsafe { &((*this.ptr()).data) as *const _ };
251        mem::forget(this);
252        ptr
253    }
254
255    /// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
256    ///
257    /// Note: This raw pointer will be offset in the allocation and must be preceded
258    /// by the atomic count.
259    #[inline]
260    pub unsafe fn from_raw(ptr: *const T) -> Self {
261        // To find the corresponding pointer to the `ArcInner` we need
262        // to subtract the offset of the `data` field from the pointer.
263        let ptr = (ptr as *const u8).sub(data_offset::<T>());
264        Arc {
265            p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>),
266            phantom: PhantomData,
267        }
268    }
269
270    /// Like from_raw, but returns an addrefed arc instead.
271    #[inline]
272    pub unsafe fn from_raw_addrefed(ptr: *const T) -> Self {
273        let arc = Self::from_raw(ptr);
274        mem::forget(arc.clone());
275        arc
276    }
277
278    /// Create a new static Arc<T> (one that won't reference count the object)
279    /// and place it in the allocation provided by the specified `alloc`
280    /// function.
281    ///
282    /// `alloc` must return a pointer into a static allocation suitable for
283    /// storing data with the `Layout` passed into it. The pointer returned by
284    /// `alloc` will not be freed.
285    #[inline]
286    pub unsafe fn new_static<F>(alloc: F, data: T) -> Arc<T>
287    where
288        F: FnOnce(Layout) -> *mut u8,
289    {
290        let layout = Layout::new::<ArcInner<T>>();
291        let ptr = alloc(layout) as *mut ArcInner<T>;
292
293        let x = ArcInner {
294            count: atomic::AtomicUsize::new(STATIC_REFCOUNT),
295            #[cfg(feature = "track_alloc_size")]
296            alloc_size: layout.size(),
297            data,
298        };
299
300        ptr::write(ptr, x);
301
302        Arc {
303            p: ptr::NonNull::new_unchecked(ptr),
304            phantom: PhantomData,
305        }
306    }
307
308    /// Produce a pointer to the data that can be converted back
309    /// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
310    /// It has the benefits of an `&T` but also knows about the underlying refcount
311    /// and can be converted into more `Arc<T>`s if necessary.
312    #[inline]
313    pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
314        ArcBorrow(&**self)
315    }
316
317    /// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
318    /// reporting.
319    ///
320    /// If this is a static reference, this returns null.
321    pub fn heap_ptr(&self) -> *const c_void {
322        if self.inner().count.load(Relaxed) == STATIC_REFCOUNT {
323            ptr::null()
324        } else {
325            self.p.as_ptr() as *const ArcInner<T> as *const c_void
326        }
327    }
328}
329
330impl<T: ?Sized> Arc<T> {
331    #[inline]
332    fn inner(&self) -> &ArcInner<T> {
333        // This unsafety is ok because while this arc is alive we're guaranteed
334        // that the inner pointer is valid. Furthermore, we know that the
335        // `ArcInner` structure itself is `Sync` because the inner data is
336        // `Sync` as well, so we're ok loaning out an immutable pointer to these
337        // contents.
338        unsafe { &*self.ptr() }
339    }
340
341    #[inline(always)]
342    fn record_drop(&self) {
343        #[cfg(feature = "gecko_refcount_logging")]
344        unsafe {
345            NS_LogDtor(self.ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
346        }
347    }
348
349    /// Marks this `Arc` as intentionally leaked for the purposes of refcount
350    /// logging.
351    ///
352    /// It's a logic error to call this more than once, but it's not unsafe, as
353    /// it'd just report negative leaks.
354    #[inline(always)]
355    pub fn mark_as_intentionally_leaked(&self) {
356        self.record_drop();
357    }
358
359    // Non-inlined part of `drop`. Just invokes the destructor and calls the
360    // refcount logging machinery if enabled.
