servo_arc/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Fork of Arc for Servo. This has the following advantages over std::sync::Arc:
//!
//! * We don't waste storage on the weak reference count.
//! * We don't do extra RMU operations to handle the possibility of weak references.
//! * We can experiment with arena allocation (todo).
//! * We can add methods to support our custom use cases [1].
//! * We have support for dynamically-sized types (see from_header_and_iter).
//! * We have support for thin arcs to unsized types (see ThinArc).
//! * We have support for references to static data, which don't do any
//!   refcounting.
//!
//! [1]: https://bugzilla.mozilla.org/show_bug.cgi?id=1360883

// The semantics of `Arc` are already documented in the Rust docs, so we don't
// duplicate those here.
#![allow(missing_docs)]

#[cfg(feature = "servo")]
use serde::{Deserialize, Serialize};
use stable_deref_trait::{CloneStableDeref, StableDeref};
use std::alloc::{self, Layout};
use std::borrow;
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem::{self, align_of, size_of};
use std::ops::{Deref, DerefMut};
use std::os::raw::c_void;
use std::process;
use std::ptr;
use std::sync::atomic;
use std::sync::atomic::Ordering::{Acquire, Relaxed, Release};
use std::{isize, usize};

/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;

/// Special refcount value that means the data is not reference counted,
/// and that the `Arc` is really acting as a read-only static reference.
const STATIC_REFCOUNT: usize = usize::MAX;

/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// See the discussion in https://github.com/rust-lang/rust/pull/60594 for the
/// usage of PhantomData.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
///
/// cbindgen:derive-eq=false
/// cbindgen:derive-neq=false
#[repr(C)]
pub struct Arc<T: ?Sized> {
    p: ptr::NonNull<ArcInner<T>>,
    phantom: PhantomData<T>,
}

/// An `Arc` that is known to be uniquely owned
///
/// When `Arc`s are constructed, they are known to be
/// uniquely owned. In such a case it is safe to mutate
/// the contents of the `Arc`. Normally, one would just handle
/// this by mutating the data on the stack before allocating the
/// `Arc`, however it's possible the data is large or unsized
/// and you need to heap-allocate it earlier in such a way
/// that it can be freely converted into a regular `Arc` once you're
/// done.
///
/// `UniqueArc` exists for this purpose, when constructed it performs
/// the same allocations necessary for an `Arc`, however it allows mutable access.
/// Once the mutation is finished, you can call `.shareable()` and get a regular `Arc`
/// out of it.
///
/// Ignore the doctest below there's no way to skip building with refcount
/// logging during doc tests (see rust-lang/rust#45599).
///
/// ```rust,ignore
/// # use servo_arc::UniqueArc;
/// let data = [1, 2, 3, 4, 5];
/// let mut x = UniqueArc::new(data);
/// x[4] = 7; // mutate!
/// let y = x.shareable(); // y is an Arc<T>
/// ```
pub struct UniqueArc<T: ?Sized>(Arc<T>);

impl<T> UniqueArc<T> {
    #[inline]
    /// Construct a new UniqueArc
    pub fn new(data: T) -> Self {
        UniqueArc(Arc::new(data))
    }

    /// Construct an uninitialized arc
    #[inline]
    pub fn new_uninit() -> UniqueArc<mem::MaybeUninit<T>> {
        unsafe {
            let layout = Layout::new::<ArcInner<mem::MaybeUninit<T>>>();
            let ptr = alloc::alloc(layout);
            let mut p = ptr::NonNull::new(ptr)
                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
                .cast::<ArcInner<mem::MaybeUninit<T>>>();
            ptr::write(&mut p.as_mut().count, atomic::AtomicUsize::new(1));
            #[cfg(feature = "track_alloc_size")]
            ptr::write(&mut p.as_mut().alloc_size, layout.size());

            #[cfg(feature = "gecko_refcount_logging")]
            {
                NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
            }

            UniqueArc(Arc {
                p,
                phantom: PhantomData,
            })
        }
    }

