1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
#![allow(clippy::needless_pass_by_value)] // False positives with `impl ToString`

use std::ops::RangeInclusive;

use crate::{
    emath, epaint, lerp, pos2, remap, remap_clamp, style, style::HandleShape, vec2, Color32,
    DragValue, EventFilter, Key, Label, NumExt, Pos2, Rangef, Rect, Response, Sense, TextStyle,
    TextWrapMode, Ui, Vec2, Widget, WidgetInfo, WidgetText, MINUS_CHAR_STR,
};

use super::drag_value::clamp_value_to_range;

// ----------------------------------------------------------------------------

type NumFormatter<'a> = Box<dyn 'a + Fn(f64, RangeInclusive<usize>) -> String>;
type NumParser<'a> = Box<dyn 'a + Fn(&str) -> Option<f64>>;

// ----------------------------------------------------------------------------

/// Combined into one function (rather than two) to make it easier
/// for the borrow checker.
type GetSetValue<'a> = Box<dyn 'a + FnMut(Option<f64>) -> f64>;

fn get(get_set_value: &mut GetSetValue<'_>) -> f64 {
    (get_set_value)(None)
}

fn set(get_set_value: &mut GetSetValue<'_>, value: f64) {
    (get_set_value)(Some(value));
}

// ----------------------------------------------------------------------------

#[derive(Clone)]
struct SliderSpec {
    logarithmic: bool,

    /// For logarithmic sliders, the smallest positive value we are interested in.
    /// 1 for integer sliders, maybe 1e-6 for others.
    smallest_positive: f64,

    /// For logarithmic sliders, the largest positive value we are interested in
    /// before the slider switches to `INFINITY`, if that is the higher end.
    /// Default: INFINITY.
    largest_finite: f64,
}

/// Specifies the orientation of a [`Slider`].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum SliderOrientation {
    Horizontal,
    Vertical,
}

/// Specifies how values in a [`Slider`] are clamped.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum SliderClamping {
    /// Values are not clamped.
    ///
    /// This means editing the value with the keyboard,
    /// or dragging the number next to the slider will always work.
    ///
    /// The actual slider part is always clamped though.
    Never,

    /// Users cannot enter new values that are outside the range.
    ///
    /// Existing values remain intact though.
    Edits,

    /// Always clamp values, even existing ones.
    #[default]
    Always,
}

/// Control a number with a slider.
///
/// The slider range defines the values you get when pulling the slider to the far edges.
/// By default all values are clamped to this range, even when not interacted with.
/// You can change this behavior by passing `false` to [`Slider::clamp_to_range`].
///
/// The range can include any numbers, and go from low-to-high or from high-to-low.
///
/// The slider consists of three parts: a slider, a value display, and an optional text.
/// The user can click the value display to edit its value. It can be turned off with `.show_value(false)`.
///
/// ```
/// # egui::__run_test_ui(|ui| {
/// # let mut my_f32: f32 = 0.0;
/// ui.add(egui::Slider::new(&mut my_f32, 0.0..=100.0).text("My value"));
/// # });
/// ```
///
/// The default [`Slider`] size is set by [`crate::style::Spacing::slider_width`].
#[must_use = "You should put this widget in a ui with `ui.add(widget);`"]
pub struct Slider<'a> {
    get_set_value: GetSetValue<'a>,
    range: RangeInclusive<f64>,
    spec: SliderSpec,
    clamping: SliderClamping,
    smart_aim: bool,
    show_value: bool,
    orientation: SliderOrientation,
    prefix: String,
    suffix: String,
    text: WidgetText,

    /// Sets the minimal step of the widget value
    step: Option<f64>,

    drag_value_speed: Option<f64>,
    min_decimals: usize,
    max_decimals: Option<usize>,
    custom_formatter: Option<NumFormatter<'a>>,
    custom_parser: Option<NumParser<'a>>,
    trailing_fill: Option<bool>,
    handle_shape: Option<HandleShape>,
}

impl<'a> Slider<'a> {
    /// Creates a new horizontal slider.
    ///
    /// The `value` given will be clamped to the `range`,
    /// unless you change this behavior with [`Self::clamping`].
    pub fn new<Num: emath::Numeric>(value: &'a mut Num, range: RangeInclusive<Num>) -> Self {
        let range_f64 = range.start().to_f64()..=range.end().to_f64();
        let slf = Self::from_get_set(range_f64, move |v: Option<f64>| {
            if let Some(v) = v {
                *value = Num::from_f64(v);
            }
            value.to_f64()
        });

        if Num::INTEGRAL {
            slf.integer()
        } else {
            slf
        }
    }

    pub fn from_get_set(
        range: RangeInclusive<f64>,
        get_set_value: impl 'a + FnMut(Option<f64>) -> f64,
    ) -> Self {
        Self {
            get_set_value: Box::new(get_set_value),
            range,
            spec: SliderSpec {
                logarithmic: false,
                smallest_positive: 1e-6,
                largest_finite: f64::INFINITY,
            },
            clamping: SliderClamping::default(),
            smart_aim: true,
            show_value: true,
            orientation: SliderOrientation::Horizontal,
            prefix: Default::default(),
            suffix: Default::default(),
            text: Default::default(),
            step: None,
            drag_value_speed: None,
            min_decimals: 0,
            max_decimals: None,
            custom_formatter: None,
            custom_parser: None,
            trailing_fill: None,
            handle_shape: None,
        }
    }