361    #[inline(never)]
362    unsafe fn drop_slow(&mut self) {
363        self.record_drop();
364        let inner = self.ptr();
365
366        let layout = Layout::for_value(&*inner);
367        #[cfg(feature = "track_alloc_size")]
368        let layout = Layout::from_size_align_unchecked((*inner).alloc_size, layout.align());
369
370        std::ptr::drop_in_place(inner);
371        alloc::dealloc(inner as *mut _, layout);
372    }
373
374    /// Test pointer equality between the two Arcs, i.e. they must be the _same_
375    /// allocation
376    #[inline]
377    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
378        this.raw_ptr() == other.raw_ptr()
379    }
380
381    fn ptr(&self) -> *mut ArcInner<T> {
382        self.p.as_ptr()
383    }
384
385    /// Returns a raw ptr to the underlying allocation.
386    pub fn raw_ptr(&self) -> ptr::NonNull<()> {
387        self.p.cast()
388    }
389}
390
391#[cfg(feature = "gecko_refcount_logging")]
392extern "C" {
393    fn NS_LogCtor(
394        aPtr: *mut std::os::raw::c_void,
395        aTypeName: *const std::os::raw::c_char,
396        aSize: u32,
397    );
398    fn NS_LogDtor(
399        aPtr: *mut std::os::raw::c_void,
400        aTypeName: *const std::os::raw::c_char,
401        aSize: u32,
402    );
403}
404
405impl<T: ?Sized> Clone for Arc<T> {
406    #[inline]
407    fn clone(&self) -> Self {
408        // NOTE(emilio): If you change anything here, make sure that the
409        // implementation in layout/style/ServoStyleConstsInlines.h matches!
410        //
411        // Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
412        // `count` never changes between STATIC_REFCOUNT and other values.
413        if self.inner().count.load(Relaxed) != STATIC_REFCOUNT {
414            // Using a relaxed ordering is alright here, as knowledge of the
415            // original reference prevents other threads from erroneously deleting
416            // the object.
417            //
418            // As explained in the [Boost documentation][1], Increasing the
419            // reference counter can always be done with memory_order_relaxed: New
420            // references to an object can only be formed from an existing
421            // reference, and passing an existing reference from one thread to
422            // another must already provide any required synchronization.
423            //
424            // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
425            let old_size = self.inner().count.fetch_add(1, Relaxed);
426
427            // However we need to guard against massive refcounts in case someone
428            // is `mem::forget`ing Arcs. If we don't do this the count can overflow
429            // and users will use-after free. We racily saturate to `isize::MAX` on
430            // the assumption that there aren't ~2 billion threads incrementing
431            // the reference count at once. This branch will never be taken in
432            // any realistic program.
433            //
434            // We abort because such a program is incredibly degenerate, and we
435            // don't care to support it.
436            if old_size > MAX_REFCOUNT {
437                process::abort();
438            }
439        }
440
441        unsafe {
442            Arc {
443                p: ptr::NonNull::new_unchecked(self.ptr()),
444                phantom: PhantomData,
445            }
446        }
447    }
448}
449
450impl<T: ?Sized> Deref for Arc<T> {
451    type Target = T;
452
453    #[inline]
454    fn deref(&self) -> &T {
455        &self.inner().data
456    }
457}
458
459impl<T: Clone> Arc<T> {
460    /// Makes a mutable reference to the `Arc`, cloning if necessary
461    ///
462    /// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
463    ///
464    /// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
465    /// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
466    /// with a copy of the contents, update `this` to point to it, and provide
467    /// a mutable reference to its contents.
468    ///
469    /// This is useful for implementing copy-on-write schemes where you wish to
470    /// avoid copying things if your `Arc` is not shared.
471    ///
472    /// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
473    #[inline]
474    pub fn make_mut(this: &mut Self) -> &mut T {
475        if !this.is_unique() {
476            // Another pointer exists; clone
477            *this = Arc::new((**this).clone());
478        }
479
480        unsafe {
481            // This unsafety is ok because we're guaranteed that the pointer
482            // returned is the *only* pointer that will ever be returned to T. Our
483            // reference count is guaranteed to be 1 at this point, and we required
484            // the Arc itself to be `mut`, so we're returning the only possible
485            // reference to the inner data.