    #[inline]
    /// Convert to a shareable Arc<T> once we're done mutating it
    pub fn shareable(self) -> Arc<T> {
        self.0
    }
}

impl<T> UniqueArc<mem::MaybeUninit<T>> {
    /// Convert to an initialized Arc.
    #[inline]
    pub unsafe fn assume_init(this: Self) -> UniqueArc<T> {
        UniqueArc(Arc {
            p: mem::ManuallyDrop::new(this).0.p.cast(),
            phantom: PhantomData,
        })
    }
}

impl<T> Deref for UniqueArc<T> {
    type Target = T;
    fn deref(&self) -> &T {
        &*self.0
    }
}

impl<T> DerefMut for UniqueArc<T> {
    fn deref_mut(&mut self) -> &mut T {
        // We know this to be uniquely owned
        unsafe { &mut (*self.0.ptr()).data }
    }
}

unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}

/// The object allocated by an Arc<T>
///
/// See https://github.com/mozilla/cbindgen/issues/937 for the derive-{eq,neq}=false. But we don't
/// use those anyways so we can just disable them.
/// cbindgen:derive-eq=false
/// cbindgen:derive-neq=false
#[repr(C)]
struct ArcInner<T: ?Sized> {
    count: atomic::AtomicUsize,
    // NOTE(emilio): This needs to be here so that HeaderSlice<> is deallocated properly if the
    // allocator relies on getting the right Layout. We don't need to track the right alignment,
    // since we know that statically.
    //
    // This member could be completely avoided once min_specialization feature is stable (by
    // implementing a trait for HeaderSlice that gives you the right layout). For now, servo-only
    // since Gecko doesn't need it (its allocator doesn't need the size for the alignments we care
    // about). See https://github.com/rust-lang/rust/issues/31844.
    #[cfg(feature = "track_alloc_size")]
    alloc_size: usize,
    data: T,
}

unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}

/// Computes the offset of the data field within ArcInner.
fn data_offset<T>() -> usize {
    let size = size_of::<ArcInner<()>>();
    let align = align_of::<T>();
    // https://github.com/rust-lang/rust/blob/1.36.0/src/libcore/alloc.rs#L187-L207
    size.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1)
}

impl<T> Arc<T> {
    /// Construct an `Arc<T>`
    #[inline]
    pub fn new(data: T) -> Self {
        let layout = Layout::new::<ArcInner<T>>();
        let p = unsafe {
            let ptr = ptr::NonNull::new(alloc::alloc(layout))
                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
                .cast::<ArcInner<T>>();
            ptr::write(ptr.as_ptr(), ArcInner {
                count: atomic::AtomicUsize::new(1),
                #[cfg(feature = "track_alloc_size")]
                alloc_size: layout.size(),
                data,
            });
            ptr
        };

        #[cfg(feature = "gecko_refcount_logging")]
        unsafe {
            // FIXME(emilio): Would be so amazing to have
            // std::intrinsics::type_name() around, so that we could also report
            // a real size.
            NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
        }

        Arc {
            p,
            phantom: PhantomData,
        }
    }

    /// Construct an intentionally-leaked arc.
    #[inline]
    pub fn new_leaked(data: T) -> Self {
        let arc = Self::new(data);
        arc.mark_as_intentionally_leaked();
        arc
    }

    /// Convert the Arc<T> to a raw pointer, suitable for use across FFI
    ///
    /// Note: This returns a pointer to the data T, which is offset in the allocation.
    #[inline]
    pub fn into_raw(this: Self) -> *const T {
        let ptr = unsafe { &((*this.ptr()).data) as *const _ };
        mem::forget(this);
        ptr
    }

    /// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
    ///
    /// Note: This raw pointer will be offset in the allocation and must be preceded
    /// by the atomic count.
    #[inline]
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        // To find the corresponding pointer to the `ArcInner` we need
        // to subtract the offset of the `data` field from the pointer.
        let ptr = (ptr as *const u8).sub(data_offset::<T>());
        Arc {
            p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>),
            phantom: PhantomData,
        }
    }

    /// Like from_raw, but returns an addrefed arc instead.
    #[inline]
    pub unsafe fn from_raw_addrefed(ptr: *const T) -> Self {
        let arc = Self::from_raw(ptr);
        mem::forget(arc.clone());
        arc
    }

    /// Create a new static Arc<T> (one that won't reference count the object)
    /// and place it in the allocation provided by the specified `alloc`
    /// function.
    ///
    /// `alloc` must return a pointer into a static allocation suitable for
    /// storing data with the `Layout` passed into it. The pointer returned by
    /// `alloc` will not be freed.
    #[inline]
    pub unsafe fn new_static<F>(alloc: F, data: T) -> Arc<T>
    where
        F: FnOnce(Layout) -> *mut u8,
    {
        let layout = Layout::new::<ArcInner<T>>();
        let ptr = alloc(layout) as *mut ArcInner<T>;

        let x = ArcInner {
            count: atomic::AtomicUsize::new(STATIC_REFCOUNT),
            #[cfg(feature = "track_alloc_size")]
            alloc_size: layout.size(),
            data,
        };

        ptr::write(ptr, x);

        Arc {
            p: ptr::NonNull::new_unchecked(ptr),
            phantom: PhantomData,
        }
    }