    /// Control whether or not the slider shows the current value.
    /// Default: `true`.
    #[inline]
    pub fn show_value(mut self, show_value: bool) -> Self {
        self.show_value = show_value;
        self
    }

    /// Show a prefix before the number, e.g. "x: "
    #[inline]
    pub fn prefix(mut self, prefix: impl ToString) -> Self {
        self.prefix = prefix.to_string();
        self
    }

    /// Add a suffix to the number, this can be e.g. a unit ("°" or " m")
    #[inline]
    pub fn suffix(mut self, suffix: impl ToString) -> Self {
        self.suffix = suffix.to_string();
        self
    }

    /// Show a text next to the slider (e.g. explaining what the slider controls).
    #[inline]
    pub fn text(mut self, text: impl Into<WidgetText>) -> Self {
        self.text = text.into();
        self
    }

    #[inline]
    pub fn text_color(mut self, text_color: Color32) -> Self {
        self.text = self.text.color(text_color);
        self
    }

    /// Vertical or horizontal slider? The default is horizontal.
    #[inline]
    pub fn orientation(mut self, orientation: SliderOrientation) -> Self {
        self.orientation = orientation;
        self
    }

    /// Make this a vertical slider.
    #[inline]
    pub fn vertical(mut self) -> Self {
        self.orientation = SliderOrientation::Vertical;
        self
    }

    /// Make this a logarithmic slider.
    /// This is great for when the slider spans a huge range,
    /// e.g. from one to a million.
    /// The default is OFF.
    #[inline]
    pub fn logarithmic(mut self, logarithmic: bool) -> Self {
        self.spec.logarithmic = logarithmic;
        self
    }

    /// For logarithmic sliders that includes zero:
    /// what is the smallest positive value you want to be able to select?
    /// The default is `1` for integer sliders and `1e-6` for real sliders.
    #[inline]
    pub fn smallest_positive(mut self, smallest_positive: f64) -> Self {
        self.spec.smallest_positive = smallest_positive;
        self
    }

    /// For logarithmic sliders, the largest positive value we are interested in
    /// before the slider switches to `INFINITY`, if that is the higher end.
    /// Default: INFINITY.
    #[inline]
    pub fn largest_finite(mut self, largest_finite: f64) -> Self {
        self.spec.largest_finite = largest_finite;
        self
    }

    /// Controls when the values will be clamped to the range.
    ///
    /// ### With `.clamping(SliderClamping::Always)` (default)
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// let mut my_value: f32 = 1337.0;
    /// ui.add(egui::Slider::new(&mut my_value, 0.0..=1.0));
    /// assert!(0.0 <= my_value && my_value <= 1.0, "Existing value should be clamped");
    /// # });
    /// ```
    ///
    /// ### With `.clamping(SliderClamping::Edits)`
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// let mut my_value: f32 = 1337.0;
    /// let response = ui.add(
    ///     egui::Slider::new(&mut my_value, 0.0..=1.0)
    ///         .clamping(egui::SliderClamping::Edits)
    /// );
    /// if response.dragged() {
    ///     // The user edited the value, so it should now be clamped to the range
    ///     assert!(0.0 <= my_value && my_value <= 1.0);
    /// }
    /// # });
    /// ```
    ///
    /// ### With `.clamping(SliderClamping::Never)`
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// let mut my_value: f32 = 1337.0;
    /// let response = ui.add(
    ///     egui::Slider::new(&mut my_value, 0.0..=1.0)
    ///         .clamping(egui::SliderClamping::Never)
    /// );
    /// // The user could have set the value to anything
    /// # });
    /// ```
    #[inline]
    pub fn clamping(mut self, clamping: SliderClamping) -> Self {
        self.clamping = clamping;
        self
    }

    #[inline]
    #[deprecated = "Use `slider.clamping(…) instead"]
    pub fn clamp_to_range(self, clamp_to_range: bool) -> Self {
        self.clamping(if clamp_to_range {
            SliderClamping::Always
        } else {
            SliderClamping::Never
        })
    }

    /// Turn smart aim on/off. Default is ON.
    /// There is almost no point in turning this off.
    #[inline]
    pub fn smart_aim(mut self, smart_aim: bool) -> Self {
        self.smart_aim = smart_aim;
        self
    }

    /// Sets the minimal change of the value.
    ///
    /// Value `0.0` effectively disables the feature. If the new value is out of range
    /// and `clamp_to_range` is enabled, you would not have the ability to change the value.
    ///
    /// Default: `0.0` (disabled).
    #[inline]
    pub fn step_by(mut self, step: f64) -> Self {
        self.step = if step != 0.0 { Some(step) } else { None };
        self
    }

