1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
//! Crop away unwanted pixels. Includes automatic detection of bounding rectangle.
//! Currently does not support deep data and resolution levels.
use crate::meta::attribute::{IntegerBounds, LevelMode, ChannelList};
use crate::math::{Vec2, RoundingMode};
use crate::image::{Layer, FlatSamples, SpecificChannels, AnyChannels, FlatSamplesPixel, AnyChannel};
use crate::image::write::channels::{GetPixel, WritableChannels, ChannelsWriter};
use crate::meta::header::{LayerAttributes, Header};
use crate::block::BlockIndex;
/// Something that has a two-dimensional rectangular shape
pub trait GetBounds {
/// The bounding rectangle of this pixel grid.
fn bounds(&self) -> IntegerBounds;
}
/// Inspect the pixels in this image to determine where to crop some away
pub trait InspectSample: GetBounds {
/// The type of pixel in this pixel grid.
type Sample;
/// Index is not in world coordinates, but within the data window.
/// Position `(0,0)` always represents the top left pixel.
fn inspect_sample(&self, local_index: Vec2<usize>) -> Self::Sample;
}
/// Crop some pixels ways when specifying a smaller rectangle
pub trait Crop: Sized {
/// The type of this image after cropping (probably the same as before)
type Cropped;
/// Crop the image to exclude unwanted pixels.
/// Panics for invalid (larger than previously) bounds.
/// The bounds are specified in absolute coordinates.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn crop(self, bounds: IntegerBounds) -> Self::Cropped;
/// Reduce your image to a smaller part, usually to save memory.
/// Crop if bounds are specified, return the original if no bounds are specified.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn try_crop(self, bounds: Option<IntegerBounds>) -> CropResult<Self::Cropped, Self> {
match bounds {
Some(bounds) => CropResult::Cropped(self.crop(bounds)),
None => CropResult::Empty { original: self },
}
}
}
/// Cropping an image fails if the image is fully transparent.
/// Use [`or_crop_to_1x1_if_empty`] or [`or_none_if_empty`] to obtain a normal image again.
#[must_use]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum CropResult<Cropped, Old> {
/// The image contained some pixels and has been cropped or left untouched
Cropped (Cropped),
/// All pixels in the image would be discarded, removing the whole image
Empty {
/// The fully discarded image which caused the cropping to fail
original: Old
}
}
/// Crop away unwanted pixels from the border if they match the specified rule.
pub trait CropWhere<Sample>: Sized {
/// The type of the cropped image (probably the same as the original image).
type Cropped;
/// Crop away unwanted pixels from the border if they match the specified rule.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn crop_where(self, discard_if: impl Fn(Sample) -> bool) -> CropResult<Self::Cropped, Self>;
/// Crop away unwanted pixels from the border if they match the specified color.
/// If you want discard based on a rule, use `crop_where` with a closure instead.
/// Does not reduce allocation size of the current image, but instead only adjust a few boundary numbers.
/// Use `reallocate_cropped()` on the return value to actually reduce the memory footprint.
fn crop_where_eq(self, discard_color: impl Into<Sample>) -> CropResult<Self::Cropped, Self> where Sample: PartialEq;
/// Convert this data to cropped data without discarding any pixels.
