1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Internal representation of clips in WebRender.
//!
//! # Data structures
//!
//! There are a number of data structures involved in the clip module:
//!
//! - ClipStore - Main interface used by other modules.
//!
//! - ClipItem - A single clip item (e.g. a rounded rect, or a box shadow).
//!              These are an exposed API type, stored inline in a ClipNode.
//!
//! - ClipNode - A ClipItem with an attached GPU handle. The GPU handle is populated
//!              when a ClipNodeInstance is built from this node (which happens while
//!              preparing primitives for render).
//!
//! ClipNodeInstance - A ClipNode with attached positioning information (a spatial
//!                    node index). This is stored as a contiguous array of nodes
//!                    within the ClipStore.
//!
//! ```ascii
//! +-----------------------+-----------------------+-----------------------+
//! | ClipNodeInstance      | ClipNodeInstance      | ClipNodeInstance      |
//! +-----------------------+-----------------------+-----------------------+
//! | ClipItem              | ClipItem              | ClipItem              |
//! | Spatial Node Index    | Spatial Node Index    | Spatial Node Index    |
//! | GPU cache handle      | GPU cache handle      | GPU cache handle      |
//! | ...                   | ...                   | ...                   |
//! +-----------------------+-----------------------+-----------------------+
//!            0                        1                       2
//!    +----------------+    |                                              |
//!    | ClipNodeRange  |____|                                              |
//!    |    index: 1    |                                                   |
//!    |    count: 2    |___________________________________________________|
//!    +----------------+
//! ```
//!
//! - ClipNodeRange - A clip item range identifies a range of clip nodes instances.
//!                   It is stored as an (index, count).
//!
//! - ClipChainNode - A clip chain node contains a handle to an interned clip item,
//!                   positioning information (from where the clip was defined), and
//!                   an optional parent link to another ClipChainNode. ClipChainId
//!                   is an index into an array, or ClipChainId::NONE for no parent.
//!
//! ```ascii
//! +----------------+    ____+----------------+    ____+----------------+   /---> ClipChainId::NONE
//! | ClipChainNode  |   |    | ClipChainNode  |   |    | ClipChainNode  |   |
//! +----------------+   |    +----------------+   |    +----------------+   |
//! | ClipDataHandle |   |    | ClipDataHandle |   |    | ClipDataHandle |   |
//! | Spatial index  |   |    | Spatial index  |   |    | Spatial index  |   |
//! | Parent Id      |___|    | Parent Id      |___|    | Parent Id      |___|
//! | ...            |        | ...            |        | ...            |
//! +----------------+        +----------------+        +----------------+
//! ```
//!
//! - ClipChainInstance - A ClipChain that has been built for a specific primitive + positioning node.
//!
//!    When given a clip chain ID, and a local primitive rect and its spatial node, the clip module
//!    creates a clip chain instance. This is a struct with various pieces of useful information
//!    (such as a local clip rect). It also contains a (index, count)
//!    range specifier into an index buffer of the ClipNodeInstance structures that are actually relevant
//!    for this clip chain instance. The index buffer structure allows a single array to be used for
//!    all of the clip-chain instances built in a single frame. Each entry in the index buffer
//!    also stores some flags relevant to the clip node in this positioning context.
//!
//! ```ascii
//! +----------------------+
//! | ClipChainInstance    |
//! +----------------------+
//! | ...                  |
//! | local_clip_rect      |________________________________________________________________________
//! | clips_range          |_______________                                                        |
//! +----------------------+              |                                                        |
//!                                       |                                                        |
//! +------------------+------------------+------------------+------------------+------------------+
//! | ClipNodeInstance | ClipNodeInstance | ClipNodeInstance | ClipNodeInstance | ClipNodeInstance |
//! +------------------+------------------+------------------+------------------+------------------+
//! | flags            | flags            | flags            | flags            | flags            |
//! | ...              | ...              | ...              | ...              | ...              |
//! +------------------+------------------+------------------+------------------+------------------+
//! ```
//!
//! # Rendering clipped primitives
//!
//! See the [`segment` module documentation][segment.rs].
//!
//!
//! [segment.rs]: ../segment/index.html
//!

use api::{BorderRadius, ClipMode, ComplexClipRegion, ImageMask, ClipId, ClipChainId};
use api::{BoxShadowClipMode, FillRule, ImageKey, ImageRendering};
use api::units::*;
use crate::image_tiling::{self, Repetition};
use crate::border::{ensure_no_corner_overlap, BorderRadiusAu};
use crate::box_shadow::{BLUR_SAMPLE_SCALE, BoxShadowClipSource, BoxShadowCacheKey};
use crate::spatial_tree::{SpatialTree, SpatialNodeIndex};
use crate::ellipse::Ellipse;
use crate::gpu_cache::GpuCache;
use crate::gpu_types::{BoxShadowStretchMode};
use crate::intern;
use crate::internal_types::{FastHashMap, FastHashSet, LayoutPrimitiveInfo};
use crate::prim_store::{VisibleMaskImageTile};
use crate::prim_store::{PointKey, SizeKey, RectangleKey, PolygonKey};
use crate::render_task_cache::to_cache_size;
use crate::render_task::RenderTask;
use crate::render_task_graph::RenderTaskGraphBuilder;
use crate::resource_cache::{ImageRequest, ResourceCache};
use crate::scene_builder_thread::Interners;
use crate::space::SpaceMapper;
use crate::util::{clamp_to_scale_factor, MaxRect, extract_inner_rect_safe, project_rect, ScaleOffset};
use euclid::approxeq::ApproxEq;
use std::{iter, ops, u32, mem};

/// A (non-leaf) node inside a clip-tree
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct ClipTreeNode {
    pub handle: ClipDataHandle,
    pub parent: ClipNodeId,

    children: Vec<ClipNodeId>,

    // TODO(gw): Consider adding a default leaf for cases when the local_clip_rect is not relevant,
    //           that can be shared among primitives (to reduce amount of clip-chain building).
}

/// A leaf node in a clip-tree. Any primitive that is clipped will have a handle to
/// a clip-tree leaf.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct ClipTreeLeaf {
    pub node_id: ClipNodeId,

    // TODO(gw): For now, this preserves the ability to build a culling rect
    //           from the supplied leaf local clip rect on the primitive. In
    //           future, we'll expand this to be more efficient by combining
    //           it will compatible clip rects from the `node_id`.
    pub local_clip_rect: LayoutRect,
}

/// ID for a ClipTreeNode
#[derive(Debug, Copy, Clone, PartialEq, MallocSizeOf, Eq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipNodeId(u32);

impl ClipNodeId {
    pub const NONE: ClipNodeId = ClipNodeId(0);
}

/// ID for a ClipTreeLeaf
#[derive(Debug, Copy, Clone, PartialEq, MallocSizeOf, Eq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipLeafId(u32);

/// A clip-tree built during scene building and used during frame-building to apply clips to primitives.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipTree {
    nodes: Vec<ClipTreeNode>,
    leaves: Vec<ClipTreeLeaf>,
    clip_root_stack: Vec<ClipNodeId>,
}

impl ClipTree {
    pub fn new() -> Self {
        ClipTree {
            nodes: vec![
                ClipTreeNode {
                    handle: ClipDataHandle::INVALID,
                    children: Vec::new(),
                    parent: ClipNodeId::NONE,
                }
            ],
            leaves: Vec::new(),
            clip_root_stack: vec![
                ClipNodeId::NONE,
            ],
        }
    }

    /// Add a set of clips to the provided tree node id, reusing existing
    /// nodes in the tree where possible
    fn add_impl(
        id: ClipNodeId,
        clips: &[ClipDataHandle],
        nodes: &mut Vec<ClipTreeNode>,
    ) -> ClipNodeId {
        if clips.is_empty() {
            return id;
        }

        let handle = clips[0];
        let next_clips = &clips[1..];

        let node_index = nodes[id.0 as usize]
            .children
            .iter()
            .find(|n| nodes[n.0 as usize].handle == handle)
            .cloned();

        let node_index = match node_index {
            Some(node_index) => node_index,
            None => {
                let node_index = ClipNodeId(nodes.len() as u32);
                nodes[id.0 as usize].children.push(node_index);
                let node = ClipTreeNode {
                    handle,
                    children: Vec::new(),
                    parent: id,
                };
                nodes.push(node);
                node_index
            }
        };

        ClipTree::add_impl(
            node_index,
            next_clips,
            nodes,
        )
    }

    /// Add a set of clips to the provided tree node id, reusing existing
    /// nodes in the tree where possible
    pub fn add(
        &mut self,
        root: ClipNodeId,
        clips: &[ClipDataHandle],
    ) -> ClipNodeId {
        ClipTree::add_impl(
            root,
            clips,
            &mut self.nodes,
        )
    }

    /// Get the current clip root (the node in the clip-tree where clips can be
    /// ignored when building the clip-chain instance for a primitive)
    pub fn current_clip_root(&self) -> ClipNodeId {
        self.clip_root_stack.last().cloned().unwrap()
    }