    /// When dragging the value, how fast does it move?
    ///
    /// Unit: values per point (logical pixel).
    /// See also [`DragValue::speed`].
    ///
    /// By default this is the same speed as when dragging the slider,
    /// but you can change it here to for instance have a much finer control
    /// by dragging the slider value rather than the slider itself.
    #[inline]
    pub fn drag_value_speed(mut self, drag_value_speed: f64) -> Self {
        self.drag_value_speed = Some(drag_value_speed);
        self
    }

    // TODO(emilk): we should also have a "min precision".
    /// Set a minimum number of decimals to display.
    ///
    /// Normally you don't need to pick a precision, as the slider will intelligently pick a precision for you.
    /// Regardless of precision the slider will use "smart aim" to help the user select nice, round values.
    #[inline]
    pub fn min_decimals(mut self, min_decimals: usize) -> Self {
        self.min_decimals = min_decimals;
        self
    }

    // TODO(emilk): we should also have a "max precision".
    /// Set a maximum number of decimals to display.
    ///
    /// Values will also be rounded to this number of decimals.
    /// Normally you don't need to pick a precision, as the slider will intelligently pick a precision for you.
    /// Regardless of precision the slider will use "smart aim" to help the user select nice, round values.
    #[inline]
    pub fn max_decimals(mut self, max_decimals: usize) -> Self {
        self.max_decimals = Some(max_decimals);
        self
    }

    #[inline]
    pub fn max_decimals_opt(mut self, max_decimals: Option<usize>) -> Self {
        self.max_decimals = max_decimals;
        self
    }

    /// Set an exact number of decimals to display.
    ///
    /// Values will also be rounded to this number of decimals.
    /// Normally you don't need to pick a precision, as the slider will intelligently pick a precision for you.
    /// Regardless of precision the slider will use "smart aim" to help the user select nice, round values.
    #[inline]
    pub fn fixed_decimals(mut self, num_decimals: usize) -> Self {
        self.min_decimals = num_decimals;
        self.max_decimals = Some(num_decimals);
        self
    }

    /// Display trailing color behind the slider's circle. Default is OFF.
    ///
    /// This setting can be enabled globally for all sliders with [`crate::Visuals::slider_trailing_fill`].
    /// Toggling it here will override the above setting ONLY for this individual slider.
    ///
    /// The fill color will be taken from `selection.bg_fill` in your [`crate::Visuals`], the same as a [`crate::ProgressBar`].
    #[inline]
    pub fn trailing_fill(mut self, trailing_fill: bool) -> Self {
        self.trailing_fill = Some(trailing_fill);
        self
    }

    /// Change the shape of the slider handle
    ///
    /// This setting can be enabled globally for all sliders with [`crate::Visuals::handle_shape`].
    /// Changing it here will override the above setting ONLY for this individual slider.
    #[inline]
    pub fn handle_shape(mut self, handle_shape: HandleShape) -> Self {
        self.handle_shape = Some(handle_shape);
        self
    }

    /// Set custom formatter defining how numbers are converted into text.
    ///
    /// A custom formatter takes a `f64` for the numeric value and a `RangeInclusive<usize>` representing
    /// the decimal range i.e. minimum and maximum number of decimal places shown.
    ///
    /// The default formatter is [`crate::Style::number_formatter`].
    ///
    /// See also: [`Slider::custom_parser`]
    ///
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// # let mut my_i32: i32 = 0;
    /// ui.add(egui::Slider::new(&mut my_i32, 0..=((60 * 60 * 24) - 1))
    ///     .custom_formatter(|n, _| {
    ///         let n = n as i32;
    ///         let hours = n / (60 * 60);
    ///         let mins = (n / 60) % 60;
    ///         let secs = n % 60;
    ///         format!("{hours:02}:{mins:02}:{secs:02}")
    ///     })
    ///     .custom_parser(|s| {
    ///         let parts: Vec<&str> = s.split(':').collect();
    ///         if parts.len() == 3 {
    ///             parts[0].parse::<i32>().and_then(|h| {
    ///                 parts[1].parse::<i32>().and_then(|m| {
    ///                     parts[2].parse::<i32>().map(|s| {
    ///                         ((h * 60 * 60) + (m * 60) + s) as f64
    ///                     })
    ///                 })
    ///             })
    ///             .ok()
    ///         } else {
    ///             None
    ///         }
    ///     }));
    /// # });
    /// ```
    pub fn custom_formatter(
        mut self,
        formatter: impl 'a + Fn(f64, RangeInclusive<usize>) -> String,
    ) -> Self {
        self.custom_formatter = Some(Box::new(formatter));
        self
    }