486            &mut (*this.ptr()).data
487        }
488    }
489}
490
491impl<T: ?Sized> Arc<T> {
492    /// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
493    #[inline]
494    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
495        if this.is_unique() {
496            unsafe {
497                // See make_mut() for documentation of the threadsafety here.
498                Some(&mut (*this.ptr()).data)
499            }
500        } else {
501            None
502        }
503    }
504
505    /// Whether or not the `Arc` is a static reference.
506    #[inline]
507    pub fn is_static(&self) -> bool {
508        // Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
509        // `count` never changes between STATIC_REFCOUNT and other values.
510        self.inner().count.load(Relaxed) == STATIC_REFCOUNT
511    }
512
513    /// Whether or not the `Arc` is uniquely owned (is the refcount 1?) and not
514    /// a static reference.
515    #[inline]
516    pub fn is_unique(&self) -> bool {
517        // See the extensive discussion in [1] for why this needs to be Acquire.
518        //
519        // [1] https://github.com/servo/servo/issues/21186
520        self.inner().count.load(Acquire) == 1
521    }
522}
523
524impl<T: ?Sized> Drop for Arc<T> {
525    #[inline]
526    fn drop(&mut self) {
527        // NOTE(emilio): If you change anything here, make sure that the
528        // implementation in layout/style/ServoStyleConstsInlines.h matches!
529        if self.is_static() {
530            return;
531        }
532
533        // Because `fetch_sub` is already atomic, we do not need to synchronize
534        // with other threads unless we are going to delete the object.
535        if self.inner().count.fetch_sub(1, Release) != 1 {
536            return;
537        }
538
539        // FIXME(bholley): Use the updated comment when [2] is merged.
540        //
541        // This load is needed to prevent reordering of use of the data and
542        // deletion of the data.  Because it is marked `Release`, the decreasing
543        // of the reference count synchronizes with this `Acquire` load. This
544        // means that use of the data happens before decreasing the reference
545        // count, which happens before this load, which happens before the
546        // deletion of the data.
547        //
548        // As explained in the [Boost documentation][1],
549        //
550        // > It is important to enforce any possible access to the object in one
551        // > thread (through an existing reference) to *happen before* deleting
552        // > the object in a different thread. This is achieved by a "release"
553        // > operation after dropping a reference (any access to the object
554        // > through this reference must obviously happened before), and an
555        // > "acquire" operation before deleting the object.
556        //
557        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
558        // [2]: https://github.com/rust-lang/rust/pull/41714
559        self.inner().count.load(Acquire);
560
561        unsafe {
562            self.drop_slow();
563        }
564    }
565}
566
567impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
568    fn eq(&self, other: &Arc<T>) -> bool {
569        Self::ptr_eq(self, other) || *(*self) == *(*other)
570    }
571
572    fn ne(&self, other: &Arc<T>) -> bool {
573        !Self::ptr_eq(self, other) && *(*self) != *(*other)
574    }
575}
576
577impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
578    fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
579        (**self).partial_cmp(&**other)
580    }
581
582    fn lt(&self, other: &Arc<T>) -> bool {
583        *(*self) < *(*other)
584    }
585
586    fn le(&self, other: &Arc<T>) -> bool {
587        *(*self) <= *(*other)
588    }
589
590    fn gt(&self, other: &Arc<T>) -> bool {
591        *(*self) > *(*other)
592    }
593
594    fn ge(&self, other: &Arc<T>) -> bool {
595        *(*self) >= *(*other)
596    }
597}
598impl<T: ?Sized + Ord> Ord for Arc<T> {
599    fn cmp(&self, other: &Arc<T>) -> Ordering {
600        (**self).cmp(&**other)
601    }
602}
603impl<T: ?Sized + Eq> Eq for Arc<T> {}
604
605impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
606    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
607        fmt::Display::fmt(&**self, f)
608    }
609}
610
611impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