    /// Produce a pointer to the data that can be converted back
    /// to an Arc. This is basically an `&Arc<T>`, without the extra indirection.
    /// It has the benefits of an `&T` but also knows about the underlying refcount
    /// and can be converted into more `Arc<T>`s if necessary.
    #[inline]
    pub fn borrow_arc<'a>(&'a self) -> ArcBorrow<'a, T> {
        ArcBorrow(&**self)
    }

    /// Returns the address on the heap of the Arc itself -- not the T within it -- for memory
    /// reporting.
    ///
    /// If this is a static reference, this returns null.
    pub fn heap_ptr(&self) -> *const c_void {
        if self.inner().count.load(Relaxed) == STATIC_REFCOUNT {
            ptr::null()
        } else {
            self.p.as_ptr() as *const ArcInner<T> as *const c_void
        }
    }
}

impl<T: ?Sized> Arc<T> {
    #[inline]
    fn inner(&self) -> &ArcInner<T> {
        // This unsafety is ok because while this arc is alive we're guaranteed
        // that the inner pointer is valid. Furthermore, we know that the
        // `ArcInner` structure itself is `Sync` because the inner data is
        // `Sync` as well, so we're ok loaning out an immutable pointer to these
        // contents.
        unsafe { &*self.ptr() }
    }

    #[inline(always)]
    fn record_drop(&self) {
        #[cfg(feature = "gecko_refcount_logging")]
        unsafe {
            NS_LogDtor(self.ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8);
        }
    }

    /// Marks this `Arc` as intentionally leaked for the purposes of refcount
    /// logging.
    ///
    /// It's a logic error to call this more than once, but it's not unsafe, as
    /// it'd just report negative leaks.
    #[inline(always)]
    pub fn mark_as_intentionally_leaked(&self) {
        self.record_drop();
    }

    // Non-inlined part of `drop`. Just invokes the destructor and calls the
    // refcount logging machinery if enabled.
    #[inline(never)]
    unsafe fn drop_slow(&mut self) {
        self.record_drop();
        let inner = self.ptr();

        let layout = Layout::for_value(&*inner);
        #[cfg(feature = "track_alloc_size")]
        let layout = Layout::from_size_align_unchecked((*inner).alloc_size, layout.align());

        std::ptr::drop_in_place(inner);
        alloc::dealloc(inner as *mut _, layout);
    }

    /// Test pointer equality between the two Arcs, i.e. they must be the _same_
    /// allocation
    #[inline]
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.raw_ptr() == other.raw_ptr()
    }

    fn ptr(&self) -> *mut ArcInner<T> {
        self.p.as_ptr()
    }

    /// Returns a raw ptr to the underlying allocation.
    pub fn raw_ptr(&self) -> ptr::NonNull<()> {
        self.p.cast()
    }
}

#[cfg(feature = "gecko_refcount_logging")]
extern "C" {
    fn NS_LogCtor(
        aPtr: *mut std::os::raw::c_void,
        aTypeName: *const std::os::raw::c_char,
        aSize: u32,
    );
    fn NS_LogDtor(
        aPtr: *mut std::os::raw::c_void,
        aTypeName: *const std::os::raw::c_char,
        aSize: u32,
    );
}

impl<T: ?Sized> Clone for Arc<T> {
    #[inline]
    fn clone(&self) -> Self {
        // NOTE(emilio): If you change anything here, make sure that the
        // implementation in layout/style/ServoStyleConstsInlines.h matches!
        //
        // Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
        // `count` never changes between STATIC_REFCOUNT and other values.
        if self.inner().count.load(Relaxed) != STATIC_REFCOUNT {
            // Using a relaxed ordering is alright here, as knowledge of the
            // original reference prevents other threads from erroneously deleting
            // the object.
            //
            // As explained in the [Boost documentation][1], Increasing the
            // reference counter can always be done with memory_order_relaxed: New
            // references to an object can only be formed from an existing
            // reference, and passing an existing reference from one thread to
            // another must already provide any required synchronization.
            //
            // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
            let old_size = self.inner().count.fetch_add(1, Relaxed);