    /// Set custom parser defining how the text input is parsed into a number.
    ///
    /// A custom parser takes an `&str` to parse into a number and returns `Some` if it was successfully parsed
    /// or `None` otherwise.
    ///
    /// See also: [`Slider::custom_formatter`]
    ///
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// # let mut my_i32: i32 = 0;
    /// ui.add(egui::Slider::new(&mut my_i32, 0..=((60 * 60 * 24) - 1))
    ///     .custom_formatter(|n, _| {
    ///         let n = n as i32;
    ///         let hours = n / (60 * 60);
    ///         let mins = (n / 60) % 60;
    ///         let secs = n % 60;
    ///         format!("{hours:02}:{mins:02}:{secs:02}")
    ///     })
    ///     .custom_parser(|s| {
    ///         let parts: Vec<&str> = s.split(':').collect();
    ///         if parts.len() == 3 {
    ///             parts[0].parse::<i32>().and_then(|h| {
    ///                 parts[1].parse::<i32>().and_then(|m| {
    ///                     parts[2].parse::<i32>().map(|s| {
    ///                         ((h * 60 * 60) + (m * 60) + s) as f64
    ///                     })
    ///                 })
    ///             })
    ///             .ok()
    ///         } else {
    ///             None
    ///         }
    ///     }));
    /// # });
    /// ```
    #[inline]
    pub fn custom_parser(mut self, parser: impl 'a + Fn(&str) -> Option<f64>) -> Self {
        self.custom_parser = Some(Box::new(parser));
        self
    }

    /// Set `custom_formatter` and `custom_parser` to display and parse numbers as binary integers. Floating point
    /// numbers are *not* supported.
    ///
    /// `min_width` specifies the minimum number of displayed digits; if the number is shorter than this, it will be
    /// prefixed with additional 0s to match `min_width`.
    ///
    /// If `twos_complement` is true, negative values will be displayed as the 2's complement representation. Otherwise
    /// they will be prefixed with a '-' sign.
    ///
    /// # Panics
    ///
    /// Panics if `min_width` is 0.
    ///
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// # let mut my_i32: i32 = 0;
    /// ui.add(egui::Slider::new(&mut my_i32, -100..=100).binary(64, false));
    /// # });
    /// ```
    pub fn binary(self, min_width: usize, twos_complement: bool) -> Self {
        assert!(
            min_width > 0,
            "Slider::binary: `min_width` must be greater than 0"
        );
        if twos_complement {
            self.custom_formatter(move |n, _| format!("{:0>min_width$b}", n as i64))
        } else {
            self.custom_formatter(move |n, _| {
                let sign = if n < 0.0 { MINUS_CHAR_STR } else { "" };
                format!("{sign}{:0>min_width$b}", n.abs() as i64)
            })
        }
        .custom_parser(|s| i64::from_str_radix(s, 2).map(|n| n as f64).ok())
    }

    /// Set `custom_formatter` and `custom_parser` to display and parse numbers as octal integers. Floating point
    /// numbers are *not* supported.
    ///
    /// `min_width` specifies the minimum number of displayed digits; if the number is shorter than this, it will be
    /// prefixed with additional 0s to match `min_width`.
    ///
    /// If `twos_complement` is true, negative values will be displayed as the 2's complement representation. Otherwise
    /// they will be prefixed with a '-' sign.
    ///
    /// # Panics
    ///
    /// Panics if `min_width` is 0.
    ///
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// # let mut my_i32: i32 = 0;
    /// ui.add(egui::Slider::new(&mut my_i32, -100..=100).octal(22, false));
    /// # });
    /// ```
    pub fn octal(self, min_width: usize, twos_complement: bool) -> Self {
        assert!(
            min_width > 0,
            "Slider::octal: `min_width` must be greater than 0"
        );
        if twos_complement {
            self.custom_formatter(move |n, _| format!("{:0>min_width$o}", n as i64))
        } else {
            self.custom_formatter(move |n, _| {
                let sign = if n < 0.0 { MINUS_CHAR_STR } else { "" };
                format!("{sign}{:0>min_width$o}", n.abs() as i64)
            })
        }
        .custom_parser(|s| i64::from_str_radix(s, 8).map(|n| n as f64).ok())
    }

    /// Set `custom_formatter` and `custom_parser` to display and parse numbers as hexadecimal integers. Floating point
    /// numbers are *not* supported.
    ///
    /// `min_width` specifies the minimum number of displayed digits; if the number is shorter than this, it will be
    /// prefixed with additional 0s to match `min_width`.
    ///
    /// If `twos_complement` is true, negative values will be displayed as the 2's complement representation. Otherwise
    /// they will be prefixed with a '-' sign.
    ///
    /// # Panics
    ///
    /// Panics if `min_width` is 0.
    ///
    /// ```
    /// # egui::__run_test_ui(|ui| {
    /// # let mut my_i32: i32 = 0;
    /// ui.add(egui::Slider::new(&mut my_i32, -100..=100).hexadecimal(16, false, true));
    /// # });
    /// ```
    pub fn hexadecimal(self, min_width: usize, twos_complement: bool, upper: bool) -> Self {
        assert!(
            min_width > 0,
            "Slider::hexadecimal: `min_width` must be greater than 0"
        );
        match (twos_complement, upper) {
            (true, true) => {
                self.custom_formatter(move |n, _| format!("{:0>min_width$X}", n as i64))
            }
            (true, false) => {
                self.custom_formatter(move |n, _| format!("{:0>min_width$x}", n as i64))
            }
            (false, true) => self.custom_formatter(move |n, _| {
                let sign = if n < 0.0 { MINUS_CHAR_STR } else { "" };
                format!("{sign}{:0>min_width$X}", n.abs() as i64)
            }),
            (false, false) => self.custom_formatter(move |n, _| {
                let sign = if n < 0.0 { MINUS_CHAR_STR } else { "" };
                format!("{sign}{:0>min_width$x}", n.abs() as i64)
            }),
        }
        .custom_parser(|s| i64::from_str_radix(s, 16).map(|n| n as f64).ok())
    }