    /// Push a clip root (e.g. when a surface is encountered) that prevents clips
    /// from this node and above being applied to primitives within the root.
    pub fn push_clip_root_leaf(&mut self, clip_leaf_id: ClipLeafId) {
        let leaf = &self.leaves[clip_leaf_id.0 as usize];
        self.clip_root_stack.push(leaf.node_id);
    }

    /// Push a clip root (e.g. when a surface is encountered) that prevents clips
    /// from this node and above being applied to primitives within the root.
    pub fn push_clip_root_node(&mut self, clip_node_id: ClipNodeId) {
        self.clip_root_stack.push(clip_node_id);
    }

    /// Pop a clip root, when exiting a surface.
    pub fn pop_clip_root(&mut self) {
        self.clip_root_stack.pop().unwrap();
    }

    /// Retrieve a clip tree node by id
    pub fn get_node(&self, id: ClipNodeId) -> &ClipTreeNode {
        assert!(id != ClipNodeId::NONE);

        &self.nodes[id.0 as usize]
    }

    /// Retrieve a clip tree leaf by id
    pub fn get_leaf(&self, id: ClipLeafId) -> &ClipTreeLeaf {
        &self.leaves[id.0 as usize]
    }

    /// Debug print the clip-tree
    #[allow(unused)]
    pub fn print(&self) {
        use crate::print_tree::PrintTree;

        fn print_node<T: crate::print_tree::PrintTreePrinter>(
            id: ClipNodeId,
            nodes: &[ClipTreeNode],
            pt: &mut T,
        ) {
            let node = &nodes[id.0 as usize];

            pt.new_level(format!("{:?}", id));
            pt.add_item(format!("{:?}", node.handle));

            for child_id in &node.children {
                print_node(*child_id, nodes, pt);
            }

            pt.end_level();
        }

        fn print_leaf<T: crate::print_tree::PrintTreePrinter>(
            id: ClipLeafId,
            leaves: &[ClipTreeLeaf],
            pt: &mut T,
        ) {
            let leaf = &leaves[id.0 as usize];

            pt.new_level(format!("{:?}", id));
            pt.add_item(format!("node_id: {:?}", leaf.node_id));
            pt.add_item(format!("local_clip_rect: {:?}", leaf.local_clip_rect));
            pt.end_level();
        }

        let mut pt = PrintTree::new("clip tree");
        print_node(ClipNodeId::NONE, &self.nodes, &mut pt);

        for i in 0 .. self.leaves.len() {
            print_leaf(ClipLeafId(i as u32), &self.leaves, &mut pt);
        }
    }

    /// Find the lowest common ancestor of two clip tree nodes. This is useful
    /// to identify shared clips between primitives attached to different clip-leaves.
    pub fn find_lowest_common_ancestor(
        &self,
        mut node1: ClipNodeId,
        mut node2: ClipNodeId,
    ) -> ClipNodeId {
        // TODO(gw): Consider caching / storing the depth in the node?
        fn get_node_depth(
            id: ClipNodeId,
            nodes: &[ClipTreeNode],
        ) -> usize {
            let mut depth = 0;
            let mut current = id;

            while current != ClipNodeId::NONE {
                let node = &nodes[current.0 as usize];
                depth += 1;
                current = node.parent;
            }

            depth
        }

        let mut depth1 = get_node_depth(node1, &self.nodes);
        let mut depth2 = get_node_depth(node2, &self.nodes);

        while depth1 > depth2 {
            node1 = self.nodes[node1.0 as usize].parent;
            depth1 -= 1;
        }

        while depth2 > depth1 {
            node2 = self.nodes[node2.0 as usize].parent;
            depth2 -= 1;
        }

        while node1 != node2 {
            node1 = self.nodes[node1.0 as usize].parent;
            node2 = self.nodes[node2.0 as usize].parent;
        }

        node1
    }
}

/// Represents a clip-chain as defined by the public API that we decompose in to
/// the clip-tree. In future, we would like to remove this and have Gecko directly
/// build the clip-tree.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipChain {
    parent: Option<usize>,
    clips: Vec<ClipDataHandle>,
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipStackEntry {
    /// Cache the previous clip-chain build, since this is a common case
    last_clip_chain_cache: Option<(ClipChainId, ClipNodeId)>,

    /// Set of clips that were already seen and included in clip_node_id
    seen_clips: FastHashSet<ClipDataHandle>,

    /// The build clip_node_id for this level of the stack
    clip_node_id: ClipNodeId,
}

/// Used by the scene builder to build the clip-tree that is part of the built scene.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipTreeBuilder {
    /// Clips defined by the display list
    clip_map: FastHashMap<ClipId, ClipDataHandle>,

    /// Clip-chains defined by the display list
    clip_chains: Vec<ClipChain>,
    clip_chain_map: FastHashMap<ClipChainId, usize>,

    /// List of clips pushed/popped by grouping items, such as stacking contexts and iframes
    clip_stack: Vec<ClipStackEntry>,

    /// The tree we are building
    tree: ClipTree,

    /// A temporary buffer stored here to avoid constant heap allocs/frees
    clip_handles_buffer: Vec<ClipDataHandle>,
}

impl ClipTreeBuilder {
    pub fn new() -> Self {
        ClipTreeBuilder {
            clip_map: FastHashMap::default(),
            clip_chain_map: FastHashMap::default(),
            clip_chains: Vec::new(),
            clip_stack: vec![
                ClipStackEntry {
                    clip_node_id: ClipNodeId::NONE,
                    last_clip_chain_cache: None,
                    seen_clips: FastHashSet::default(),
                },
            ],
            tree: ClipTree::new(),
            clip_handles_buffer: Vec::new(),
        }
    }

    /// Define a new rect clip
    pub fn define_rect_clip(
        &mut self,
        id: ClipId,
        handle: ClipDataHandle,
    ) {
        self.clip_map.insert(id, handle);
    }

    /// Define a new rounded rect clip
    pub fn define_rounded_rect_clip(
        &mut self,
        id: ClipId,
        handle: ClipDataHandle,
    ) {
        self.clip_map.insert(id, handle);
    }

    /// Define a image mask clip
    pub fn define_image_mask_clip(
        &mut self,
        id: ClipId,
        handle: ClipDataHandle,
    ) {
        self.clip_map.insert(id, handle);
    }

    /// Define a clip-chain
    pub fn define_clip_chain<I: Iterator<Item = ClipId>>(
        &mut self,
        id: ClipChainId,
        parent: Option<ClipChainId>,
        clips: I,
    ) {
        let parent = parent.map(|ref id| self.clip_chain_map[id]);
        let index = self.clip_chains.len();
        let clips = clips.map(|clip_id| {
            self.clip_map[&clip_id]
        }).collect();
        self.clip_chains.push(ClipChain {
            parent,
            clips,
        });
        self.clip_chain_map.insert(id, index);
    }

    /// Push a clip-chain that will be applied to any prims built prior to next pop
    pub fn push_clip_chain(
        &mut self,
        clip_chain_id: Option<ClipChainId>,
        reset_seen: bool,
    ) {
        let (mut clip_node_id, mut seen_clips) = {
            let prev = self.clip_stack.last().unwrap();
            (prev.clip_node_id, prev.seen_clips.clone())
        };

        if let Some(clip_chain_id) = clip_chain_id {
            if clip_chain_id != ClipChainId::INVALID {
                self.clip_handles_buffer.clear();

                let clip_chain_index = self.clip_chain_map[&clip_chain_id];
                ClipTreeBuilder::add_clips(
                    clip_chain_index,
                    &mut seen_clips,
                    &mut self.clip_handles_buffer,
                    &self.clip_chains,
                );

                clip_node_id = self.tree.add(
                    clip_node_id,
                    &self.clip_handles_buffer,
                );
            }
        }

        if reset_seen {
            seen_clips.clear();
        }

        self.clip_stack.push(ClipStackEntry {
            last_clip_chain_cache: None,
            clip_node_id,
            seen_clips,
        });
    }

    /// Push a clip-id that will be applied to any prims built prior to next pop
    pub fn push_clip_id(
        &mut self,
        clip_id: ClipId,
    ) {
        let (clip_node_id, mut seen_clips) = {
            let prev = self.clip_stack.last().unwrap();
            (prev.clip_node_id, prev.seen_clips.clone())
        };

        self.clip_handles_buffer.clear();
        let clip_index = self.clip_map[&clip_id];

        if seen_clips.insert(clip_index) {
            self.clip_handles_buffer.push(clip_index);
        }

        let clip_node_id = self.tree.add(
            clip_node_id,
            &self.clip_handles_buffer,
        );

        self.clip_stack.push(ClipStackEntry {
            last_clip_chain_cache: None,
            seen_clips,
            clip_node_id,
        });
    }

    /// Pop a clip off the clip_stack, when exiting a grouping item
    pub fn pop_clip(&mut self) {
        self.clip_stack.pop().unwrap();
    }

    /// Add clips from a given clip-chain to the set of clips for a primitive during clip-set building
    fn add_clips(
        clip_chain_index: usize,
        seen_clips: &mut FastHashSet<ClipDataHandle>,
        output: &mut Vec<ClipDataHandle>,
        clip_chains: &[ClipChain],
    ) {
        // TODO(gw): It's possible that we may see clip outputs that include identical clips
        //           (e.g. if there is a clip positioned by two spatial nodes, where one spatial
        //           node is a child of the other, and has an identity transform). If we ever
        //           see this in real-world cases, it might be worth checking for that here and
        //           excluding them, to ensure the shape of the tree matches what we need for
        //           finding shared_clips for tile caches etc.