            // However we need to guard against massive refcounts in case someone
            // is `mem::forget`ing Arcs. If we don't do this the count can overflow
            // and users will use-after free. We racily saturate to `isize::MAX` on
            // the assumption that there aren't ~2 billion threads incrementing
            // the reference count at once. This branch will never be taken in
            // any realistic program.
            //
            // We abort because such a program is incredibly degenerate, and we
            // don't care to support it.
            if old_size > MAX_REFCOUNT {
                process::abort();
            }
        }

        unsafe {
            Arc {
                p: ptr::NonNull::new_unchecked(self.ptr()),
                phantom: PhantomData,
            }
        }
    }
}

impl<T: ?Sized> Deref for Arc<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &self.inner().data
    }
}

impl<T: Clone> Arc<T> {
    /// Makes a mutable reference to the `Arc`, cloning if necessary
    ///
    /// This is functionally equivalent to [`Arc::make_mut`][mm] from the standard library.
    ///
    /// If this `Arc` is uniquely owned, `make_mut()` will provide a mutable
    /// reference to the contents. If not, `make_mut()` will create a _new_ `Arc`
    /// with a copy of the contents, update `this` to point to it, and provide
    /// a mutable reference to its contents.
    ///
    /// This is useful for implementing copy-on-write schemes where you wish to
    /// avoid copying things if your `Arc` is not shared.
    ///
    /// [mm]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html#method.make_mut
    #[inline]
    pub fn make_mut(this: &mut Self) -> &mut T {
        if !this.is_unique() {
            // Another pointer exists; clone
            *this = Arc::new((**this).clone());
        }

        unsafe {
            // This unsafety is ok because we're guaranteed that the pointer
            // returned is the *only* pointer that will ever be returned to T. Our
            // reference count is guaranteed to be 1 at this point, and we required
            // the Arc itself to be `mut`, so we're returning the only possible
            // reference to the inner data.
            &mut (*this.ptr()).data
        }
    }
}

impl<T: ?Sized> Arc<T> {
    /// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
    #[inline]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if this.is_unique() {
            unsafe {
                // See make_mut() for documentation of the threadsafety here.
                Some(&mut (*this.ptr()).data)
            }
        } else {
            None
        }
    }

    /// Whether or not the `Arc` is a static reference.
    #[inline]
    pub fn is_static(&self) -> bool {
        // Using a relaxed ordering to check for STATIC_REFCOUNT is safe, since
        // `count` never changes between STATIC_REFCOUNT and other values.
        self.inner().count.load(Relaxed) == STATIC_REFCOUNT
    }

    /// Whether or not the `Arc` is uniquely owned (is the refcount 1?) and not
    /// a static reference.
    #[inline]
    pub fn is_unique(&self) -> bool {
        // See the extensive discussion in [1] for why this needs to be Acquire.
        //
        // [1] https://github.com/servo/servo/issues/21186
        self.inner().count.load(Acquire) == 1
    }
}

impl<T: ?Sized> Drop for Arc<T> {
    #[inline]
    fn drop(&mut self) {
        // NOTE(emilio): If you change anything here, make sure that the
        // implementation in layout/style/ServoStyleConstsInlines.h matches!
        if self.is_static() {
            return;
        }

        // Because `fetch_sub` is already atomic, we do not need to synchronize
        // with other threads unless we are going to delete the object.
        if self.inner().count.fetch_sub(1, Release) != 1 {
            return;
        }

        // FIXME(bholley): Use the updated comment when [2] is merged.
        //
        // This load is needed to prevent reordering of use of the data and
        // deletion of the data.  Because it is marked `Release`, the decreasing
        // of the reference count synchronizes with this `Acquire` load. This
        // means that use of the data happens before decreasing the reference
        // count, which happens before this load, which happens before the
        // deletion of the data.
        //
        // As explained in the [Boost documentation][1],
        //
        // > It is important to enforce any possible access to the object in one
        // > thread (through an existing reference) to *happen before* deleting
        // > the object in a different thread. This is achieved by a "release"
        // > operation after dropping a reference (any access to the object
        // > through this reference must obviously happened before), and an
        // > "acquire" operation before deleting the object.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        // [2]: https://github.com/rust-lang/rust/pull/41714
        self.inner().count.load(Acquire);

        unsafe {
            self.drop_slow();
        }
    }
}

impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
    fn eq(&self, other: &Arc<T>) -> bool {
        Self::ptr_eq(self, other) || *(*self) == *(*other)
    }

    fn ne(&self, other: &Arc<T>) -> bool {
        !Self::ptr_eq(self, other) && *(*self) != *(*other)
    }
}

impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
    fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    fn lt(&self, other: &Arc<T>) -> bool {
        *(*self) < *(*other)
    }

    fn le(&self, other: &Arc<T>) -> bool {
        *(*self) <= *(*other)
    }

    fn gt(&self, other: &Arc<T>) -> bool {
        *(*self) > *(*other)
    }

    fn ge(&self, other: &Arc<T>) -> bool {
        *(*self) >= *(*other)
    }
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
    fn cmp(&self, other: &Arc<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}

impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized> fmt::Pointer for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self.ptr(), f)
    }
}