    /// Helper: equivalent to `self.precision(0).smallest_positive(1.0)`.
    /// If you use one of the integer constructors (e.g. `Slider::i32`) this is called for you,
    /// but if you want to have a slider for picking integer values in an `Slider::f64`, use this.
    pub fn integer(self) -> Self {
        self.fixed_decimals(0).smallest_positive(1.0).step_by(1.0)
    }

    fn get_value(&mut self) -> f64 {
        let value = get(&mut self.get_set_value);
        if self.clamping == SliderClamping::Always {
            clamp_value_to_range(value, self.range.clone())
        } else {
            value
        }
    }

    fn set_value(&mut self, mut value: f64) {
        if self.clamping != SliderClamping::Never {
            value = clamp_value_to_range(value, self.range.clone());
        }

        if let Some(step) = self.step {
            let start = *self.range.start();
            value = start + ((value - start) / step).round() * step;
        }
        if let Some(max_decimals) = self.max_decimals {
            value = emath::round_to_decimals(value, max_decimals);
        }
        set(&mut self.get_set_value, value);
    }

    fn range(&self) -> RangeInclusive<f64> {
        self.range.clone()
    }

    /// For instance, `position` is the mouse position and `position_range` is the physical location of the slider on the screen.
    fn value_from_position(&self, position: f32, position_range: Rangef) -> f64 {
        let normalized = remap_clamp(position, position_range, 0.0..=1.0) as f64;
        value_from_normalized(normalized, self.range(), &self.spec)
    }

    fn position_from_value(&self, value: f64, position_range: Rangef) -> f32 {
        let normalized = normalized_from_value(value, self.range(), &self.spec);
        lerp(position_range, normalized as f32)
    }
}

impl<'a> Slider<'a> {
    /// Just the slider, no text
    fn allocate_slider_space(&self, ui: &mut Ui, thickness: f32) -> Response {
        let desired_size = match self.orientation {
            SliderOrientation::Horizontal => vec2(ui.spacing().slider_width, thickness),
            SliderOrientation::Vertical => vec2(thickness, ui.spacing().slider_width),
        };
        ui.allocate_response(desired_size, Sense::drag())
    }

    /// Just the slider, no text
    fn slider_ui(&mut self, ui: &Ui, response: &Response) {
        let rect = &response.rect;
        let handle_shape = self
            .handle_shape
            .unwrap_or_else(|| ui.style().visuals.handle_shape);
        let position_range = self.position_range(rect, &handle_shape);

        if let Some(pointer_position_2d) = response.interact_pointer_pos() {
            let position = self.pointer_position(pointer_position_2d);
            let new_value = if self.smart_aim {
                let aim_radius = ui.input(|i| i.aim_radius());
                emath::smart_aim::best_in_range_f64(
                    self.value_from_position(position - aim_radius, position_range),
                    self.value_from_position(position + aim_radius, position_range),
                )
            } else {
                self.value_from_position(position, position_range)
            };
            self.set_value(new_value);
        }

        let mut decrement = 0usize;
        let mut increment = 0usize;

        if response.has_focus() {
            ui.ctx().memory_mut(|m| {
                m.set_focus_lock_filter(
                    response.id,
                    EventFilter {
                        // pressing arrows in the orientation of the
                        // slider should not move focus to next widget
                        horizontal_arrows: matches!(
                            self.orientation,
                            SliderOrientation::Horizontal
                        ),
                        vertical_arrows: matches!(self.orientation, SliderOrientation::Vertical),
                        ..Default::default()
                    },
                );
            });

            let (dec_key, inc_key) = match self.orientation {
                SliderOrientation::Horizontal => (Key::ArrowLeft, Key::ArrowRight),
                // Note that this is for moving the slider position,
                // so up = decrement y coordinate:
                SliderOrientation::Vertical => (Key::ArrowUp, Key::ArrowDown),
            };

            ui.input(|input| {
                decrement += input.num_presses(dec_key);
                increment += input.num_presses(inc_key);
            });
        }

        #[cfg(feature = "accesskit")]
        {
            use accesskit::Action;
            ui.input(|input| {
                decrement += input.num_accesskit_action_requests(response.id, Action::Decrement);
                increment += input.num_accesskit_action_requests(response.id, Action::Increment);
            });
        }

        let kb_step = increment as f32 - decrement as f32;

        if kb_step != 0.0 {
            let ui_point_per_step = 1.0; // move this many ui points for each kb_step
            let prev_value = self.get_value();
            let prev_position = self.position_from_value(prev_value, position_range);
            let new_position = prev_position + ui_point_per_step * kb_step;
            let new_value = match self.step {
                Some(step) => prev_value + (kb_step as f64 * step),
                None if self.smart_aim => {
                    let aim_radius = 0.49 * ui_point_per_step; // Chosen so we don't include `prev_value` in the search.
                    emath::smart_aim::best_in_range_f64(
                        self.value_from_position(new_position - aim_radius, position_range),
                        self.value_from_position(new_position + aim_radius, position_range),
                    )
                }
                _ => self.value_from_position(new_position, position_range),
            };
            self.set_value(new_value);
        }