        let clip_chain = &clip_chains[clip_chain_index];

        if let Some(parent) = clip_chain.parent {
            ClipTreeBuilder::add_clips(
                parent,
                seen_clips,
                output,
                clip_chains,
            );
        }

        for clip_index in clip_chain.clips.iter().rev() {
            if seen_clips.insert(*clip_index) {
                output.push(*clip_index);
            }
        }
    }

    /// Main entry point to build a path in the clip-tree for a given primitive
    pub fn build_clip_set(
        &mut self,
        clip_chain_id: ClipChainId,
    ) -> ClipNodeId {
        let clip_stack = self.clip_stack.last_mut().unwrap();

        if clip_chain_id == ClipChainId::INVALID {
            clip_stack.clip_node_id
        } else {
            if let Some((cached_clip_chain, cached_clip_node)) = clip_stack.last_clip_chain_cache {
                if cached_clip_chain == clip_chain_id {
                    return cached_clip_node;
                }
            }

            let clip_chain_index = self.clip_chain_map[&clip_chain_id];

            self.clip_handles_buffer.clear();

            ClipTreeBuilder::add_clips(
                clip_chain_index,
                &mut clip_stack.seen_clips,
                &mut self.clip_handles_buffer,
                &self.clip_chains,
            );

            // We mutated the `clip_stack.seen_clips` in order to remove duplicate clips from
            // the supplied `clip_chain_id`. Now step through and remove any clips we added
            // to the set, so we don't get incorrect results next time `build_clip_set` is
            // called for a different clip-chain. Doing it this way rather than cloning means
            // we avoid heap allocations for each `build_clip_set` call.
            for handle in &self.clip_handles_buffer {
                clip_stack.seen_clips.remove(handle);
            }

            let clip_node_id = self.tree.add(
                clip_stack.clip_node_id,
                &self.clip_handles_buffer,
            );

            clip_stack.last_clip_chain_cache = Some((clip_chain_id, clip_node_id));

            clip_node_id
        }
    }

    /// Recursive impl to check if a clip-chain has complex (non-rectangular) clips
    fn has_complex_clips_impl(
        &self,
        clip_chain_index: usize,
        interners: &Interners,
    ) -> bool {
        let clip_chain = &self.clip_chains[clip_chain_index];

        for clip_handle in &clip_chain.clips {
            let clip_info = &interners.clip[*clip_handle];

            if let ClipNodeKind::Complex = clip_info.key.kind.node_kind() {
                return true;
            }
        }

        match clip_chain.parent {
            Some(parent) => self.has_complex_clips_impl(parent, interners),
            None => false,
        }
    }

    /// Check if a clip-chain has complex (non-rectangular) clips
    pub fn clip_chain_has_complex_clips(
        &self,
        clip_chain_id: ClipChainId,
        interners: &Interners,
    ) -> bool {
        let clip_chain_index = self.clip_chain_map[&clip_chain_id];
        self.has_complex_clips_impl(clip_chain_index, interners)
    }

    /// Check if a clip-node has complex (non-rectangular) clips
    pub fn clip_node_has_complex_clips(
        &self,
        clip_node_id: ClipNodeId,
        interners: &Interners,
    ) -> bool {
        let mut current = clip_node_id;

        while current != ClipNodeId::NONE {
            let node = &self.tree.nodes[current.0 as usize];
            let clip_info = &interners.clip[node.handle];

            if let ClipNodeKind::Complex = clip_info.key.kind.node_kind() {
                return true;
            }

            current = node.parent;
        }

        false
    }

    /// Finalize building and return the clip-tree
    pub fn finalize(self) -> ClipTree {
        self.tree
    }

    /// Get a clip node by id
    pub fn get_node(&self, id: ClipNodeId) -> &ClipTreeNode {
        assert!(id != ClipNodeId::NONE);

        &self.tree.nodes[id.0 as usize]
    }

    /// Get a clip leaf by id
    pub fn get_leaf(&self, id: ClipLeafId) -> &ClipTreeLeaf {
        &self.tree.leaves[id.0 as usize]
    }

    /// Build a clip-leaf for a tile-cache
    pub fn build_for_tile_cache(
        &mut self,
        clip_node_id: ClipNodeId,
        extra_clips: &[ClipId],
    ) -> ClipLeafId {
        self.clip_handles_buffer.clear();

        for clip_id in extra_clips {
            let handle = self.clip_map[clip_id];
            self.clip_handles_buffer.push(handle);
        }

        let node_id = self.tree.add(
            clip_node_id,
            &self.clip_handles_buffer,
        );

        let clip_leaf_id = ClipLeafId(self.tree.leaves.len() as u32);

        self.tree.leaves.push(ClipTreeLeaf {
            node_id,
            local_clip_rect: LayoutRect::max_rect(),
        });

        clip_leaf_id
    }

    /// Build a clip-leaf for a picture
    pub fn build_for_picture(
        &mut self,
        clip_node_id: ClipNodeId,
    ) -> ClipLeafId {
        let node_id = self.tree.add(
            clip_node_id,
            &[],
        );

        let clip_leaf_id = ClipLeafId(self.tree.leaves.len() as u32);

        self.tree.leaves.push(ClipTreeLeaf {
            node_id,
            local_clip_rect: LayoutRect::max_rect(),
        });

        clip_leaf_id
    }

    /// Build a clip-leaf for a normal primitive
    pub fn build_for_prim(
        &mut self,
        clip_node_id: ClipNodeId,
        info: &LayoutPrimitiveInfo,
        extra_clips: &[ClipItemKey],
        interners: &mut Interners,
    ) -> ClipLeafId {

        let node_id = if extra_clips.is_empty() {
            clip_node_id
        } else {
            // TODO(gw): Cache the previous build of clip-node / clip-leaf to handle cases where we get a
            //           lot of primitives referencing the same clip set (e.g. dl_mutate and similar tests)
            self.clip_handles_buffer.clear();

            for item in extra_clips {
                // Intern this clip item, and store the handle
                // in the clip chain node.
                let handle = interners.clip.intern(item, || {
                    ClipInternData {
                        key: item.clone(),
                    }
                });

                self.clip_handles_buffer.push(handle);
            }

            self.tree.add(
                clip_node_id,
                &self.clip_handles_buffer,
            )
        };

        let clip_leaf_id = ClipLeafId(self.tree.leaves.len() as u32);

        self.tree.leaves.push(ClipTreeLeaf {
            node_id,
            local_clip_rect: info.clip_rect,
        });

        clip_leaf_id
    }

    // Find the LCA for two given clip nodes
    pub fn find_lowest_common_ancestor(
        &self,
        node1: ClipNodeId,
        node2: ClipNodeId,
    ) -> ClipNodeId {
        self.tree.find_lowest_common_ancestor(node1, node2)
    }
}

// Type definitions for interning clip nodes.

#[derive(Copy, Clone, Debug, MallocSizeOf, PartialEq, Eq, Hash)]
#[cfg_attr(any(feature = "serde"), derive(Deserialize, Serialize))]
pub enum ClipIntern {}

pub type ClipDataStore = intern::DataStore<ClipIntern>;
pub type ClipDataHandle = intern::Handle<ClipIntern>;

/// Helper to identify simple clips (normal rects) from other kinds of clips,
/// which can often be handled via fast code paths.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, MallocSizeOf)]
pub enum ClipNodeKind {
    /// A normal clip rectangle, with Clip mode.
    Rectangle,
    /// A rectangle with ClipOut, or any other kind of clip.
    Complex,
}

// Result of comparing a clip node instance against a local rect.
#[derive(Debug)]
enum ClipResult {
    // The clip does not affect the region at all.
    Accept,
    // The clip prevents the region from being drawn.
    Reject,
    // The clip affects part of the region. This may
    // require a clip mask, depending on other factors.
    Partial,
}

// A clip node is a single clip source, along with some
// positioning information and implementation details
// that control where the GPU data for this clip source
// can be found.
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(MallocSizeOf)]
pub struct ClipNode {
    pub item: ClipItem,
}

// Convert from an interning key for a clip item
// to a clip node, which is cached in the document.
impl From<ClipItemKey> for ClipNode {
    fn from(item: ClipItemKey) -> Self {
        let kind = match item.kind {
            ClipItemKeyKind::Rectangle(rect, mode) => {
                ClipItemKind::Rectangle { rect: rect.into(), mode }
            }
            ClipItemKeyKind::RoundedRectangle(rect, radius, mode) => {
                ClipItemKind::RoundedRectangle {
                    rect: rect.into(),
                    radius: radius.into(),
                    mode,
                }
            }
            ClipItemKeyKind::ImageMask(rect, image, polygon_handle) => {
                ClipItemKind::Image {
                    image,
                    rect: rect.into(),
                    polygon_handle,
                }
            }
            ClipItemKeyKind::BoxShadow(shadow_rect_fract_offset, shadow_rect_size, shadow_radius, prim_shadow_rect, blur_radius, clip_mode) => {
                ClipItemKind::new_box_shadow(
                    shadow_rect_fract_offset.into(),
                    shadow_rect_size.into(),
                    shadow_radius.into(),
                    prim_shadow_rect.into(),
                    blur_radius.to_f32_px(),
                    clip_mode,
                )
            }
        };