fn crop_nowhere(self) -> Self::Cropped;
}
impl<Channels> Crop for Layer<Channels> {
type Cropped = Layer<CroppedChannels<Channels>>;
fn crop(self, bounds: IntegerBounds) -> Self::Cropped {
CroppedChannels::crop_layer(bounds, self)
}
}
impl<T> CropWhere<T::Sample> for T where T: Crop + InspectSample {
type Cropped = <Self as Crop>::Cropped;
fn crop_where(self, discard_if: impl Fn(T::Sample) -> bool) -> CropResult<Self::Cropped, Self> {
let smaller_bounds = {
let keep_if = |position| !discard_if(self.inspect_sample(position));
try_find_smaller_bounds(self.bounds(), keep_if)
};
self.try_crop(smaller_bounds)
}
fn crop_where_eq(self, discard_color: impl Into<T::Sample>) -> CropResult<Self::Cropped, Self> where T::Sample: PartialEq {
let discard_color: T::Sample = discard_color.into();
self.crop_where(|sample| sample == discard_color)
}
fn crop_nowhere(self) -> Self::Cropped {
let current_bounds = self.bounds();
self.crop(current_bounds)
}
}
/// A smaller window into an existing pixel storage
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CroppedChannels<Channels> {
/// The uncropped pixel storage
pub full_channels: Channels,
/// The uncropped pixel storage bounds
pub full_bounds: IntegerBounds,
/// The cropped pixel storage bounds
pub cropped_bounds: IntegerBounds,
}
impl<Channels> CroppedChannels<Channels> {
/// Wrap a layer in a cropped view with adjusted bounds, but without reallocating your pixels
pub fn crop_layer(new_bounds: IntegerBounds, layer: Layer<Channels>) -> Layer<CroppedChannels<Channels>> {
Layer {
channel_data: CroppedChannels {
cropped_bounds: new_bounds,
full_bounds: layer.absolute_bounds(),
full_channels: layer.channel_data,
},
size: new_bounds.size,
attributes: LayerAttributes {
layer_position: new_bounds.position,
.. layer.attributes
},
encoding: layer.encoding
}
}
}
// TODO make cropped view readable if you only need a specific section of the image?
// make cropped view writable:
impl<'slf, Channels:'slf> WritableChannels<'slf> for CroppedChannels<Channels> where Channels: WritableChannels<'slf> {
fn infer_channel_list(&self) -> ChannelList {
self.full_channels.infer_channel_list() // no need for adjustments, as the layer content already reflects the changes
}
fn infer_level_modes(&self) -> (LevelMode, RoundingMode) {
self.full_channels.infer_level_modes()
}
type Writer = CroppedWriter<Channels::Writer>;
fn create_writer(&'slf self, header: &Header) -> Self::Writer {
let offset = (self.cropped_bounds.position - self.full_bounds.position)
.to_usize("invalid cropping bounds for cropped view").unwrap();
CroppedWriter { channels: self.full_channels.create_writer(header), offset }
}
}
/// A writer for the cropped view layer
#[derive(Debug, Clone, PartialEq)]
pub struct CroppedWriter<ChannelsWriter> {
channels: ChannelsWriter,
offset: Vec2<usize>
}
impl<'c, Channels> ChannelsWriter for CroppedWriter<Channels> where Channels: ChannelsWriter {
fn extract_uncompressed_block(&self, header: &Header, block: BlockIndex) -> Vec<u8> {
let block = BlockIndex {
pixel_position: block.pixel_position + self.offset,
.. block
};
self.channels.extract_uncompressed_block(header, block)
}
}
impl<Samples, Channels> InspectSample for Layer<SpecificChannels<Samples, Channels>> where Samples: GetPixel {
type Sample = Samples::Pixel;
fn inspect_sample(&self, local_index: Vec2<usize>) -> Samples::Pixel {
self.channel_data.pixels.get_pixel(local_index)
}
}
impl InspectSample for Layer<AnyChannels<FlatSamples>> {
type Sample = FlatSamplesPixel;
fn inspect_sample(&self, local_index: Vec2<usize>) -> FlatSamplesPixel {
self.sample_vec_at(local_index)
}
}
// ALGORITHM IDEA: for arbitrary channels, find the most desired channel,
// and process that first, keeping the processed bounds as starting point for the other layers
/// Realize a cropped view of the original data,
/// by actually removing the unwanted original pixels,
/// reducing the memory consumption.
/// Currently not supported for `SpecificChannels`.
pub trait ApplyCroppedView {
/// The simpler type after cropping is realized
type Reallocated;
/// Make the cropping real by reallocating the underlying storage,
/// with the goal of reducing total memory usage.