        #[cfg(feature = "accesskit")]
        {
            use accesskit::{Action, ActionData};
            ui.input(|input| {
                for request in input.accesskit_action_requests(response.id, Action::SetValue) {
                    if let Some(ActionData::NumericValue(new_value)) = request.data {
                        self.set_value(new_value);
                    }
                }
            });
        }

        // Paint it:
        if ui.is_rect_visible(response.rect) {
            let value = self.get_value();

            let visuals = ui.style().interact(response);
            let widget_visuals = &ui.visuals().widgets;
            let spacing = &ui.style().spacing;

            let rail_radius = (spacing.slider_rail_height / 2.0).at_least(0.0);
            let rail_rect = self.rail_rect(rect, rail_radius);
            let rounding = widget_visuals.inactive.rounding;

            ui.painter()
                .rect_filled(rail_rect, rounding, widget_visuals.inactive.bg_fill);

            let position_1d = self.position_from_value(value, position_range);
            let center = self.marker_center(position_1d, &rail_rect);

            // Decide if we should add trailing fill.
            let trailing_fill = self
                .trailing_fill
                .unwrap_or_else(|| ui.visuals().slider_trailing_fill);

            // Paint trailing fill.
            if trailing_fill {
                let mut trailing_rail_rect = rail_rect;

                // The trailing rect has to be drawn differently depending on the orientation.
                match self.orientation {
                    SliderOrientation::Horizontal => {
                        trailing_rail_rect.max.x = center.x + rounding.nw;
                    }
                    SliderOrientation::Vertical => {
                        trailing_rail_rect.min.y = center.y - rounding.se;
                    }
                };

                ui.painter().rect_filled(
                    trailing_rail_rect,
                    rounding,
                    ui.visuals().selection.bg_fill,
                );
            }

            let radius = self.handle_radius(rect);

            let handle_shape = self
                .handle_shape
                .unwrap_or_else(|| ui.style().visuals.handle_shape);
            match handle_shape {
                style::HandleShape::Circle => {
                    ui.painter().add(epaint::CircleShape {
                        center,
                        radius: radius + visuals.expansion,
                        fill: visuals.bg_fill,
                        stroke: visuals.fg_stroke,
                    });
                }
                style::HandleShape::Rect { aspect_ratio } => {
                    let v = match self.orientation {
                        SliderOrientation::Horizontal => Vec2::new(radius * aspect_ratio, radius),
                        SliderOrientation::Vertical => Vec2::new(radius, radius * aspect_ratio),
                    };
                    let v = v + Vec2::splat(visuals.expansion);
                    let rect = Rect::from_center_size(center, 2.0 * v);
                    ui.painter()
                        .rect(rect, visuals.rounding, visuals.bg_fill, visuals.fg_stroke);
                }
            }
        }
    }

    fn marker_center(&self, position_1d: f32, rail_rect: &Rect) -> Pos2 {
        match self.orientation {
            SliderOrientation::Horizontal => pos2(position_1d, rail_rect.center().y),
            SliderOrientation::Vertical => pos2(rail_rect.center().x, position_1d),
        }
    }

    fn pointer_position(&self, pointer_position_2d: Pos2) -> f32 {
        match self.orientation {
            SliderOrientation::Horizontal => pointer_position_2d.x,
            SliderOrientation::Vertical => pointer_position_2d.y,
        }
    }

    fn position_range(&self, rect: &Rect, handle_shape: &style::HandleShape) -> Rangef {
        let handle_radius = self.handle_radius(rect);
        let handle_radius = match handle_shape {
            style::HandleShape::Circle => handle_radius,
            style::HandleShape::Rect { aspect_ratio } => handle_radius * aspect_ratio,
        };
        match self.orientation {
            SliderOrientation::Horizontal => rect.x_range().shrink(handle_radius),
            // The vertical case has to be flipped because the largest slider value maps to the
            // lowest y value (which is at the top)
            SliderOrientation::Vertical => rect.y_range().shrink(handle_radius).flip(),
        }
    }

    fn rail_rect(&self, rect: &Rect, radius: f32) -> Rect {
        match self.orientation {
            SliderOrientation::Horizontal => Rect::from_min_max(
                pos2(rect.left(), rect.center().y - radius),
                pos2(rect.right(), rect.center().y + radius),
            ),
            SliderOrientation::Vertical => Rect::from_min_max(
                pos2(rect.center().x - radius, rect.top()),
                pos2(rect.center().x + radius, rect.bottom()),
            ),
        }
    }

    fn handle_radius(&self, rect: &Rect) -> f32 {
        let limit = match self.orientation {
            SliderOrientation::Horizontal => rect.height(),
            SliderOrientation::Vertical => rect.width(),
        };
        limit / 2.5
    }