impl<T: Default> Default for Arc<T> {
    fn default() -> Arc<T> {
        Arc::new(Default::default())
    }
}

impl<T: ?Sized + Hash> Hash for Arc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

impl<T> From<T> for Arc<T> {
    #[inline]
    fn from(t: T) -> Self {
        Arc::new(t)
    }
}

impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
    #[inline]
    fn borrow(&self) -> &T {
        &**self
    }
}

impl<T: ?Sized> AsRef<T> for Arc<T> {
    #[inline]
    fn as_ref(&self) -> &T {
        &**self
    }
}

unsafe impl<T: ?Sized> StableDeref for Arc<T> {}
unsafe impl<T: ?Sized> CloneStableDeref for Arc<T> {}

#[cfg(feature = "servo")]
impl<'de, T: Deserialize<'de>> Deserialize<'de> for Arc<T> {
    fn deserialize<D>(deserializer: D) -> Result<Arc<T>, D::Error>
    where
        D: ::serde::de::Deserializer<'de>,
    {
        T::deserialize(deserializer).map(Arc::new)
    }
}

#[cfg(feature = "servo")]
impl<T: Serialize> Serialize for Arc<T> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: ::serde::ser::Serializer,
    {
        (**self).serialize(serializer)
    }
}

/// Structure to allow Arc-managing some fixed-sized data and a variably-sized
/// slice in a single allocation.
///
/// cbindgen:derive-eq=false
/// cbindgen:derive-neq=false
#[derive(Eq)]
#[repr(C)]
pub struct HeaderSlice<H, T> {
    /// The fixed-sized data.
    pub header: H,

    /// The length of the slice at our end.
    len: usize,

    /// The dynamically-sized data.
    data: [T; 0],
}

impl<H: PartialEq, T: PartialEq> PartialEq for HeaderSlice<H, T> {
    fn eq(&self, other: &Self) -> bool {
        self.header == other.header && self.slice() == other.slice()
    }
}

impl<H, T> Drop for HeaderSlice<H, T> {
    fn drop(&mut self) {
        unsafe {
            let mut ptr = self.data_mut();
            for _ in 0..self.len {
                std::ptr::drop_in_place(ptr);
                ptr = ptr.offset(1);
            }
        }
    }
}

impl<H: fmt::Debug, T: fmt::Debug> fmt::Debug for HeaderSlice<H, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("HeaderSlice")
            .field("header", &self.header)
            .field("slice", &self.slice())
            .finish()
    }
}

impl<H, T> HeaderSlice<H, T> {
    /// Returns the dynamically sized slice in this HeaderSlice.
    #[inline(always)]
    pub fn slice(&self) -> &[T] {
        unsafe { std::slice::from_raw_parts(self.data(), self.len) }
    }

    #[inline(always)]
    fn data(&self) -> *const T {
        std::ptr::addr_of!(self.data) as *const _
    }

    #[inline(always)]
    fn data_mut(&mut self) -> *mut T {
        std::ptr::addr_of_mut!(self.data) as *mut _
    }

    /// Returns the dynamically sized slice in this HeaderSlice.
    #[inline(always)]
    pub fn slice_mut(&mut self) -> &mut [T] {
        unsafe { std::slice::from_raw_parts_mut(self.data_mut(), self.len) }
    }

    /// Returns the len of the slice.
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.len
    }
}

impl<H, T> Arc<HeaderSlice<H, T>> {
    /// Creates an Arc for a HeaderSlice using the given header struct and
    /// iterator to generate the slice.
    ///
    /// `is_static` indicates whether to create a static Arc.
    ///
    /// `alloc` is used to get a pointer to the memory into which the
    /// dynamically sized ArcInner<HeaderSlice<H, T>> value will be
    /// written.  If `is_static` is true, then `alloc` must return a
    /// pointer into some static memory allocation.  If it is false,
    /// then `alloc` must return an allocation that can be dellocated
    /// by calling Box::from_raw::<ArcInner<HeaderSlice<H, T>>> on it.
    #[inline]
    pub fn from_header_and_iter_alloc<F, I>(
        alloc: F,
        header: H,
        mut items: I,
        num_items: usize,
        is_static: bool,
    ) -> Self
    where
        F: FnOnce(Layout) -> *mut u8,
        I: Iterator<Item = T>,
    {
        assert_ne!(size_of::<T>(), 0, "Need to think about ZST");

        let layout = Layout::new::<ArcInner<HeaderSlice<H, T>>>();
        debug_assert!(layout.align() >= align_of::<T>());
        debug_assert!(layout.align() >= align_of::<usize>());
        let array_layout = Layout::array::<T>(num_items).expect("Overflow");
        let (layout, _offset) = layout.extend(array_layout).expect("Overflow");
        let p = unsafe {
            // Allocate the buffer.
            let buffer = alloc(layout);
            let mut p = ptr::NonNull::new(buffer)
                .unwrap_or_else(|| alloc::handle_alloc_error(layout))
                .cast::<ArcInner<HeaderSlice<H, T>>>();