        ClipNode {
            item: ClipItem {
                kind,
                spatial_node_index: item.spatial_node_index,
            },
        }
    }
}

// Flags that are attached to instances of clip nodes.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash, MallocSizeOf)]
pub struct ClipNodeFlags(u8);

bitflags! {
    impl ClipNodeFlags : u8 {
        const SAME_SPATIAL_NODE = 0x1;
        const SAME_COORD_SYSTEM = 0x2;
        const USE_FAST_PATH = 0x4;
    }
}

impl core::fmt::Debug for ClipNodeFlags {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        if self.is_empty() {
            write!(f, "{:#x}", Self::empty().bits())
        } else {
            bitflags::parser::to_writer(self, f)
        }
    }
}

// When a clip node is found to be valid for a
// clip chain instance, it's stored in an index
// buffer style structure. This struct contains
// an index to the node data itself, as well as
// some flags describing how this clip node instance
// is positioned.
#[derive(Debug, Clone, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipNodeInstance {
    pub handle: ClipDataHandle,
    pub flags: ClipNodeFlags,
    pub visible_tiles: Option<ops::Range<usize>>,
}

impl ClipNodeInstance {
    pub fn has_visible_tiles(&self) -> bool {
        self.visible_tiles.is_some()
    }
}

// A range of clip node instances that were found by
// building a clip chain instance.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipNodeRange {
    pub first: u32,
    pub count: u32,
}

impl ClipNodeRange {
    pub fn to_range(&self) -> ops::Range<usize> {
        let start = self.first as usize;
        let end = start + self.count as usize;

        ops::Range {
            start,
            end,
        }
    }
}

/// A helper struct for converting between coordinate systems
/// of clip sources and primitives.
// todo(gw): optimize:
//  separate arrays for matrices
//  cache and only build as needed.
//TODO: merge with `CoordinateSpaceMapping`?
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
enum ClipSpaceConversion {
    Local,
    ScaleOffset(ScaleOffset),
    Transform(LayoutToWorldTransform),
}

impl ClipSpaceConversion {
    /// Construct a new clip space converter between two spatial nodes.
    fn new(
        prim_spatial_node_index: SpatialNodeIndex,
        clip_spatial_node_index: SpatialNodeIndex,
        spatial_tree: &SpatialTree,
    ) -> Self {
        //Note: this code is different from `get_relative_transform` in a way that we only try
        // getting the relative transform if it's Local or ScaleOffset,
        // falling back to the world transform otherwise.
        let clip_spatial_node = spatial_tree.get_spatial_node(clip_spatial_node_index);
        let prim_spatial_node = spatial_tree.get_spatial_node(prim_spatial_node_index);

        if prim_spatial_node_index == clip_spatial_node_index {
            ClipSpaceConversion::Local
        } else if prim_spatial_node.coordinate_system_id == clip_spatial_node.coordinate_system_id {
            let scale_offset = prim_spatial_node.content_transform
                .inverse()
                .accumulate(&clip_spatial_node.content_transform);
            ClipSpaceConversion::ScaleOffset(scale_offset)
        } else {
            ClipSpaceConversion::Transform(
                spatial_tree
                    .get_world_transform(clip_spatial_node_index)
                    .into_transform()
            )
        }
    }

    fn to_flags(&self) -> ClipNodeFlags {
        match *self {
            ClipSpaceConversion::Local => {
                ClipNodeFlags::SAME_SPATIAL_NODE | ClipNodeFlags::SAME_COORD_SYSTEM
            }
            ClipSpaceConversion::ScaleOffset(..) => {
                ClipNodeFlags::SAME_COORD_SYSTEM
            }
            ClipSpaceConversion::Transform(..) => {
                ClipNodeFlags::empty()
            }
        }
    }
}

// Temporary information that is cached and reused
// during building of a clip chain instance.
#[derive(MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
struct ClipNodeInfo {
    conversion: ClipSpaceConversion,
    handle: ClipDataHandle,
}

impl ClipNodeInfo {
    fn create_instance(
        &self,
        node: &ClipNode,
        clipped_rect: &LayoutRect,
        gpu_cache: &mut GpuCache,
        resource_cache: &mut ResourceCache,
        mask_tiles: &mut Vec<VisibleMaskImageTile>,
        spatial_tree: &SpatialTree,
        rg_builder: &mut RenderTaskGraphBuilder,
        request_resources: bool,
    ) -> Option<ClipNodeInstance> {
        // Calculate some flags that are required for the segment
        // building logic.
        let mut flags = self.conversion.to_flags();

        // Some clip shaders support a fast path mode for simple clips.
        // TODO(gw): We could also apply fast path when segments are created, since we only write
        //           the mask for a single corner at a time then, so can always consider radii uniform.
        let is_raster_2d =
            flags.contains(ClipNodeFlags::SAME_COORD_SYSTEM) ||
            spatial_tree
                .get_world_viewport_transform(node.item.spatial_node_index)
                .is_2d_axis_aligned();
        if is_raster_2d && node.item.kind.supports_fast_path_rendering() {
            flags |= ClipNodeFlags::USE_FAST_PATH;
        }

        let mut visible_tiles = None;

        if let ClipItemKind::Image { rect, image, .. } = node.item.kind {
            let request = ImageRequest {
                key: image,
                rendering: ImageRendering::Auto,
                tile: None,
            };

            if let Some(props) = resource_cache.get_image_properties(image) {
                if let Some(tile_size) = props.tiling {
                    let tile_range_start = mask_tiles.len();

                    // Bug 1648323 - It is unclear why on rare occasions we get
                    // a clipped_rect that does not intersect the clip's mask rect.
                    // defaulting to clipped_rect here results in zero repetitions
                    // which clips the primitive entirely.
                    let visible_rect =
                        clipped_rect.intersection(&rect).unwrap_or(*clipped_rect);

                    let repetitions = image_tiling::repetitions(
                        &rect,
                        &visible_rect,
                        rect.size(),
                    );

                    for Repetition { origin, .. } in repetitions {
                        let layout_image_rect = LayoutRect::from_origin_and_size(
                            origin,
                            rect.size(),
                        );
                        let tiles = image_tiling::tiles(
                            &layout_image_rect,
                            &visible_rect,
                            &props.visible_rect,
                            tile_size as i32,
                        );
                        for tile in tiles {
                            let req = request.with_tile(tile.offset);

                            if request_resources {
                                resource_cache.request_image(
                                    req,
                                    gpu_cache,
                                );
                            }

                            let task_id = rg_builder.add().init(
                                RenderTask::new_image(props.descriptor.size, req)
                            );

                            mask_tiles.push(VisibleMaskImageTile {
                                tile_offset: tile.offset,
                                tile_rect: tile.rect,
                                task_id,
                            });
                        }
                    }
                    visible_tiles = Some(tile_range_start..mask_tiles.len());
                } else {
                    if request_resources {
                        resource_cache.request_image(request, gpu_cache);
                    }

                    let tile_range_start = mask_tiles.len();

                    let task_id = rg_builder.add().init(
                        RenderTask::new_image(props.descriptor.size, request)
                    );

                    mask_tiles.push(VisibleMaskImageTile {
                        tile_rect: rect,
                        tile_offset: TileOffset::zero(),
                        task_id,
                    });

                    visible_tiles = Some(tile_range_start .. mask_tiles.len());
                }
            } else {
                // If the supplied image key doesn't exist in the resource cache,
                // skip the clip node since there is nothing to mask with.
                warn!("Clip mask with missing image key {:?}", request.key);
                return None;
            }
        }

        Some(ClipNodeInstance {
            handle: self.handle,
            flags,
            visible_tiles,
        })
    }
}

impl ClipNode {
    pub fn update(
        &mut self,
        device_pixel_scale: DevicePixelScale,
    ) {
        match self.item.kind {
            ClipItemKind::Image { .. } |
            ClipItemKind::Rectangle { .. } |
            ClipItemKind::RoundedRectangle { .. } => {}

            ClipItemKind::BoxShadow { ref mut source } => {
                // Quote from https://drafts.csswg.org/css-backgrounds-3/#shadow-blur
                // "the image that would be generated by applying to the shadow a
                // Gaussian blur with a standard deviation equal to half the blur radius."
                let blur_radius_dp = source.blur_radius * 0.5;

                // Create scaling from requested size to cache size.
                let mut content_scale = LayoutToWorldScale::new(1.0) * device_pixel_scale;
                content_scale.0 = clamp_to_scale_factor(content_scale.0, false);