    fn value_ui(&mut self, ui: &mut Ui, position_range: Rangef) -> Response {
        // If [`DragValue`] is controlled from the keyboard and `step` is defined, set speed to `step`
        let change = ui.input(|input| {
            input.num_presses(Key::ArrowUp) as i32 + input.num_presses(Key::ArrowRight) as i32
                - input.num_presses(Key::ArrowDown) as i32
                - input.num_presses(Key::ArrowLeft) as i32
        });

        let any_change = change != 0;
        let speed = if let (Some(step), true) = (self.step, any_change) {
            // If [`DragValue`] is controlled from the keyboard and `step` is defined, set speed to `step`
            step
        } else {
            self.drag_value_speed
                .unwrap_or_else(|| self.current_gradient(position_range))
        };

        let mut value = self.get_value();
        let response = ui.add({
            let mut dv = DragValue::new(&mut value)
                .speed(speed)
                .min_decimals(self.min_decimals)
                .max_decimals_opt(self.max_decimals)
                .suffix(self.suffix.clone())
                .prefix(self.prefix.clone());

            match self.clamping {
                SliderClamping::Never => {}
                SliderClamping::Edits => {
                    dv = dv.range(self.range.clone()).clamp_existing_to_range(false);
                }
                SliderClamping::Always => {
                    dv = dv.range(self.range.clone()).clamp_existing_to_range(true);
                }
            }

            if let Some(fmt) = &self.custom_formatter {
                dv = dv.custom_formatter(fmt);
            };
            if let Some(parser) = &self.custom_parser {
                dv = dv.custom_parser(parser);
            }
            dv
        });
        if value != self.get_value() {
            self.set_value(value);
        }
        response
    }

    /// delta(value) / delta(points)
    fn current_gradient(&mut self, position_range: Rangef) -> f64 {
        // TODO(emilk): handle clamping
        let value = self.get_value();
        let value_from_pos = |position: f32| self.value_from_position(position, position_range);
        let pos_from_value = |value: f64| self.position_from_value(value, position_range);
        let left_value = value_from_pos(pos_from_value(value) - 0.5);
        let right_value = value_from_pos(pos_from_value(value) + 0.5);
        right_value - left_value
    }

    fn add_contents(&mut self, ui: &mut Ui) -> Response {
        let old_value = self.get_value();

        if self.clamping == SliderClamping::Always {
            self.set_value(old_value);
        }

        let thickness = ui
            .text_style_height(&TextStyle::Body)
            .at_least(ui.spacing().interact_size.y);
        let mut response = self.allocate_slider_space(ui, thickness);
        self.slider_ui(ui, &response);

        let value = self.get_value();
        response.changed = value != old_value;
        response.widget_info(|| WidgetInfo::slider(ui.is_enabled(), value, self.text.text()));

        #[cfg(feature = "accesskit")]
        ui.ctx().accesskit_node_builder(response.id, |builder| {
            use accesskit::Action;
            builder.set_min_numeric_value(*self.range.start());
            builder.set_max_numeric_value(*self.range.end());
            if let Some(step) = self.step {
                builder.set_numeric_value_step(step);
            }
            builder.add_action(Action::SetValue);

            let clamp_range = if self.clamping == SliderClamping::Never {
                f64::NEG_INFINITY..=f64::INFINITY
            } else {
                self.range()
            };
            if value < *clamp_range.end() {
                builder.add_action(Action::Increment);
            }
            if value > *clamp_range.start() {
                builder.add_action(Action::Decrement);
            }
        });

        let slider_response = response.clone();

        let value_response = if self.show_value {
            let handle_shape = self
                .handle_shape
                .unwrap_or_else(|| ui.style().visuals.handle_shape);
            let position_range = self.position_range(&response.rect, &handle_shape);
            let value_response = self.value_ui(ui, position_range);
            if value_response.gained_focus()
                || value_response.has_focus()
                || value_response.lost_focus()
            {
                // Use the [`DragValue`] id as the id of the whole widget,
                // so that the focus events work as expected.
                response = value_response.union(response);
            } else {
                // Use the slider id as the id for the whole widget
                response = response.union(value_response.clone());
            }
            Some(value_response)
        } else {
            None
        };

        if !self.text.is_empty() {
            let label_response =
                ui.add(Label::new(self.text.clone()).wrap_mode(TextWrapMode::Extend));
            // The slider already has an accessibility label via widget info,
            // but sometimes it's useful for a screen reader to know
            // that a piece of text is a label for another widget,
            // e.g. so the text itself can be excluded from navigation.
            slider_response.labelled_by(label_response.id);
            if let Some(value_response) = value_response {
                value_response.labelled_by(label_response.id);
            }
        }

        response
    }
}

impl<'a> Widget for Slider<'a> {
    fn ui(mut self, ui: &mut Ui) -> Response {
        let inner_response = match self.orientation {
            SliderOrientation::Horizontal => ui.horizontal(|ui| self.add_contents(ui)),
            SliderOrientation::Vertical => ui.vertical(|ui| self.add_contents(ui)),
        };

        inner_response.inner | inner_response.response
    }
}

// ----------------------------------------------------------------------------
// Helpers for converting slider range to/from normalized [0-1] range.
// Always clamps.
// Logarithmic sliders are allowed to include zero and infinity,
// even though mathematically it doesn't make sense.

