emath/
smart_aim.rs

1//! Find "simple" numbers is some range. Used by sliders.
2
3use crate::fast_midpoint;
4
5const NUM_DECIMALS: usize = 15;
6
7/// Find the "simplest" number in a closed range [min, max], i.e. the one with the fewest decimal digits.
8///
9/// So in the range `[0.83, 1.354]` you will get `1.0`, and for `[0.37, 0.48]` you will get `0.4`.
10/// This is used when dragging sliders etc to get the values that users are most likely to desire.
11/// This assumes a decimal centric user.
12pub fn best_in_range_f64(min: f64, max: f64) -> f64 {
13    // Avoid NaN if we can:
14    if min.is_nan() {
15        return max;
16    }
17    if max.is_nan() {
18        return min;
19    }
20
21    if max < min {
22        return best_in_range_f64(max, min);
23    }
24    if min == max {
25        return min;
26    }
27    if min <= 0.0 && 0.0 <= max {
28        return 0.0; // always prefer zero
29    }
30    if min < 0.0 {
31        return -best_in_range_f64(-max, -min);
32    }
33
34    // Prefer finite numbers:
35    if !max.is_finite() {
36        return min;
37    }
38    debug_assert!(
39        min.is_finite() && max.is_finite(),
40        "min: {min:?}, max: {max:?}"
41    );
42
43    let min_exponent = min.log10();
44    let max_exponent = max.log10();
45
46    if min_exponent.floor() != max_exponent.floor() {
47        // pick the geometric center of the two:
48        let exponent = fast_midpoint(min_exponent, max_exponent);
49        return 10.0_f64.powi(exponent.round() as i32);
50    }
51
52    if is_integer(min_exponent) {
53        return 10.0_f64.powf(min_exponent);
54    }
55    if is_integer(max_exponent) {
56        return 10.0_f64.powf(max_exponent);
57    }
58
59    let exp_factor = 10.0_f64.powi(max_exponent.floor() as i32);
60
61    let min_str = to_decimal_string(min / exp_factor);
62    let max_str = to_decimal_string(max / exp_factor);
63
64    let mut ret_str = [0; NUM_DECIMALS];
65
66    // Select the common prefix:
67    let mut i = 0;
68    while i < NUM_DECIMALS && max_str[i] == min_str[i] {
69        ret_str[i] = max_str[i];
70        i += 1;
71    }
72
73    if i < NUM_DECIMALS {
74        // Pick the deciding digit.
75        // Note that "to_decimal_string" rounds down, so we that's why we add 1 here
76        ret_str[i] = simplest_digit_closed_range(min_str[i] + 1, max_str[i]);
77    }
78
79    from_decimal_string(&ret_str) * exp_factor
80}
81
82fn is_integer(f: f64) -> bool {
83    f.round() == f
84}
85
86fn to_decimal_string(v: f64) -> [i32; NUM_DECIMALS] {
87    debug_assert!(v < 10.0, "{v:?}");
88    let mut digits = [0; NUM_DECIMALS];
89    let mut v = v.abs();
90    for r in &mut digits {
91        let digit = v.floor();
92        *r = digit as i32;
93        v -= digit;
94        v *= 10.0;
95    }
96    digits
97}
98
99fn from_decimal_string(s: &[i32]) -> f64 {
100    let mut ret: f64 = 0.0;
101    for (i, &digit) in s.iter().enumerate() {
102        ret += (digit as f64) * 10.0_f64.powi(-(i as i32));
103    }
104    ret
105}
106
107/// Find the simplest integer in the range [min, max]
108fn simplest_digit_closed_range(min: i32, max: i32) -> i32 {
109    debug_assert!(
110        1 <= min && min <= max && max <= 9,
111        "min should be in [1, 9], but was {min:?} and max should be in [min, 9], but was {max:?}"
112    );
113    if min <= 5 && 5 <= max {
114        5
115    } else {
116        min.midpoint(max)
117    }
118}
119
120#[expect(clippy::approx_constant)]
121#[test]
122fn test_aim() {
123    assert_eq!(best_in_range_f64(-0.2, 0.0), 0.0, "Prefer zero");
124    assert_eq!(best_in_range_f64(-10_004.23, 3.14), 0.0, "Prefer zero");
125    assert_eq!(best_in_range_f64(-0.2, 100.0), 0.0, "Prefer zero");
126    assert_eq!(best_in_range_f64(0.2, 0.0), 0.0, "Prefer zero");
127    assert_eq!(best_in_range_f64(7.8, 17.8), 10.0);
128    assert_eq!(best_in_range_f64(99.0, 300.0), 100.0);
129    assert_eq!(best_in_range_f64(-99.0, -300.0), -100.0);
130    assert_eq!(best_in_range_f64(0.4, 0.9), 0.5, "Prefer ending on 5");
131    assert_eq!(best_in_range_f64(14.1, 19.99), 15.0, "Prefer ending on 5");
132    assert_eq!(best_in_range_f64(12.3, 65.9), 50.0, "Prefer leading 5");
133    assert_eq!(best_in_range_f64(493.0, 879.0), 500.0, "Prefer leading 5");
134    assert_eq!(best_in_range_f64(0.37, 0.48), 0.40);
135    // assert_eq!(best_in_range_f64(123.71, 123.76), 123.75); // TODO(emilk): we get 123.74999999999999 here
136    // assert_eq!(best_in_range_f32(123.71, 123.76), 123.75);
137    assert_eq!(best_in_range_f64(7.5, 16.3), 10.0);
138    assert_eq!(best_in_range_f64(7.5, 76.3), 10.0);
139    assert_eq!(best_in_range_f64(7.5, 763.3), 100.0);
140    assert_eq!(best_in_range_f64(7.5, 1_345.0), 100.0);
141    assert_eq!(best_in_range_f64(7.5, 123_456.0), 1000.0, "Geometric mean");
142    assert_eq!(best_in_range_f64(9.9999, 99.999), 10.0);
143    assert_eq!(best_in_range_f64(10.000, 99.999), 10.0);
144    assert_eq!(best_in_range_f64(10.001, 99.999), 50.0);
145    assert_eq!(best_in_range_f64(10.001, 100.000), 100.0);
146    assert_eq!(best_in_range_f64(99.999, 100.000), 100.0);
147    assert_eq!(best_in_range_f64(10.001, 100.001), 100.0);
148
149    const NAN: f64 = f64::NAN;
150    const INFINITY: f64 = f64::INFINITY;
151    const NEG_INFINITY: f64 = f64::NEG_INFINITY;
152    assert!(best_in_range_f64(NAN, NAN).is_nan());
153    assert_eq!(best_in_range_f64(NAN, 1.2), 1.2);
154    assert_eq!(best_in_range_f64(NAN, INFINITY), INFINITY);
155    assert_eq!(best_in_range_f64(1.2, NAN), 1.2);
156    assert_eq!(best_in_range_f64(1.2, INFINITY), 1.2);
157    assert_eq!(best_in_range_f64(INFINITY, 1.2), 1.2);
158    assert_eq!(best_in_range_f64(NEG_INFINITY, 1.2), 0.0);
159    assert_eq!(best_in_range_f64(NEG_INFINITY, -2.7), -2.7);
160    assert_eq!(best_in_range_f64(INFINITY, INFINITY), INFINITY);
161    assert_eq!(best_in_range_f64(NEG_INFINITY, NEG_INFINITY), NEG_INFINITY);
162    assert_eq!(best_in_range_f64(NEG_INFINITY, INFINITY), 0.0);
163    assert_eq!(best_in_range_f64(INFINITY, NEG_INFINITY), 0.0);
164}