/// Currently not supported for `SpecificChannels`.
fn reallocate_cropped(self) -> Self::Reallocated;
}
impl ApplyCroppedView for Layer<CroppedChannels<AnyChannels<FlatSamples>>> {
type Reallocated = Layer<AnyChannels<FlatSamples>>;
fn reallocate_cropped(self) -> Self::Reallocated {
let cropped_absolute_bounds = self.channel_data.cropped_bounds;
let cropped_relative_bounds = cropped_absolute_bounds.with_origin(-self.channel_data.full_bounds.position);
assert!(self.absolute_bounds().contains(cropped_absolute_bounds), "bounds not valid for layer dimensions");
assert!(cropped_relative_bounds.size.area() > 0, "the cropped image would be empty");
Layer {
channel_data: if cropped_relative_bounds.size == self.channel_data.full_bounds.size {
assert_eq!(cropped_absolute_bounds.position, self.channel_data.full_bounds.position, "crop bounds size equals, but position does not");
// the cropping would not remove any pixels
self.channel_data.full_channels
}
else {
let start_x = cropped_relative_bounds.position.x() as usize; // safe, because just checked above
let start_y = cropped_relative_bounds.position.y() as usize; // safe, because just checked above
let x_range = start_x .. start_x + cropped_relative_bounds.size.width();
let old_width = self.channel_data.full_bounds.size.width();
let new_height = cropped_relative_bounds.size.height();
let channels = self.channel_data.full_channels.list.into_iter().map(|channel: AnyChannel<FlatSamples>| {
fn crop_samples<T:Copy>(samples: Vec<T>, old_width: usize, new_height: usize, x_range: std::ops::Range<usize>, y_start: usize) -> Vec<T> {
let filtered_lines = samples.chunks_exact(old_width).skip(y_start).take(new_height);
let trimmed_lines = filtered_lines.map(|line| &line[x_range.clone()]);
trimmed_lines.flatten().map(|x|*x).collect() // TODO does this use memcpy?
}
let samples = match channel.sample_data {
FlatSamples::F16(samples) => FlatSamples::F16(crop_samples(
samples, old_width, new_height, x_range.clone(), start_y
)),
FlatSamples::F32(samples) => FlatSamples::F32(crop_samples(
samples, old_width, new_height, x_range.clone(), start_y
)),
FlatSamples::U32(samples) => FlatSamples::U32(crop_samples(
samples, old_width, new_height, x_range.clone(), start_y
)),
};
AnyChannel { sample_data: samples, ..channel }
}).collect();
AnyChannels { list: channels }
},
attributes: self.attributes,
encoding: self.encoding,
size: self.size,
}
}
}
/// Return the smallest bounding rectangle including all pixels that satisfy the predicate.
/// Worst case: Fully transparent image, visits each pixel once.
/// Best case: Fully opaque image, visits two pixels.
/// Returns `None` if the image is fully transparent.
/// Returns `[(0,0), size]` if the image is fully opaque.
/// Designed to be cache-friendly linear search. Optimized for row-major image vectors.
pub fn try_find_smaller_bounds(current_bounds: IntegerBounds, pixel_at: impl Fn(Vec2<usize>) -> bool) -> Option<IntegerBounds> {
assert_ne!(current_bounds.size.area(), 0, "cannot find smaller bounds of an image with zero width or height");
let Vec2(width, height) = current_bounds.size;
// scans top to bottom (left to right)
let first_top_left_pixel = (0 .. height)
.flat_map(|y| (0 .. width).map(move |x| Vec2(x,y)))
.find(|&position| pixel_at(position))?; // return none if no pixel should be kept
// scans bottom to top (right to left)
let first_bottom_right_pixel = (first_top_left_pixel.y() + 1 .. height) // excluding the top line
.flat_map(|y| (0 .. width).map(move |x| Vec2(x, y))) // x search cannot start at first_top.x, because this must catch all bottom pixels
.rev().find(|&position| pixel_at(position))
.unwrap_or(first_top_left_pixel); // did not find any at bottom, but we know top has some pixel
// now we know exactly how much we can throw away top and bottom,
// but we don't know exactly about left or right
let top = first_top_left_pixel.y();
let bottom = first_bottom_right_pixel.y();
// we only now some arbitrary left and right bounds which we need to refine.