612    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
613        fmt::Debug::fmt(&**self, f)
614    }
615}
616
617impl<T: ?Sized> fmt::Pointer for Arc<T> {
618    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
619        fmt::Pointer::fmt(&self.ptr(), f)
620    }
621}
622
623impl<T: Default> Default for Arc<T> {
624    fn default() -> Arc<T> {
625        Arc::new(Default::default())
626    }
627}
628
629impl<T: ?Sized + Hash> Hash for Arc<T> {
630    fn hash<H: Hasher>(&self, state: &mut H) {
631        (**self).hash(state)
632    }
633}
634
635impl<T> From<T> for Arc<T> {
636    #[inline]
637    fn from(t: T) -> Self {
638        Arc::new(t)
639    }
640}
641
642impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
643    #[inline]
644    fn borrow(&self) -> &T {
645        &**self
646    }
647}
648
649impl<T: ?Sized> AsRef<T> for Arc<T> {
650    #[inline]
651    fn as_ref(&self) -> &T {
652        &**self
653    }
654}
655
656unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
657unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}
658
659#[cfg(feature = "servo")]
660impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
661    fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
662    where
663        D: ::serde::de::Deserializer<'de>,
664    {
665        T::deserialize(deserializer).map(Arc::new)
666    }
667}
668
669#[cfg(feature = "servo")]
670impl<T: Serialize> Serialize for Arc<T> {
671    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
672    where
673        S: ::serde::ser::Serializer,
674    {
675        (**self).serialize(serializer)
676    }
677}
678
679/// Structure to allow Arc-managing some fixed-sized data and a variably-sized
680/// slice in a single allocation.
681///
682/// cbindgen:derive-eq=false
683/// cbindgen:derive-neq=false
684#[derive(Eq)]
685#[repr(C)]
686pub struct HeaderSlice<H, T> {
687    /// The fixed-sized data.
688    pub header: H,
689
690    /// The length of the slice at our end.
691    len: usize,
692
693    /// The dynamically-sized data.
694    data: [T; 0],
695}
696
697impl<H: PartialEq, T: PartialEq> PartialEq for HeaderSlice<H, T> {
698    fn eq(&self, other: &Self) -> bool {
699        self.header == other.header && self.slice() == other.slice()
700    }
701}
702
703impl<H, T> Drop for HeaderSlice<H, T> {
704    fn drop(&mut self) {
705        unsafe {
706            let mut ptr = self.data_mut();
707            for _ in 0..self.len {
708                std::ptr::drop_in_place(ptr);
709                ptr = ptr.offset(1);
710            }
711        }
712    }
713}
714
715impl<H: fmt::Debug, T: fmt::Debug> fmt::Debug for HeaderSlice<H, T> {
716    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
717        f.debug_struct("HeaderSlice")
718            .field("header", &self.header)
719            .field("slice", &self.slice())
720            .finish()
721    }
722}
723
724impl<H, T> HeaderSlice<H, T> {
725    /// Returns the dynamically sized slice in this HeaderSlice.
726    #[inline(always)]
727    pub fn slice(&self) -> &[T] {
728        unsafe { std::slice::from_raw_parts(self.data(), self.len) }
729    }
730
731    #[inline(always)]
732    fn data(&self) -> *const T {
733        std::ptr::addr_of!(self.data) as *const _
734    }
735
736    #[inline(always)]
737    fn data_mut(&mut self) -> *mut T {
738        std::ptr::addr_of_mut!(self.data) as *mut _
739    }
740
741    /// Returns the dynamically sized slice in this HeaderSlice.
742    #[inline(always)]
743    pub fn slice_mut(&mut self) -> &mut [T] {
744        unsafe { std::slice::from_raw_parts_mut(self.data_mut(), self.len) }
745    }
746
747    /// Returns the len of the slice.
748    #[inline(always)]
749    pub fn len(&self) -> usize {
750        self.len
751    }
752}
753
754impl<H, T> Arc<HeaderSlice<H, T>> {
755    /// Creates an Arc for a HeaderSlice using the given header struct and
756    /// iterator to generate the slice.
757    ///
758    /// `is_static` indicates whether to create a static Arc.
759    ///
760    /// `alloc` is used to get a pointer to the memory into which the
761    /// dynamically sized ArcInner<HeaderSlice<H, T>> value will be
762    /// written.  If `is_static` is true, then `alloc` must return a
763    /// pointer into some static memory allocation.  If it is false,
764    /// then `alloc` must return an allocation that can be dellocated
765    /// by calling Box::from_raw::<ArcInner<HeaderSlice<H, T>>> on it.