                // Create the cache key for this box-shadow render task.
                let cache_size = to_cache_size(source.shadow_rect_alloc_size, &mut content_scale);

                let bs_cache_key = BoxShadowCacheKey {
                    blur_radius_dp: (blur_radius_dp * content_scale.0).round() as i32,
                    clip_mode: source.clip_mode,
                    original_alloc_size: (source.original_alloc_size * content_scale).round().to_i32(),
                    br_top_left: (source.shadow_radius.top_left * content_scale).round().to_i32(),
                    br_top_right: (source.shadow_radius.top_right * content_scale).round().to_i32(),
                    br_bottom_right: (source.shadow_radius.bottom_right * content_scale).round().to_i32(),
                    br_bottom_left: (source.shadow_radius.bottom_left * content_scale).round().to_i32(),
                    device_pixel_scale: Au::from_f32_px(content_scale.0),
                };

                source.cache_key = Some((cache_size, bs_cache_key));
            }
        }
    }
}

#[derive(Default)]
pub struct ClipStoreScratchBuffer {
    clip_node_instances: Vec<ClipNodeInstance>,
    mask_tiles: Vec<VisibleMaskImageTile>,
}

/// The main clipping public interface that other modules access.
#[derive(MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct ClipStore {
    pub clip_node_instances: Vec<ClipNodeInstance>,
    mask_tiles: Vec<VisibleMaskImageTile>,

    active_clip_node_info: Vec<ClipNodeInfo>,
    active_local_clip_rect: Option<LayoutRect>,
    active_pic_coverage_rect: PictureRect,
}

// A clip chain instance is what gets built for a given clip
// chain id + local primitive region + positioning node.
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct ClipChainInstance {
    pub clips_range: ClipNodeRange,
    // Combined clip rect for clips that are in the
    // same coordinate system as the primitive.
    pub local_clip_rect: LayoutRect,
    pub has_non_local_clips: bool,
    // If true, this clip chain requires allocation
    // of a clip mask.
    pub needs_mask: bool,
    // Combined clip rect in picture space (may
    // be more conservative that local_clip_rect).
    pub pic_coverage_rect: PictureRect,
    // Space, in which the `pic_coverage_rect` is defined.
    pub pic_spatial_node_index: SpatialNodeIndex,
}

impl ClipChainInstance {
    pub fn empty() -> Self {
        ClipChainInstance {
            clips_range: ClipNodeRange {
                first: 0,
                count: 0,
            },
            local_clip_rect: LayoutRect::zero(),
            has_non_local_clips: false,
            needs_mask: false,
            pic_coverage_rect: PictureRect::zero(),
            pic_spatial_node_index: SpatialNodeIndex::INVALID,
        }
    }
}

impl ClipStore {
    pub fn new() -> Self {
        ClipStore {
            clip_node_instances: Vec::new(),
            mask_tiles: Vec::new(),
            active_clip_node_info: Vec::new(),
            active_local_clip_rect: None,
            active_pic_coverage_rect: PictureRect::max_rect(),
        }
    }

    pub fn get_instance_from_range(
        &self,
        node_range: &ClipNodeRange,
        index: u32,
    ) -> &ClipNodeInstance {
        &self.clip_node_instances[(node_range.first + index) as usize]
    }

    /// Setup the active clip chains for building a clip chain instance.
    pub fn set_active_clips(
        &mut self,
        prim_spatial_node_index: SpatialNodeIndex,
        pic_spatial_node_index: SpatialNodeIndex,
        clip_leaf_id: ClipLeafId,
        spatial_tree: &SpatialTree,
        clip_data_store: &ClipDataStore,
        clip_tree: &ClipTree,
    ) {
        self.active_clip_node_info.clear();
        self.active_local_clip_rect = None;
        self.active_pic_coverage_rect = PictureRect::max_rect();

        let clip_root = clip_tree.current_clip_root();
        let clip_leaf = clip_tree.get_leaf(clip_leaf_id);

        let mut local_clip_rect = clip_leaf.local_clip_rect;
        let mut current = clip_leaf.node_id;

        while current != clip_root {
            let node = clip_tree.get_node(current);

            if !add_clip_node_to_current_chain(
                node.handle,
                prim_spatial_node_index,
                pic_spatial_node_index,
                &mut local_clip_rect,
                &mut self.active_clip_node_info,
                &mut self.active_pic_coverage_rect,
                clip_data_store,
                spatial_tree,
            ) {
                return;
            }

            current = node.parent;
        }

        self.active_local_clip_rect = Some(local_clip_rect);
    }

    /// Setup the active clip chains, based on an existing primitive clip chain instance.
    pub fn set_active_clips_from_clip_chain(
        &mut self,
        prim_clip_chain: &ClipChainInstance,
        prim_spatial_node_index: SpatialNodeIndex,
        spatial_tree: &SpatialTree,
        clip_data_store: &ClipDataStore,
    ) {
        // TODO(gw): Although this does less work than set_active_clips(), it does
        //           still do some unnecessary work (such as the clip space conversion).
        //           We could consider optimizing this if it ever shows up in a profile.

        self.active_clip_node_info.clear();
        self.active_local_clip_rect = Some(prim_clip_chain.local_clip_rect);
        self.active_pic_coverage_rect = prim_clip_chain.pic_coverage_rect;

        let clip_instances = &self
            .clip_node_instances[prim_clip_chain.clips_range.to_range()];
        for clip_instance in clip_instances {
            let clip = &clip_data_store[clip_instance.handle];
            let conversion = ClipSpaceConversion::new(
                prim_spatial_node_index,
                clip.item.spatial_node_index,
                spatial_tree,
            );
            self.active_clip_node_info.push(ClipNodeInfo {
                handle: clip_instance.handle,
                conversion,
            });
        }
    }

    /// Given a clip-chain instance, return a safe rect within the visible region
    /// that can be assumed to be unaffected by clip radii. Returns None if it
    /// encounters any complex cases, just handling rounded rects in the same
    /// coordinate system as the clip-chain for now.
    pub fn get_inner_rect_for_clip_chain(
        &self,
        clip_chain: &ClipChainInstance,
        clip_data_store: &ClipDataStore,
        spatial_tree: &SpatialTree,
    ) -> Option<PictureRect> {
        let mut inner_rect = clip_chain.pic_coverage_rect;
        let clip_instances = &self
            .clip_node_instances[clip_chain.clips_range.to_range()];

        for clip_instance in clip_instances {
            // Don't handle mapping between coord systems for now
            if !clip_instance.flags.contains(ClipNodeFlags::SAME_COORD_SYSTEM) {
                return None;
            }

            let clip_node = &clip_data_store[clip_instance.handle];

            match clip_node.item.kind {
                // Ignore any clips which are complex or impossible to calculate
                // inner rects for now
                ClipItemKind::Rectangle { mode: ClipMode::ClipOut, .. } |
                ClipItemKind::Image { .. } |
                ClipItemKind::BoxShadow { .. } |
                ClipItemKind::RoundedRectangle { mode: ClipMode::ClipOut, .. } => {
                    return None;
                }
                // Normal Clip rects are already handled by the clip-chain pic_coverage_rect,
                // no need to do anything here
                ClipItemKind::Rectangle { mode: ClipMode::Clip, .. } => {}
                ClipItemKind::RoundedRectangle { mode: ClipMode::Clip, rect, radius } => {
                    // Get an inner rect for the rounded-rect clip
                    let local_inner_rect = match extract_inner_rect_safe(&rect, &radius) {
                        Some(rect) => rect,
                        None => return None,
                    };

                    // Map it from local -> picture space
                    let mapper = SpaceMapper::new_with_target(
                        clip_chain.pic_spatial_node_index,
                        clip_node.item.spatial_node_index,
                        PictureRect::max_rect(),
                        spatial_tree,
                    );

                    // Accumulate in to the inner_rect, in case there are multiple rounded-rect clips
                    if let Some(pic_inner_rect) = mapper.map(&local_inner_rect) {
                        inner_rect = inner_rect.intersection(&pic_inner_rect).unwrap_or(PictureRect::zero());
                    }
                }
            }
        }

        Some(inner_rect)
    }

    /// The main interface external code uses. Given a local primitive, positioning
    /// information, and a clip chain id, build an optimized clip chain instance.
    pub fn build_clip_chain_instance(
        &mut self,
        local_prim_rect: LayoutRect,
        prim_to_pic_mapper: &SpaceMapper<LayoutPixel, PicturePixel>,
        pic_to_world_mapper: &SpaceMapper<PicturePixel, WorldPixel>,
        spatial_tree: &SpatialTree,
        gpu_cache: &mut GpuCache,
        resource_cache: &mut ResourceCache,
        device_pixel_scale: DevicePixelScale,
        world_rect: &WorldRect,
        clip_data_store: &mut ClipDataStore,
        rg_builder: &mut RenderTaskGraphBuilder,
        request_resources: bool,
    ) -> Option<ClipChainInstance> {
        let local_clip_rect = match self.active_local_clip_rect {
            Some(rect) => rect,
            None => return None,
        };
        profile_scope!("build_clip_chain_instance");

        let local_bounding_rect = local_prim_rect.intersection(&local_clip_rect)?;
        let mut pic_coverage_rect = prim_to_pic_mapper.map(&local_bounding_rect)?;
        let world_clip_rect = pic_to_world_mapper.map(&pic_coverage_rect)?;

        // Now, we've collected all the clip nodes that *potentially* affect this
        // primitive region, and reduced the size of the prim region as much as possible.