            // Write the data.
            //
            // Note that any panics here (i.e. from the iterator) are safe, since
            // we'll just leak the uninitialized memory.
            let count = if is_static {
                atomic::AtomicUsize::new(STATIC_REFCOUNT)
            } else {
                atomic::AtomicUsize::new(1)
            };
            ptr::write(&mut p.as_mut().count, count);
            #[cfg(feature = "track_alloc_size")]
            ptr::write(&mut p.as_mut().alloc_size, layout.size());
            ptr::write(&mut p.as_mut().data.header, header);
            ptr::write(&mut p.as_mut().data.len, num_items);
            if num_items != 0 {
                let mut current = std::ptr::addr_of_mut!(p.as_mut().data.data) as *mut T;
                for _ in 0..num_items {
                    ptr::write(
                        current,
                        items
                            .next()
                            .expect("ExactSizeIterator over-reported length"),
                    );
                    current = current.offset(1);
                }
                // We should have consumed the buffer exactly, maybe accounting
                // for some padding from the alignment.
                debug_assert!(
                    (buffer.add(layout.size()) as usize - current as *mut u8 as usize) < layout.align()
                );
            }
            assert!(
                items.next().is_none(),
                "ExactSizeIterator under-reported length"
            );
            p
        };
        #[cfg(feature = "gecko_refcount_logging")]
        unsafe {
            if !is_static {
                // FIXME(emilio): Would be so amazing to have
                // std::intrinsics::type_name() around.
                NS_LogCtor(p.as_ptr() as *mut _, b"ServoArc\0".as_ptr() as *const _, 8)
            }
        }

        // Return the fat Arc.
        assert_eq!(
            size_of::<Self>(),
            size_of::<usize>(),
            "The Arc should be thin"
        );

        Arc {
            p,
            phantom: PhantomData,
        }
    }

    /// Creates an Arc for a HeaderSlice using the given header struct and iterator to generate the
    /// slice. Panics if num_items doesn't match the number of items.
    #[inline]
    pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
    where
        I: Iterator<Item = T>,
    {
        Arc::from_header_and_iter_alloc(
            |layout| unsafe { alloc::alloc(layout) },
            header,
            items,
            num_items,
            /* is_static = */ false,
        )
    }

    /// Creates an Arc for a HeaderSlice using the given header struct and
    /// iterator to generate the slice. The resulting Arc will be fat.
    #[inline]
    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
    where
        I: Iterator<Item = T> + ExactSizeIterator,
    {
        let len = items.len();
        Self::from_header_and_iter_with_size(header, items, len)
    }
}

/// This is functionally equivalent to Arc<(H, [T])>
///
/// When you create an `Arc` containing a dynamically sized type like a slice, the `Arc` is
/// represented on the stack as a "fat pointer", where the length of the slice is stored alongside
/// the `Arc`'s pointer. In some situations you may wish to have a thin pointer instead, perhaps
/// for FFI compatibility or space efficiency. `ThinArc` solves this by storing the length in the
/// allocation itself, via `HeaderSlice`.
pub type ThinArc<H, T> = Arc<HeaderSlice<H, T>>;

/// See `ArcUnion`. This is a version that works for `ThinArc`s.
pub type ThinArcUnion<H1, T1, H2, T2> = ArcUnion<HeaderSlice<H1, T1>, HeaderSlice<H2, T2>>;

impl<H, T> UniqueArc<HeaderSlice<H, T>> {
    #[inline]
    pub fn from_header_and_iter<I>(header: H, items: I) -> Self
    where
        I: Iterator<Item = T> + ExactSizeIterator,
    {
        Self(Arc::from_header_and_iter(header, items))
    }

    #[inline]
    pub fn from_header_and_iter_with_size<I>(header: H, items: I, num_items: usize) -> Self
    where
        I: Iterator<Item = T>,
    {
        Self(Arc::from_header_and_iter_with_size(
            header, items, num_items,
        ))
    }

    /// Returns a mutable reference to the header.
    pub fn header_mut(&mut self) -> &mut H {
        // We know this to be uniquely owned
        unsafe { &mut (*self.0.ptr()).data.header }
    }

    /// Returns a mutable reference to the slice.
    pub fn data_mut(&mut self) -> &mut [T] {
        // We know this to be uniquely owned
        unsafe { (*self.0.ptr()).data.slice_mut() }
    }
}