766    #[inline]
767    pub fn from_header_and_iter_alloc<F, I>(
768        alloc: F,
769        header: H,
770        mut items: I,
771        num_items: usize,
772        is_static: bool,
773    ) -> Self
774    where
775        F: FnOnce(Layout) -> *mut u8,
776        I: Iterator<Item = T>,
777    {
778        assert_ne!(size_of::<T>(), 0, "Need to think about ZST");
779
780        let layout = Layout::new::<ArcInner<HeaderSlice<H, T>>>();
781        debug_assert!(layout.align() >= align_of::<T>());
782        debug_assert!(layout.align() >= align_of::<usize>());
783        let array_layout = Layout::array::<T>(num_items).expect("Overflow");
784        let (layout, _offset) = layout.extend(array_layout).expect("Overflow");
785        let p = unsafe {
786            // Allocate the buffer.
787            let buffer = alloc(layout);
788            let mut p = ptr::NonNull::new(buffer)
789                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
790                .cast::<ArcInner<HeaderSlice<H, T>>>();
791
792            // Write the data.
793            //
794            // Note that any panics here (i.e. from the iterator) are safe, since
795            // we'll just leak the uninitialized memory.
796            let count = if is_static {
797                atomic::AtomicUsize::new(STATIC_REFCOUNT)
798            } else {
799                atomic::AtomicUsize::new(1)
800            };
801            ptr::write(&mut p.as_mut().count, count);
802            #[cfg(feature = "track_alloc_size")]
803            ptr::write(&mut p.as_mut().alloc_size, layout.size());
804            ptr::write(&mut p.as_mut().data.header, header);
805            ptr::write(&mut p.as_mut().data.len, num_items);
806            if num_items != 0 {
807                let mut current = std::ptr::addr_of_mut!(p.as_mut().data.data) as *mut T;
808                for _ in 0..num_items {
809                    ptr::write(
810                        current,
811                        items
812                            .next()
813                            .expect("ExactSizeIterator over-reported length"),
814                    );
815                    current = current.offset(1);
816                }
817                // We should have consumed the buffer exactly, maybe accounting
818                // for some padding from the alignment.
819                debug_assert!(
820                    (buffer.add(layout.size()) as usize - current as *mut u8 as usize)
821                        < layout.align()
822                );
823            }
824            assert!(
825                items.next().is_none(),
826                "ExactSizeIterator under-reported length"
827            );
828            p
829        };
830        #[cfg(feature = "gecko_refcount_logging")]
831        unsafe {
832            if !is_static {
833                // FIXME(emilio): Would be so amazing to have
834                // std::intrinsics::type_name() around.
835                NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
836            }
837        }
838
839        // Return the fat Arc.
840        assert_eq!(
841            size_of::<Self>(),
842            size_of::<usize>(),
843            "The Arc should be thin"
844        );
845
846        Arc {
847            p,
848            phantom: PhantomData,
849        }
850    }
851
852    /// Creates an Arc for a HeaderSlice using the given header struct and iterator to generate the
853    /// slice. Panics if num_items doesn't match the number of items.
854    #[inline]
855    pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
856    where
857        I: Iterator<Item = T>,
858    {
859        Arc::from_header_and_iter_alloc(
860            |layout| unsafe { alloc::alloc(layout) },
861            header,
862            items,
863            num_items,
864            /* is_static = */ false,
865        )
866    }
867
868    /// Creates an Arc for a HeaderSlice using the given header struct and
869    /// iterator to generate the slice. The resulting Arc will be fat.
870    #[inline]
871    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
872    where
873        I: Iterator<Item = T> + ExactSizeIterator,
874    {
875        let len = items.len();
876        Self::from_header_and_iter_with_size(header, items, len)
877    }
878}
879
880/// This is functionally equivalent to Arc<(H, [T])>
881///
882/// When you create an `Arc` containing a dynamically sized type like a slice, the `Arc` is
883/// represented on the stack as a "fat pointer", where the length of the slice is stored alongside
884/// the `Arc`'s pointer. In some situations you may wish to have a thin pointer instead, perhaps
885/// for FFI compatibility or space efficiency. `ThinArc` solves this by storing the length in the
886/// allocation itself, via `HeaderSlice`.