        // Run through the clip nodes, and see which ones affect this prim region.

        let first_clip_node_index = self.clip_node_instances.len() as u32;
        let mut has_non_local_clips = false;
        let mut needs_mask = false;

        // For each potential clip node
        for node_info in self.active_clip_node_info.drain(..) {
            let node = &mut clip_data_store[node_info.handle];

            // See how this clip affects the prim region.
            let clip_result = match node_info.conversion {
                ClipSpaceConversion::Local => {
                    node.item.kind.get_clip_result(&local_bounding_rect)
                }
                ClipSpaceConversion::ScaleOffset(ref scale_offset) => {
                    has_non_local_clips = true;
                    node.item.kind.get_clip_result(&scale_offset.unmap_rect(&local_bounding_rect))
                }
                ClipSpaceConversion::Transform(ref transform) => {
                    has_non_local_clips = true;
                    node.item.kind.get_clip_result_complex(
                        transform,
                        &world_clip_rect,
                        world_rect,
                    )
                }
            };

            match clip_result {
                ClipResult::Accept => {
                    // Doesn't affect the primitive at all, so skip adding to list
                }
                ClipResult::Reject => {
                    // Completely clips the supplied prim rect
                    return None;
                }
                ClipResult::Partial => {
                    // Needs a mask -> add to clip node indices

                    // TODO(gw): Ensure this only runs once on each node per frame?
                    node.update(device_pixel_scale);

                    // Create the clip node instance for this clip node
                    if let Some(instance) = node_info.create_instance(
                        node,
                        &local_bounding_rect,
                        gpu_cache,
                        resource_cache,
                        &mut self.mask_tiles,
                        spatial_tree,
                        rg_builder,
                        request_resources,
                    ) {
                        // As a special case, a partial accept of a clip rect that is
                        // in the same coordinate system as the primitive doesn't need
                        // a clip mask. Instead, it can be handled by the primitive
                        // vertex shader as part of the local clip rect. This is an
                        // important optimization for reducing the number of clip
                        // masks that are allocated on common pages.
                        needs_mask |= match node.item.kind {
                            ClipItemKind::Rectangle { mode: ClipMode::ClipOut, .. } |
                            ClipItemKind::RoundedRectangle { .. } |
                            ClipItemKind::Image { .. } |
                            ClipItemKind::BoxShadow { .. } => {
                                true
                            }

                            ClipItemKind::Rectangle { mode: ClipMode::Clip, .. } => {
                                !instance.flags.contains(ClipNodeFlags::SAME_COORD_SYSTEM)
                            }
                        };

                        // Store this in the index buffer for this clip chain instance.
                        self.clip_node_instances.push(instance);
                    }
                }
            }
        }

        // Get the range identifying the clip nodes in the index buffer.
        let clips_range = ClipNodeRange {
            first: first_clip_node_index,
            count: self.clip_node_instances.len() as u32 - first_clip_node_index,
        };

        // If this clip chain needs a mask, reduce the size of the mask allocation
        // by any clips that were in the same space as the picture. This can result
        // in much smaller clip mask allocations in some cases. Note that the ordering
        // here is important - the reduction must occur *after* the clip item accept
        // reject checks above, so that we don't eliminate masks accidentally (since
        // we currently only support a local clip rect in the vertex shader).
        if needs_mask {
            pic_coverage_rect = pic_coverage_rect.intersection(&self.active_pic_coverage_rect)?;
        }

        // Return a valid clip chain instance
        Some(ClipChainInstance {
            clips_range,
            has_non_local_clips,
            local_clip_rect,
            pic_coverage_rect,
            pic_spatial_node_index: prim_to_pic_mapper.ref_spatial_node_index,
            needs_mask,
        })
    }

    pub fn begin_frame(&mut self, scratch: &mut ClipStoreScratchBuffer) {
        mem::swap(&mut self.clip_node_instances, &mut scratch.clip_node_instances);
        mem::swap(&mut self.mask_tiles, &mut scratch.mask_tiles);
        self.clip_node_instances.clear();
        self.mask_tiles.clear();
    }

    pub fn end_frame(&mut self, scratch: &mut ClipStoreScratchBuffer) {
        mem::swap(&mut self.clip_node_instances, &mut scratch.clip_node_instances);
        mem::swap(&mut self.mask_tiles, &mut scratch.mask_tiles);
    }

    pub fn visible_mask_tiles(&self, instance: &ClipNodeInstance) -> &[VisibleMaskImageTile] {
        if let Some(range) = &instance.visible_tiles {
            &self.mask_tiles[range.clone()]
        } else {
            &[]
        }
    }
}

pub struct ComplexTranslateIter<I> {
    source: I,
    offset: LayoutVector2D,
}

impl<I: Iterator<Item = ComplexClipRegion>> Iterator for ComplexTranslateIter<I> {
    type Item = ComplexClipRegion;
    fn next(&mut self) -> Option<Self::Item> {
        self.source
            .next()
            .map(|mut complex| {
                complex.rect = complex.rect.translate(self.offset);
                complex
            })
    }
}

// The ClipItemKey is a hashable representation of the contents
// of a clip item. It is used during interning to de-duplicate
// clip nodes between frames and display lists. This allows quick
// comparison of clip node equality by handle, and also allows
// the uploaded GPU cache handle to be retained between display lists.
// TODO(gw): Maybe we should consider constructing these directly
//           in the DL builder?
#[derive(Copy, Debug, Clone, Eq, MallocSizeOf, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ClipItemKeyKind {
    Rectangle(RectangleKey, ClipMode),
    RoundedRectangle(RectangleKey, BorderRadiusAu, ClipMode),
    ImageMask(RectangleKey, ImageKey, Option<PolygonDataHandle>),
    BoxShadow(PointKey, SizeKey, BorderRadiusAu, RectangleKey, Au, BoxShadowClipMode),
}

impl ClipItemKeyKind {
    pub fn rectangle(rect: LayoutRect, mode: ClipMode) -> Self {
        ClipItemKeyKind::Rectangle(rect.into(), mode)
    }

    pub fn rounded_rect(rect: LayoutRect, mut radii: BorderRadius, mode: ClipMode) -> Self {
        if radii.is_zero() {
            ClipItemKeyKind::rectangle(rect, mode)
        } else {
            ensure_no_corner_overlap(&mut radii, rect.size());
            ClipItemKeyKind::RoundedRectangle(
                rect.into(),
                radii.into(),
                mode,
            )
        }
    }

    pub fn image_mask(image_mask: &ImageMask, mask_rect: LayoutRect,
                      polygon_handle: Option<PolygonDataHandle>) -> Self {
        ClipItemKeyKind::ImageMask(
            mask_rect.into(),
            image_mask.image,
            polygon_handle,
        )
    }

    pub fn box_shadow(
        shadow_rect: LayoutRect,
        shadow_radius: BorderRadius,
        prim_shadow_rect: LayoutRect,
        blur_radius: f32,
        clip_mode: BoxShadowClipMode,
    ) -> Self {
        // Get the fractional offsets required to match the
        // source rect with a minimal rect.
        let fract_offset = LayoutPoint::new(
            shadow_rect.min.x.fract().abs(),
            shadow_rect.min.y.fract().abs(),
        );

        ClipItemKeyKind::BoxShadow(
            fract_offset.into(),
            shadow_rect.size().into(),
            shadow_radius.into(),
            prim_shadow_rect.into(),
            Au::from_f32_px(blur_radius),
            clip_mode,
        )
    }

    pub fn node_kind(&self) -> ClipNodeKind {
        match *self {
            ClipItemKeyKind::Rectangle(_, ClipMode::Clip) => ClipNodeKind::Rectangle,

            ClipItemKeyKind::Rectangle(_, ClipMode::ClipOut) |
            ClipItemKeyKind::RoundedRectangle(..) |
            ClipItemKeyKind::ImageMask(..) |
            ClipItemKeyKind::BoxShadow(..) => ClipNodeKind::Complex,
        }
    }
}

#[derive(Debug, Copy, Clone, Eq, MallocSizeOf, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipItemKey {
    pub kind: ClipItemKeyKind,
    pub spatial_node_index: SpatialNodeIndex,
}

/// The data available about an interned clip node during scene building
#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipInternData {
    pub key: ClipItemKey,
}

impl intern::InternDebug for ClipItemKey {}

impl intern::Internable for ClipIntern {
    type Key = ClipItemKey;
    type StoreData = ClipNode;
    type InternData = ClipInternData;
    const PROFILE_COUNTER: usize = crate::profiler::INTERNED_CLIPS;
}

#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ClipItemKind {
    Rectangle {
        rect: LayoutRect,
        mode: ClipMode,
    },
    RoundedRectangle {
        rect: LayoutRect,
        radius: BorderRadius,
        mode: ClipMode,
    },
    Image {
        image: ImageKey,
        rect: LayoutRect,
        polygon_handle: Option<PolygonDataHandle>,
    },
    BoxShadow {
        source: BoxShadowClipSource,
    },
}