/// A "borrowed `Arc`". This is a pointer to
/// a T that is known to have been allocated within an
/// `Arc`.
///
/// This is equivalent in guarantees to `&Arc<T>`, however it is
/// a bit more flexible. To obtain an `&Arc<T>` you must have
/// an `Arc<T>` instance somewhere pinned down until we're done with it.
/// It's also a direct pointer to `T`, so using this involves less pointer-chasing
///
/// However, C++ code may hand us refcounted things as pointers to T directly,
/// so we have to conjure up a temporary `Arc` on the stack each time.
///
/// `ArcBorrow` lets us deal with borrows of known-refcounted objects
/// without needing to worry about where the `Arc<T>` is.
#[derive(Debug, Eq, PartialEq)]
pub struct ArcBorrow<'a, T: 'a>(&'a T);

impl<'a, T> Copy for ArcBorrow<'a, T> {}
impl<'a, T> Clone for ArcBorrow<'a, T> {
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, T> ArcBorrow<'a, T> {
    /// Clone this as an `Arc<T>`. This bumps the refcount.
    #[inline]
    pub fn clone_arc(&self) -> Arc<T> {
        let arc = unsafe { Arc::from_raw(self.0) };
        // addref it!
        mem::forget(arc.clone());
        arc
    }

    /// For constructing from a reference known to be Arc-backed,
    /// e.g. if we obtain such a reference over FFI
    #[inline]
    pub unsafe fn from_ref(r: &'a T) -> Self {
        ArcBorrow(r)
    }

    /// Compare two `ArcBorrow`s via pointer equality. Will only return
    /// true if they come from the same allocation
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.0 as *const T == other.0 as *const T
    }

    /// Temporarily converts |self| into a bonafide Arc and exposes it to the
    /// provided callback. The refcount is not modified.
    #[inline]
    pub fn with_arc<F, U>(&self, f: F) -> U
    where
        F: FnOnce(&Arc<T>) -> U,
        T: 'static,
    {
        // Synthesize transient Arc, which never touches the refcount.
        let transient = unsafe { mem::ManuallyDrop::new(Arc::from_raw(self.0)) };

        // Expose the transient Arc to the callback, which may clone it if it wants.
        let result = f(&transient);

        // Forward the result.
        result
    }

    /// Similar to deref, but uses the lifetime |a| rather than the lifetime of
    /// self, which is incompatible with the signature of the Deref trait.
    #[inline]
    pub fn get(&self) -> &'a T {
        self.0
    }
}

impl<'a, T> Deref for ArcBorrow<'a, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        self.0
    }
}

/// A tagged union that can represent `Arc<A>` or `Arc<B>` while only consuming a
/// single word. The type is also `NonNull`, and thus can be stored in an Option
/// without increasing size.
///
/// This is functionally equivalent to
/// `enum ArcUnion<A, B> { First(Arc<A>), Second(Arc<B>)` but only takes up
/// up a single word of stack space.
///
/// This could probably be extended to support four types if necessary.
pub struct ArcUnion<A, B> {
    p: ptr::NonNull<()>,
    phantom_a: PhantomData<A>,
    phantom_b: PhantomData<B>,
}

unsafe impl<A: Sync + Send, B: Send + Sync> Send for ArcUnion<A, B> {}
unsafe impl<A: Sync + Send, B: Send + Sync> Sync for ArcUnion<A, B> {}

impl<A: PartialEq, B: PartialEq> PartialEq for ArcUnion<A, B> {
    fn eq(&self, other: &Self) -> bool {
        use crate::ArcUnionBorrow::*;
        match (self.borrow(), other.borrow()) {
            (First(x), First(y)) => x == y,
            (Second(x), Second(y)) => x == y,
            (_, _) => false,
        }
    }
}

impl<A: Eq, B: Eq> Eq for ArcUnion<A, B> {}

/// This represents a borrow of an `ArcUnion`.
#[derive(Debug)]
pub enum ArcUnionBorrow<'a, A: 'a, B: 'a> {
    First(ArcBorrow<'a, A>),
    Second(ArcBorrow<'a, B>),
}

impl<A, B> ArcUnion<A, B> {
    unsafe fn new(ptr: *mut ()) -> Self {
        ArcUnion {
            p: ptr::NonNull::new_unchecked(ptr),
            phantom_a: PhantomData,
            phantom_b: PhantomData,
        }
    }

    /// Returns true if the two values are pointer-equal.
    #[inline]
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.p == other.p
    }