// because the actual image contents might be wider than the corner points.
// we know that we do not need to look in the center between min x and max x,
// as these must be included in any case.
let mut min_left_x = first_top_left_pixel.x().min(first_bottom_right_pixel.x());
let mut max_right_x = first_bottom_right_pixel.x().max(first_top_left_pixel.x());
// requires for loop, because bounds change while searching
for y in top ..= bottom {
// escape the loop if there is nothing left to crop
if min_left_x == 0 && max_right_x == width - 1 { break; }
// search from right image edge towards image center, until known max x, for existing pixels,
// possibly including some pixels that would have been cropped otherwise
if max_right_x != width - 1 {
max_right_x = (max_right_x + 1 .. width).rev() // excluding current max
.find(|&x| pixel_at(Vec2(x, y)))
.unwrap_or(max_right_x);
}
// search from left image edge towards image center, until known min x, for existing pixels,
// possibly including some pixels that would have been cropped otherwise
if min_left_x != 0 {
min_left_x = (0 .. min_left_x) // excluding current min
.find(|&x| pixel_at(Vec2(x, y)))
.unwrap_or(min_left_x);
}
}
// TODO add 1px margin to avoid interpolation issues?
let local_start = Vec2(min_left_x, top);
let local_end = Vec2(max_right_x + 1, bottom + 1);
Some(IntegerBounds::new(
current_bounds.position + local_start.to_i32(),
local_end - local_start
))
}
impl<S> GetBounds for Layer<S> {
fn bounds(&self) -> IntegerBounds {
self.absolute_bounds()
}
}
impl<Cropped, Original> CropResult<Cropped, Original> {
/// If the image was fully empty, return `None`, otherwise return `Some(cropped_image)`.
pub fn or_none_if_empty(self) -> Option<Cropped> {
match self {
CropResult::Cropped (cropped) => Some(cropped),
CropResult::Empty { .. } => None,
}
}
/// If the image was fully empty, crop to one single pixel of all the transparent pixels instead,
/// leaving the layer intact while reducing memory usage.
pub fn or_crop_to_1x1_if_empty(self) -> Cropped where Original: Crop<Cropped=Cropped> + GetBounds {
match self {
CropResult::Cropped (cropped) => cropped,
CropResult::Empty { original } => {
let bounds = original.bounds();
if bounds.size == Vec2(0,0) { panic!("layer has width and height of zero") }
original.crop(IntegerBounds::new(bounds.position, Vec2(1,1)))
},
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn find_bounds() {
fn find_bounds(offset: Vec2<i32>, lines: &Vec<Vec<i32>>) -> IntegerBounds {
if let Some(first_line) = lines.first() {
assert!(lines.iter().all(|line| line.len() == first_line.len()), "invalid test input");
IntegerBounds::new(offset, (first_line.len(), lines.len()))
}
else {
IntegerBounds::new(offset, (0,0))
}
}
fn assert_found_smaller_bounds(offset: Vec2<i32>, uncropped_lines: Vec<Vec<i32>>, expected_cropped_lines: Vec<Vec<i32>>) {
let old_bounds = find_bounds(offset, &uncropped_lines);
let found_bounds = try_find_smaller_bounds(
old_bounds,
|position| uncropped_lines[position.y()][position.x()] != 0
).unwrap();
let found_bounds = found_bounds.with_origin(-offset); // make indices local
let cropped_lines: Vec<Vec<i32>> =
uncropped_lines[found_bounds.position.y() as usize .. found_bounds.end().y() as usize]
.iter().map(|uncropped_line|{
uncropped_line[found_bounds.position.x() as usize .. found_bounds.end().x() as usize].to_vec()
}).collect();
assert_eq!(cropped_lines, expected_cropped_lines);
}