887pub type ThinArc<H, T> = Arc<HeaderSlice<H, T>>;
888
889/// See `ArcUnion`. This is a version that works for `ThinArc`s.
890pub type ThinArcUnion<H1, T1, H2, T2> = ArcUnion<HeaderSlice<H1, T1>, HeaderSlice<H2, T2>>;
891
892impl<H, T> UniqueArc<HeaderSlice<H, T>> {
893    #[inline]
894    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
895    where
896        I: Iterator<Item = T> + ExactSizeIterator,
897    {
898        Self(Arc::from_header_and_iter(header, items))
899    }
900
901    #[inline]
902    pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
903    where
904        I: Iterator<Item = T>,
905    {
906        Self(Arc::from_header_and_iter_with_size(
907            header, items, num_items,
908        ))
909    }
910
911    /// Returns a mutable reference to the header.
912    pub fn header_mut(&mut self) -> &mut H {
913        // We know this to be uniquely owned
914        unsafe { &mut (*self.0.ptr()).data.header }
915    }
916
917    /// Returns a mutable reference to the slice.
918    pub fn data_mut(&mut self) -> &mut [T] {
919        // We know this to be uniquely owned
920        unsafe { (*self.0.ptr()).data.slice_mut() }
921    }
922}
923
924/// A "borrowed `Arc`". This is a pointer to
925/// a T that is known to have been allocated within an
926/// `Arc`.
927///
928/// This is equivalent in guarantees to `&Arc<T>`, however it is
929/// a bit more flexible. To obtain an `&Arc<T>` you must have
930/// an `Arc<T>` instance somewhere pinned down until we're done with it.
931/// It's also a direct pointer to `T`, so using this involves less pointer-chasing
932///
933/// However, C++ code may hand us refcounted things as pointers to T directly,
934/// so we have to conjure up a temporary `Arc` on the stack each time.
935///
936/// `ArcBorrow` lets us deal with borrows of known-refcounted objects
937/// without needing to worry about where the `Arc<T>` is.
938#[derive(Debug, Eq, PartialEq)]
939pub struct ArcBorrow<'a, T: 'a>(&'a T);
940
941impl<'a, T> Copy for ArcBorrow<'a, T> {}
942impl<'a, T> Clone for ArcBorrow<'a, T> {
943    #[inline]
944    fn clone(&self) -> Self {
945        *self
946    }
947}
948
949impl<'a, T> ArcBorrow<'a, T> {
950    /// Clone this as an `Arc<T>`. This bumps the refcount.
951    #[inline]
952    pub fn clone_arc(&self) -> Arc<T> {
953        let arc = unsafe { Arc::from_raw(self.0) };
954        // addref it!
955        mem::forget(arc.clone());
956        arc
957    }
958
959    /// For constructing from a reference known to be Arc-backed,
960    /// e.g. if we obtain such a reference over FFI
961    #[inline]
962    pub unsafe fn from_ref(r: &'a T) -> Self {
963        ArcBorrow(r)
964    }
965
966    /// Compare two `ArcBorrow`s via pointer equality. Will only return
967    /// true if they come from the same allocation
968    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
969        this.0 as *const T == other.0 as *const T
970    }
971
972    /// Temporarily converts |self| into a bonafide Arc and exposes it to the
973    /// provided callback. The refcount is not modified.
974    #[inline]
975    pub fn with_arc<F, U>(&self, f: F) -> U
976    where
977        F: FnOnce(&Arc<T>) -> U,
978        T: 'static,
979    {
980        // Synthesize transient Arc, which never touches the refcount.
981        let transient = unsafe { mem::ManuallyDrop::new(Arc::from_raw(self.0)) };
982
983        // Expose the transient Arc to the callback, which may clone it if it wants.