const INFINITY: f64 = f64::INFINITY;

/// When the user asks for an infinitely large range (e.g. logarithmic from zero),
/// give a scale that this many orders of magnitude in size.
const INF_RANGE_MAGNITUDE: f64 = 10.0;

fn value_from_normalized(normalized: f64, range: RangeInclusive<f64>, spec: &SliderSpec) -> f64 {
    let (min, max) = (*range.start(), *range.end());

    if min.is_nan() || max.is_nan() {
        f64::NAN
    } else if min == max {
        min
    } else if min > max {
        value_from_normalized(1.0 - normalized, max..=min, spec)
    } else if normalized <= 0.0 {
        min
    } else if normalized >= 1.0 {
        max
    } else if spec.logarithmic {
        if max <= 0.0 {
            // non-positive range
            -value_from_normalized(normalized, -min..=-max, spec)
        } else if 0.0 <= min {
            let (min_log, max_log) = range_log10(min, max, spec);
            let log = lerp(min_log..=max_log, normalized);
            10.0_f64.powf(log)
        } else {
            assert!(min < 0.0 && 0.0 < max);
            let zero_cutoff = logarithmic_zero_cutoff(min, max);
            if normalized < zero_cutoff {
                // negative
                value_from_normalized(
                    remap(normalized, 0.0..=zero_cutoff, 0.0..=1.0),
                    min..=0.0,
                    spec,
                )
            } else {
                // positive
                value_from_normalized(
                    remap(normalized, zero_cutoff..=1.0, 0.0..=1.0),
                    0.0..=max,
                    spec,
                )
            }
        }
    } else {
        debug_assert!(
            min.is_finite() && max.is_finite(),
            "You should use a logarithmic range"
        );
        lerp(range, normalized.clamp(0.0, 1.0))
    }
}

fn normalized_from_value(value: f64, range: RangeInclusive<f64>, spec: &SliderSpec) -> f64 {
    let (min, max) = (*range.start(), *range.end());

    if min.is_nan() || max.is_nan() {
        f64::NAN
    } else if min == max {
        0.5 // empty range, show center of slider
    } else if min > max {
        1.0 - normalized_from_value(value, max..=min, spec)
    } else if value <= min {
        0.0
    } else if value >= max {
        1.0
    } else if spec.logarithmic {
        if max <= 0.0 {
            // non-positive range
            normalized_from_value(-value, -min..=-max, spec)
        } else if 0.0 <= min {
            let (min_log, max_log) = range_log10(min, max, spec);
            let value_log = value.log10();
            remap_clamp(value_log, min_log..=max_log, 0.0..=1.0)
        } else {
            assert!(min < 0.0 && 0.0 < max);
            let zero_cutoff = logarithmic_zero_cutoff(min, max);
            if value < 0.0 {
                // negative
                remap(
                    normalized_from_value(value, min..=0.0, spec),
                    0.0..=1.0,
                    0.0..=zero_cutoff,
                )
            } else {
                // positive side
                remap(
                    normalized_from_value(value, 0.0..=max, spec),
                    0.0..=1.0,
                    zero_cutoff..=1.0,
                )
            }
        }
    } else {
        debug_assert!(
            min.is_finite() && max.is_finite(),
            "You should use a logarithmic range"
        );
        remap_clamp(value, range, 0.0..=1.0)
    }
}

fn range_log10(min: f64, max: f64, spec: &SliderSpec) -> (f64, f64) {
    assert!(spec.logarithmic);
    assert!(min <= max);

    if min == 0.0 && max == INFINITY {
        (spec.smallest_positive.log10(), INF_RANGE_MAGNITUDE)
    } else if min == 0.0 {
        if spec.smallest_positive < max {
            (spec.smallest_positive.log10(), max.log10())
        } else {
            (max.log10() - INF_RANGE_MAGNITUDE, max.log10())
        }
    } else if max == INFINITY {
        if min < spec.largest_finite {
            (min.log10(), spec.largest_finite.log10())
        } else {
            (min.log10(), min.log10() + INF_RANGE_MAGNITUDE)
        }
    } else {
        (min.log10(), max.log10())
    }
}

/// where to put the zero cutoff for logarithmic sliders
/// that crosses zero ?
fn logarithmic_zero_cutoff(min: f64, max: f64) -> f64 {
    assert!(min < 0.0 && 0.0 < max);

    let min_magnitude = if min == -INFINITY {
        INF_RANGE_MAGNITUDE
    } else {
        min.abs().log10().abs()
    };
    let max_magnitude = if max == INFINITY {
        INF_RANGE_MAGNITUDE
    } else {
        max.log10().abs()
    };

    let cutoff = min_magnitude / (min_magnitude + max_magnitude);
    debug_assert!(
        0.0 <= cutoff && cutoff <= 1.0,
        "Bad cutoff {cutoff:?} for min {min:?} and max {max:?}"
    );
    cutoff
}