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 2, 3, 4 ],
vec![ 2, 3, 4 ],
],
vec![
vec![ 2, 3, 4 ],
vec![ 2, 3, 4 ],
]
);
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 2 ],
],
vec![
vec![ 2 ],
]
);
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 0 ],
vec![ 2 ],
vec![ 0 ],
vec![ 0 ],
],
vec![
vec![ 2 ],
]
);
assert_found_smaller_bounds(
Vec2(-3,-3),
vec![
vec![ 0, 0, 0, 3, 0 ],
],
vec![
vec![ 3 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 1, 1, 2, 1, 0 ],
vec![ 0, 1, 3, 1, 1, 0 ],
vec![ 0, 1, 1, 1, 1, 0 ],
],
vec![
vec![ 1, 1, 2, 1 ],
vec![ 1, 3, 1, 1 ],
vec![ 1, 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 0, 0, 0 ],
vec![ 1, 1, 2, 1 ],
vec![ 1, 3, 1, 1 ],
vec![ 1, 1, 1, 1 ],
vec![ 0, 0, 0, 0 ],
],
vec![
vec![ 1, 1, 2, 1 ],
vec![ 1, 3, 1, 1 ],
vec![ 1, 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 1, 1, 2, 1, 0 ],
vec![ 0, 0, 3, 1, 0, 0 ],
vec![ 0, 1, 1, 1, 1, 0 ],
],
vec![
vec![ 1, 1, 2, 1 ],
vec![ 0, 3, 1, 0 ],
vec![ 1, 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(3,3),
vec![
vec![ 0, 0, 1, 2, 0, 0 ],
vec![ 0, 1, 3, 1, 1, 0 ],
vec![ 0, 0, 1, 1, 0, 0 ],
],
vec![
vec![ 0, 1, 2, 0 ],
vec![ 1, 3, 1, 1 ],
vec![ 0, 1, 1, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(1,3),
vec![
vec![ 1, 0, 0, 0, ],
vec![ 0, 0, 0, 0, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(1,3),
vec![
vec![ 0, 0, 0, 0, ],
vec![ 0, 1, 0, 0, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 0, 0, 0, 0, ],
vec![ 0, 0, 0, 1, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 1, 1 ],
vec![ 1, 1, 1 ],
vec![ 1, 1, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(1000,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 1, 1, 1, 1, 1, 0 ],
vec![ 0, 0, 1, 1, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 0, 1, 1, 1, 0 ],
vec![ 1, 1, 1, 1, 1 ],
vec![ 0, 1, 1, 1, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 0, 1 ],
vec![ 0, 0, 0 ],
vec![ 1, 0, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 0, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 1, 0, 0, 0 ],
vec![ 0, 0, 0, 2, 0, 0, 0 ],
vec![ 0, 0, 3, 3, 3, 0, 0 ],
vec![ 0, 0, 0, 4, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 0, 1, 0 ],
vec![ 0, 2, 0 ],
vec![ 3, 3, 3 ],
vec![ 0, 4, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 1, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 0, 0, 1 ],
vec![ 0, 0, 0 ],
vec![ 0, 0, 0 ],
vec![ 1, 0, 0 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 1, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1, 0, 0, 0 ],
vec![ 0, 0, 0, 0 ],
vec![ 0, 0, 0, 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-10,-300),
vec![
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
vec![ 0, 0, 1, 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0, 0, 0, 0 ],
],
vec![
vec![ 1 ],
vec![ 0 ],
vec![ 0 ],
vec![ 1 ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 0, 0, 1, 0, ],
vec![ 0, 0, 0, 1, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1, 0, ],
vec![ 0, 1, ],
]
);
assert_found_smaller_bounds(
Vec2(-1,-3),
vec![
vec![ 1, 0, 0, 0, ],
vec![ 0, 1, 0, 0, ],
vec![ 0, 0, 0, 0, ],
vec![ 0, 0, 0, 0, ],
],
vec![
vec![ 1, 0, ],
vec![ 0, 1, ],
]
);
}
#[test]
fn find_no_bounds() {
let pixels = vec![
vec![ 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0 ],
vec![ 0, 0, 0, 0 ],
];
let bounds = try_find_smaller_bounds(
IntegerBounds::new((0,0), (4,3)),
|position| pixels[position.y()][position.x()] != 0
);
assert_eq!(bounds, None)
}
}