    #[inline]
    pub fn ptr(&self) -> ptr::NonNull<()> {
        self.p
    }

    /// Returns an enum representing a borrow of either A or B.
    #[inline]
    pub fn borrow(&self) -> ArcUnionBorrow<A, B> {
        if self.is_first() {
            let ptr = self.p.as_ptr() as *const ArcInner<A>;
            let borrow = unsafe { ArcBorrow::from_ref(&(*ptr).data) };
            ArcUnionBorrow::First(borrow)
        } else {
            let ptr = ((self.p.as_ptr() as usize) & !0x1) as *const ArcInner<B>;
            let borrow = unsafe { ArcBorrow::from_ref(&(*ptr).data) };
            ArcUnionBorrow::Second(borrow)
        }
    }

    /// Creates an `ArcUnion` from an instance of the first type.
    pub fn from_first(other: Arc<A>) -> Self {
        let union = unsafe { Self::new(other.ptr() as *mut _) };
        mem::forget(other);
        union
    }

    /// Creates an `ArcUnion` from an instance of the second type.
    pub fn from_second(other: Arc<B>) -> Self {
        let union = unsafe { Self::new(((other.ptr() as usize) | 0x1) as *mut _) };
        mem::forget(other);
        union
    }

    /// Returns true if this `ArcUnion` contains the first type.
    pub fn is_first(&self) -> bool {
        self.p.as_ptr() as usize & 0x1 == 0
    }

    /// Returns true if this `ArcUnion` contains the second type.
    pub fn is_second(&self) -> bool {
        !self.is_first()
    }

    /// Returns a borrow of the first type if applicable, otherwise `None`.
    pub fn as_first(&self) -> Option<ArcBorrow<A>> {
        match self.borrow() {
            ArcUnionBorrow::First(x) => Some(x),
            ArcUnionBorrow::Second(_) => None,
        }
    }

    /// Returns a borrow of the second type if applicable, otherwise None.
    pub fn as_second(&self) -> Option<ArcBorrow<B>> {
        match self.borrow() {
            ArcUnionBorrow::First(_) => None,
            ArcUnionBorrow::Second(x) => Some(x),
        }
    }
}

impl<A, B> Clone for ArcUnion<A, B> {
    fn clone(&self) -> Self {
        match self.borrow() {
            ArcUnionBorrow::First(x) => ArcUnion::from_first(x.clone_arc()),
            ArcUnionBorrow::Second(x) => ArcUnion::from_second(x.clone_arc()),
        }
    }
}

impl<A, B> Drop for ArcUnion<A, B> {
    fn drop(&mut self) {
        match self.borrow() {
            ArcUnionBorrow::First(x) => unsafe {
                let _ = Arc::from_raw(&*x);
            },
            ArcUnionBorrow::Second(x) => unsafe {
                let _ = Arc::from_raw(&*x);
            },
        }
    }
}

impl<A: fmt::Debug, B: fmt::Debug> fmt::Debug for ArcUnion<A, B> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&self.borrow(), f)
    }
}

#[cfg(test)]
mod tests {
    use super::{Arc, ThinArc};
    use std::clone::Clone;
    use std::ops::Drop;
    use std::sync::atomic;
    use std::sync::atomic::Ordering::{Acquire, SeqCst};

    #[derive(PartialEq)]
    struct Canary(*mut atomic::AtomicUsize);

    impl Drop for Canary {
        fn drop(&mut self) {
            unsafe {
                (*self.0).fetch_add(1, SeqCst);
            }
        }
    }

    #[test]
    fn empty_thin() {
        let x = Arc::from_header_and_iter(100u32, std::iter::empty::<i32>());
        assert_eq!(x.header, 100);
        assert!(x.slice().is_empty());
    }

    #[test]
    fn thin_assert_padding() {
        #[derive(Clone, Default)]
        #[repr(C)]
        struct Padded {
            i: u16,
        }

        // The header will have more alignment than `Padded`
        let items = vec![Padded { i: 0xdead }, Padded { i: 0xbeef }];
        let a = ThinArc::from_header_and_iter(0i32, items.into_iter());
        assert_eq!(a.len(), 2);
        assert_eq!(a.slice()[0].i, 0xdead);
        assert_eq!(a.slice()[1].i, 0xbeef);
    }

    #[test]
    fn slices_and_thin() {
        let mut canary = atomic::AtomicUsize::new(0);
        let c = Canary(&mut canary as *mut atomic::AtomicUsize);
        let v = vec![5, 6];
        {
            let x = Arc::from_header_and_iter(c, v.into_iter());
            let _ = x.clone();
            let _ = x == x;
        }
        assert_eq!(canary.load(Acquire), 1);
    }
}