984        let result = f(&transient);
985
986        // Forward the result.
987        result
988    }
989
990    /// Similar to deref, but uses the lifetime |a| rather than the lifetime of
991    /// self, which is incompatible with the signature of the Deref trait.
992    #[inline]
993    pub fn get(&self) -> &'a T {
994        self.0
995    }
996}
997
998impl<'a, T> Deref for ArcBorrow<'a, T> {
999    type Target = T;
1000
1001    #[inline]
1002    fn deref(&self) -> &T {
1003        self.0
1004    }
1005}
1006
1007/// A tagged union that can represent `Arc<A>` or `Arc<B>` while only consuming a
1008/// single word. The type is also `NonNull`, and thus can be stored in an Option
1009/// without increasing size.
1010///
1011/// This is functionally equivalent to
1012/// `enum ArcUnion<A, B> { First(Arc<A>), Second(Arc<B>)` but only takes up
1013/// up a single word of stack space.
1014///
1015/// This could probably be extended to support four types if necessary.
1016pub struct ArcUnion<A, B> {
1017    p: ptr::NonNull<()>,
1018    phantom_a: PhantomData<A>,
1019    phantom_b: PhantomData<B>,
1020}
1021
1022unsafe impl<A: Sync + Send, B: Send + Sync> Send for ArcUnion<A, B> {}
1023unsafe impl<A: Sync + Send, B: Send + Sync> Sync for ArcUnion<A, B> {}
1024
1025impl<A: PartialEq, B: PartialEq> PartialEq for ArcUnion<A, B> {
1026    fn eq(&self, other: &Self) -> bool {
1027        use crate::ArcUnionBorrow::*;
1028        match (self.borrow(), other.borrow()) {
1029            (First(x), First(y)) => x == y,
1030            (Second(x), Second(y)) => x == y,
1031            (_, _) => false,
1032        }
1033    }
1034}
1035
1036impl<A: Eq, B: Eq> Eq for ArcUnion<A, B> {}
1037
1038/// This represents a borrow of an `ArcUnion`.
1039#[derive(Debug)]
1040pub enum ArcUnionBorrow<'a, A: 'a, B: 'a> {
1041    First(ArcBorrow<'a, A>),
1042    Second(ArcBorrow<'a, B>),
1043}
1044
1045impl<A, B> ArcUnion<A, B> {
1046    unsafe fn new(ptr: *mut ()) -> Self {
1047        ArcUnion {
1048            p: ptr::NonNull::new_unchecked(ptr),
1049            phantom_a: PhantomData,
1050            phantom_b: PhantomData,
1051        }
1052    }
1053
1054    /// Returns true if the two values are pointer-equal.
1055    #[inline]
1056    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1057        this.p == other.p
1058    }
1059
1060    #[inline]
1061    pub fn ptr(&self) -> ptr::NonNull<()> {
1062        self.p
1063    }
1064
1065    /// Returns an enum representing a borrow of either A or B.
1066    #[inline]
1067    pub fn borrow(&self) -> ArcUnionBorrow<A, B> {
1068        if self.is_first() {
1069            let ptr = self.p.as_ptr() as *const ArcInner<A>;
1070            let borrow = unsafe { ArcBorrow::from_ref(&(*ptr).data) };
1071            ArcUnionBorrow::First(borrow)
1072        } else {
1073            let ptr = ((self.p.as_ptr() as usize) & !0x1) as *const ArcInner<B>;
1074            let borrow = unsafe { ArcBorrow::from_ref(&(*ptr).data) };
1075            ArcUnionBorrow::Second(borrow)
1076        }
1077    }
1078
1079    /// Creates an `ArcUnion` from an instance of the first type.
1080    pub fn from_first(other: Arc<A>) -> Self {
1081        let union = unsafe { Self::new(other.ptr() as *mut _) };
1082        mem::forget(other);
1083        union
1084    }
1085
1086    /// Creates an `ArcUnion` from an instance of the second type.