#[derive(Debug, MallocSizeOf)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ClipItem {
    pub kind: ClipItemKind,
    pub spatial_node_index: SpatialNodeIndex,
}

fn compute_box_shadow_parameters(
    shadow_rect_fract_offset: LayoutPoint,
    shadow_rect_size: LayoutSize,
    mut shadow_radius: BorderRadius,
    prim_shadow_rect: LayoutRect,
    blur_radius: f32,
    clip_mode: BoxShadowClipMode,
) -> BoxShadowClipSource {
    // Make sure corners don't overlap.
    ensure_no_corner_overlap(&mut shadow_radius, shadow_rect_size);

    let fract_size = LayoutSize::new(
        shadow_rect_size.width.fract().abs(),
        shadow_rect_size.height.fract().abs(),
    );

    // Create a minimal size primitive mask to blur. In this
    // case, we ensure the size of each corner is the same,
    // to simplify the shader logic that stretches the blurred
    // result across the primitive.
    let max_corner_width = shadow_radius.top_left.width
                                .max(shadow_radius.bottom_left.width)
                                .max(shadow_radius.top_right.width)
                                .max(shadow_radius.bottom_right.width);
    let max_corner_height = shadow_radius.top_left.height
                                .max(shadow_radius.bottom_left.height)
                                .max(shadow_radius.top_right.height)
                                .max(shadow_radius.bottom_right.height);

    // Get maximum distance that can be affected by given blur radius.
    let blur_region = (BLUR_SAMPLE_SCALE * blur_radius).ceil();

    // If the largest corner is smaller than the blur radius, we need to ensure
    // that it's big enough that the corners don't affect the middle segments.
    let used_corner_width = max_corner_width.max(blur_region);
    let used_corner_height = max_corner_height.max(blur_region);

    // Minimal nine-patch size, corner + internal + corner.
    let min_shadow_rect_size = LayoutSize::new(
        2.0 * used_corner_width + blur_region,
        2.0 * used_corner_height + blur_region,
    );

    // The minimal rect to blur.
    let mut minimal_shadow_rect = LayoutRect::from_origin_and_size(
        LayoutPoint::new(
            blur_region + shadow_rect_fract_offset.x,
            blur_region + shadow_rect_fract_offset.y,
        ),
        LayoutSize::new(
            min_shadow_rect_size.width + fract_size.width,
            min_shadow_rect_size.height + fract_size.height,
        ),
    );

    // If the width or height ends up being bigger than the original
    // primitive shadow rect, just blur the entire rect along that
    // axis and draw that as a simple blit. This is necessary for
    // correctness, since the blur of one corner may affect the blur
    // in another corner.
    let mut stretch_mode_x = BoxShadowStretchMode::Stretch;
    if shadow_rect_size.width < minimal_shadow_rect.width() {
        minimal_shadow_rect.max.x = minimal_shadow_rect.min.x + shadow_rect_size.width;
        stretch_mode_x = BoxShadowStretchMode::Simple;
    }

    let mut stretch_mode_y = BoxShadowStretchMode::Stretch;
    if shadow_rect_size.height < minimal_shadow_rect.height() {
        minimal_shadow_rect.max.y = minimal_shadow_rect.min.y + shadow_rect_size.height;
        stretch_mode_y = BoxShadowStretchMode::Simple;
    }

    // Expand the shadow rect by enough room for the blur to take effect.
    let shadow_rect_alloc_size = LayoutSize::new(
        2.0 * blur_region + minimal_shadow_rect.width().ceil(),
        2.0 * blur_region + minimal_shadow_rect.height().ceil(),
    );

    BoxShadowClipSource {
        original_alloc_size: shadow_rect_alloc_size,
        shadow_rect_alloc_size,
        shadow_radius,
        prim_shadow_rect,
        blur_radius,
        clip_mode,
        stretch_mode_x,
        stretch_mode_y,
        render_task: None,
        cache_key: None,
        minimal_shadow_rect,
    }
}

impl ClipItemKind {
    pub fn new_box_shadow(
        shadow_rect_fract_offset: LayoutPoint,
        shadow_rect_size: LayoutSize,
        mut shadow_radius: BorderRadius,
        prim_shadow_rect: LayoutRect,
        blur_radius: f32,
        clip_mode: BoxShadowClipMode,
    ) -> Self {
        let mut source = compute_box_shadow_parameters(
            shadow_rect_fract_offset,
            shadow_rect_size,
            shadow_radius,
            prim_shadow_rect,
            blur_radius,
            clip_mode,
        );

        fn needed_downscaling(source: &BoxShadowClipSource) -> Option<f32> {
            // This size is fairly arbitrary, but it's the same as the size that
            // we use to avoid caching big blurred stacking contexts.
            //
            // If you change it, ensure that the reftests
            // box-shadow-large-blur-radius-* still hit the downscaling path,
            // and that they render correctly.
            const MAX_SIZE: f32 = 2048.;

            let max_dimension =
                source.shadow_rect_alloc_size.width.max(source.shadow_rect_alloc_size.height);

            if max_dimension > MAX_SIZE {
                Some(MAX_SIZE / max_dimension)
            } else {
                None
            }
        }

        if let Some(downscale) = needed_downscaling(&source) {
            shadow_radius.bottom_left.height *= downscale;
            shadow_radius.bottom_left.width *= downscale;
            shadow_radius.bottom_right.height *= downscale;
            shadow_radius.bottom_right.width *= downscale;
            shadow_radius.top_left.height *= downscale;
            shadow_radius.top_left.width *= downscale;
            shadow_radius.top_right.height *= downscale;
            shadow_radius.top_right.width *= downscale;

            let original_alloc_size = source.shadow_rect_alloc_size;

            source = compute_box_shadow_parameters(
                shadow_rect_fract_offset * downscale,
                shadow_rect_size * downscale,
                shadow_radius,
                prim_shadow_rect,
                blur_radius * downscale,
                clip_mode,
            );
            source.original_alloc_size = original_alloc_size;
        }
        ClipItemKind::BoxShadow { source }
    }

    /// Returns true if this clip mask can run through the fast path
    /// for the given clip item type.
    ///
    /// Note: this logic has to match `ClipBatcher::add` behavior.
    fn supports_fast_path_rendering(&self) -> bool {
        match *self {
            ClipItemKind::Rectangle { .. } |
            ClipItemKind::Image { .. } |
            ClipItemKind::BoxShadow { .. } => {
                false
            }
            ClipItemKind::RoundedRectangle { ref radius, .. } => {
                // The rounded clip rect fast path shader can only work
                // if the radii are uniform.
                radius.is_uniform().is_some()
            }
        }
    }

    // Get an optional clip rect that a clip source can provide to
    // reduce the size of a primitive region. This is typically
    // used to eliminate redundant clips, and reduce the size of
    // any clip mask that eventually gets drawn.
    pub fn get_local_clip_rect(&self) -> Option<LayoutRect> {
        match *self {
            ClipItemKind::Rectangle { rect, mode: ClipMode::Clip } => Some(rect),
            ClipItemKind::Rectangle { mode: ClipMode::ClipOut, .. } => None,
            ClipItemKind::RoundedRectangle { rect, mode: ClipMode::Clip, .. } => Some(rect),
            ClipItemKind::RoundedRectangle { mode: ClipMode::ClipOut, .. } => None,
            ClipItemKind::Image { rect, .. } => {
                Some(rect)
            }
            ClipItemKind::BoxShadow { .. } => None,
        }
    }

    fn get_clip_result_complex(
        &self,
        transform: &LayoutToWorldTransform,
        prim_world_rect: &WorldRect,
        world_rect: &WorldRect,
    ) -> ClipResult {
        let visible_rect = match prim_world_rect.intersection(world_rect) {
            Some(rect) => rect,
            None => return ClipResult::Reject,
        };

        let (clip_rect, inner_rect, mode) = match *self {
            ClipItemKind::Rectangle { rect, mode } => {
                (rect, Some(rect), mode)
            }
            ClipItemKind::RoundedRectangle { rect, ref radius, mode } => {
                let inner_clip_rect = extract_inner_rect_safe(&rect, radius);
                (rect, inner_clip_rect, mode)
            }
            ClipItemKind::Image { rect, .. } => {
                (rect, None, ClipMode::Clip)
            }
            ClipItemKind::BoxShadow { .. } => {
                return ClipResult::Partial;
            }
        };

        if let Some(ref inner_clip_rect) = inner_rect {
            if let Some(()) = projected_rect_contains(inner_clip_rect, transform, &visible_rect) {
                return match mode {
                    ClipMode::Clip => ClipResult::Accept,
                    ClipMode::ClipOut => ClipResult::Reject,
                };
            }
        }

        match mode {
            ClipMode::Clip => {
                let outer_clip_rect = match project_rect(
                    transform,
                    &clip_rect,
                    &world_rect,
                ) {
                    Some(outer_clip_rect) => outer_clip_rect,
                    None => return ClipResult::Partial,
                };

                match outer_clip_rect.intersection(prim_world_rect) {
                    Some(..) => {
                        ClipResult::Partial
                    }
                    None => {
                        ClipResult::Reject
                    }
                }
            }
            ClipMode::ClipOut => ClipResult::Partial,
        }
    }