1087    pub fn from_second(other: Arc<B>) -> Self {
1088        let union = unsafe { Self::new(((other.ptr() as usize) | 0x1) as *mut _) };
1089        mem::forget(other);
1090        union
1091    }
1092
1093    /// Returns true if this `ArcUnion` contains the first type.
1094    pub fn is_first(&self) -> bool {
1095        self.p.as_ptr() as usize & 0x1 == 0
1096    }
1097
1098    /// Returns true if this `ArcUnion` contains the second type.
1099    pub fn is_second(&self) -> bool {
1100        !self.is_first()
1101    }
1102
1103    /// Returns a borrow of the first type if applicable, otherwise `None`.
1104    pub fn as_first(&self) -> Option<ArcBorrow<A>> {
1105        match self.borrow() {
1106            ArcUnionBorrow::First(x) => Some(x),
1107            ArcUnionBorrow::Second(_) => None,
1108        }
1109    }
1110
1111    /// Returns a borrow of the second type if applicable, otherwise None.
1112    pub fn as_second(&self) -> Option<ArcBorrow<B>> {
1113        match self.borrow() {
1114            ArcUnionBorrow::First(_) => None,
1115            ArcUnionBorrow::Second(x) => Some(x),
1116        }
1117    }
1118}
1119
1120impl<A, B> Clone for ArcUnion<A, B> {
1121    fn clone(&self) -> Self {
1122        match self.borrow() {
1123            ArcUnionBorrow::First(x) => ArcUnion::from_first(x.clone_arc()),
1124            ArcUnionBorrow::Second(x) => ArcUnion::from_second(x.clone_arc()),
1125        }
1126    }
1127}
1128
1129impl<A, B> Drop for ArcUnion<A, B> {
1130    fn drop(&mut self) {
1131        match self.borrow() {
1132            ArcUnionBorrow::First(x) => unsafe {
1133                let _ = Arc::from_raw(&*x);
1134            },
1135            ArcUnionBorrow::Second(x) => unsafe {
1136                let _ = Arc::from_raw(&*x);
1137            },
1138        }
1139    }
1140}
1141
1142impl<A: fmt::Debug, B: fmt::Debug> fmt::Debug for ArcUnion<A, B> {
1143    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1144        fmt::Debug::fmt(&self.borrow(), f)
1145    }
1146}
1147
1148#[cfg(test)]
1149mod tests {
1150    use super::{Arc, ThinArc};
1151    use std::clone::Clone;
1152    use std::ops::Drop;
1153    use std::sync::atomic;
1154    use std::sync::atomic::Ordering::{Acquire, SeqCst};
1155
1156    #[derive(PartialEq)]
1157    struct Canary(*mut atomic::AtomicUsize);
1158
1159    impl Drop for Canary {
1160        fn drop(&mut self) {
1161            unsafe {
1162                (*self.0).fetch_add(1, SeqCst);
1163            }
1164        }
1165    }
1166
1167    #[test]
1168    fn empty_thin() {
1169        let x = Arc::from_header_and_iter(100u32, std::iter::empty::<i32>());
1170        assert_eq!(x.header, 100);
1171        assert!(x.slice().is_empty());
1172    }
1173
1174    #[test]
1175    fn thin_assert_padding() {
1176        #[derive(Clone, Default)]
1177        #[repr(C)]
1178        struct Padded {
1179            i: u16,
1180        }
1181
1182        // The header will have more alignment than `Padded`
1183        let items = vec![Padded { i: 0xdead }, Padded { i: 0xbeef }];
1184        let a = ThinArc::from_header_and_iter(0i32, items.into_iter());
1185        assert_eq!(a.len(), 2);
1186        assert_eq!(a.slice()[0].i, 0xdead);
1187        assert_eq!(a.slice()[1].i, 0xbeef);
1188    }
1189
1190    #[test]
1191    fn slices_and_thin() {
1192        let mut canary = atomic::AtomicUsize::new(0);
1193        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
1194        let v = vec![5, 6];
1195        {
1196            let x = Arc::from_header_and_iter(c, v.into_iter());
1197            let _ = x.clone();
1198            let _ = x == x;
1199        }
1200        assert_eq!(canary.load(Acquire), 1);
1201    }
1202}