    // Check how a given clip source affects a local primitive region.
    fn get_clip_result(
        &self,
        prim_rect: &LayoutRect,
    ) -> ClipResult {
        match *self {
            ClipItemKind::Rectangle { rect, mode: ClipMode::Clip } => {
                if rect.contains_box(prim_rect) {
                    return ClipResult::Accept;
                }

                match rect.intersection(prim_rect) {
                    Some(..) => {
                        ClipResult::Partial
                    }
                    None => {
                        ClipResult::Reject
                    }
                }
            }
            ClipItemKind::Rectangle { rect, mode: ClipMode::ClipOut } => {
                if rect.contains_box(prim_rect) {
                    return ClipResult::Reject;
                }

                match rect.intersection(prim_rect) {
                    Some(_) => {
                        ClipResult::Partial
                    }
                    None => {
                        ClipResult::Accept
                    }
                }
            }
            ClipItemKind::RoundedRectangle { rect, ref radius, mode: ClipMode::Clip } => {
                // TODO(gw): Consider caching this in the ClipNode
                //           if it ever shows in profiles.
                if rounded_rectangle_contains_box_quick(&rect, radius, &prim_rect) {
                    return ClipResult::Accept;
                }

                match rect.intersection(prim_rect) {
                    Some(..) => {
                        ClipResult::Partial
                    }
                    None => {
                        ClipResult::Reject
                    }
                }
            }
            ClipItemKind::RoundedRectangle { rect, ref radius, mode: ClipMode::ClipOut } => {
                // TODO(gw): Consider caching this in the ClipNode
                //           if it ever shows in profiles.
                if rounded_rectangle_contains_box_quick(&rect, radius, &prim_rect) {
                    return ClipResult::Reject;
                }

                match rect.intersection(prim_rect) {
                    Some(_) => {
                        ClipResult::Partial
                    }
                    None => {
                        ClipResult::Accept
                    }
                }
            }
            ClipItemKind::Image { rect, .. } => {
                match rect.intersection(prim_rect) {
                    Some(..) => {
                        ClipResult::Partial
                    }
                    None => {
                        ClipResult::Reject
                    }
                }
            }
            ClipItemKind::BoxShadow { .. } => {
                ClipResult::Partial
            }
        }
    }
}

/// Represents a local rect and a device space
/// rectangles that are either outside or inside bounds.
#[derive(Clone, Debug, PartialEq)]
pub struct Geometry {
    pub local_rect: LayoutRect,
    pub device_rect: DeviceIntRect,
}

impl From<LayoutRect> for Geometry {
    fn from(local_rect: LayoutRect) -> Self {
        Geometry {
            local_rect,
            device_rect: DeviceIntRect::zero(),
        }
    }
}

pub fn rounded_rectangle_contains_point(
    point: &LayoutPoint,
    rect: &LayoutRect,
    radii: &BorderRadius
) -> bool {
    if !rect.contains(*point) {
        return false;
    }

    let top_left_center = rect.min + radii.top_left.to_vector();
    if top_left_center.x > point.x && top_left_center.y > point.y &&
       !Ellipse::new(radii.top_left).contains(*point - top_left_center.to_vector()) {
        return false;
    }

    let bottom_right_center = rect.bottom_right() - radii.bottom_right.to_vector();
    if bottom_right_center.x < point.x && bottom_right_center.y < point.y &&
       !Ellipse::new(radii.bottom_right).contains(*point - bottom_right_center.to_vector()) {
        return false;
    }

    let top_right_center = rect.top_right() +
                           LayoutVector2D::new(-radii.top_right.width, radii.top_right.height);
    if top_right_center.x < point.x && top_right_center.y > point.y &&
       !Ellipse::new(radii.top_right).contains(*point - top_right_center.to_vector()) {
        return false;
    }

    let bottom_left_center = rect.bottom_left() +
                             LayoutVector2D::new(radii.bottom_left.width, -radii.bottom_left.height);
    if bottom_left_center.x > point.x && bottom_left_center.y < point.y &&
       !Ellipse::new(radii.bottom_left).contains(*point - bottom_left_center.to_vector()) {
        return false;
    }

    true
}

/// Return true if the rounded rectangle described by `container` and `radii`
/// definitely contains `containee`. May return false negatives, but never false
/// positives.
fn rounded_rectangle_contains_box_quick(
    container: &LayoutRect,
    radii: &BorderRadius,
    containee: &LayoutRect,
) -> bool {
    if !container.contains_box(containee) {
        return false;
    }

    /// Return true if `point` falls within `corner`. This only covers the
    /// upper-left case; we transform the other corners into that form.
    fn foul(point: LayoutPoint, corner: LayoutPoint) -> bool {
        point.x < corner.x && point.y < corner.y
    }

    /// Flip `pt` about the y axis (i.e. negate `x`).
    fn flip_x(pt: LayoutPoint) -> LayoutPoint {
        LayoutPoint { x: -pt.x, .. pt }
    }

    /// Flip `pt` about the x axis (i.e. negate `y`).
    fn flip_y(pt: LayoutPoint) -> LayoutPoint {
        LayoutPoint { y: -pt.y, .. pt }
    }

    if foul(containee.top_left(), container.top_left() + radii.top_left) ||
        foul(flip_x(containee.top_right()), flip_x(container.top_right()) + radii.top_right) ||
        foul(flip_y(containee.bottom_left()), flip_y(container.bottom_left()) + radii.bottom_left) ||
        foul(-containee.bottom_right(), -container.bottom_right() + radii.bottom_right)
    {
        return false;
    }

    true
}

/// Test where point p is relative to the infinite line that passes through the segment
/// defined by p0 and p1. Point p is on the "left" of the line if the triangle (p0, p1, p)
/// forms a counter-clockwise triangle.
/// > 0 is left of the line
/// < 0 is right of the line
/// == 0 is on the line
pub fn is_left_of_line(
    p_x: f32,
    p_y: f32,
    p0_x: f32,
    p0_y: f32,
    p1_x: f32,
    p1_y: f32,
) -> f32 {
    (p1_x - p0_x) * (p_y - p0_y) - (p_x - p0_x) * (p1_y - p0_y)
}

pub fn polygon_contains_point(
    point: &LayoutPoint,
    rect: &LayoutRect,
    polygon: &PolygonKey,
) -> bool {
    if !rect.contains(*point) {
        return false;
    }

    // p is a LayoutPoint that we'll be comparing to dimensionless PointKeys,
    // which were created from LayoutPoints, so it all works out.
    let p = LayoutPoint::new(point.x - rect.min.x, point.y - rect.min.y);

    // Calculate a winding number for this point.
    let mut winding_number: i32 = 0;

    let count = polygon.point_count as usize;

    for i in 0..count {
        let p0 = polygon.points[i];
        let p1 = polygon.points[(i + 1) % count];

        if p0.y <= p.y {
            if p1.y > p.y {
                if is_left_of_line(p.x, p.y, p0.x, p0.y, p1.x, p1.y) > 0.0 {
                    winding_number = winding_number + 1;
                }
            }
        } else if p1.y <= p.y {
            if is_left_of_line(p.x, p.y, p0.x, p0.y, p1.x, p1.y) < 0.0 {
                winding_number = winding_number - 1;
            }
        }
    }

    match polygon.fill_rule {
        FillRule::Nonzero => winding_number != 0,
        FillRule::Evenodd => winding_number.abs() % 2 == 1,
    }
}

pub fn projected_rect_contains(
    source_rect: &LayoutRect,
    transform: &LayoutToWorldTransform,
    target_rect: &WorldRect,
) -> Option<()> {
    let points = [
        transform.transform_point2d(source_rect.top_left())?,
        transform.transform_point2d(source_rect.top_right())?,
        transform.transform_point2d(source_rect.bottom_right())?,
        transform.transform_point2d(source_rect.bottom_left())?,
    ];
    let target_points = [
        target_rect.top_left(),
        target_rect.top_right(),
        target_rect.bottom_right(),
        target_rect.bottom_left(),
    ];
    // iterate the edges of the transformed polygon
    for (a, b) in points
        .iter()
        .cloned()
        .zip(points[1..].iter().cloned().chain(iter::once(points[0])))
    {
        // If this edge is redundant, it's a weird, case, and we shouldn't go
        // length in trying to take the fast path (e.g. when the whole rectangle is a point).
        // If any of edges of the target rectangle crosses the edge, it's not completely
        // inside our transformed polygon either.
        if a.approx_eq(&b) || target_points.iter().any(|&c| (b - a).cross(c - a) < 0.0) {
            return None
        }
    }

    Some(())
}


// Add a clip node into the list of clips to be processed
// for the current clip chain. Returns false if the clip
// results in the entire primitive being culled out.
fn add_clip_node_to_current_chain(
    handle: ClipDataHandle,
    prim_spatial_node_index: SpatialNodeIndex,
    pic_spatial_node_index: SpatialNodeIndex,
    local_clip_rect: &mut LayoutRect,
    clip_node_info: &mut Vec<ClipNodeInfo>,
    pic_coverage_rect: &mut PictureRect,
    clip_data_store: &ClipDataStore,
    spatial_tree: &SpatialTree,
) -> bool {
    let clip_node = &clip_data_store[handle];

    // Determine the most efficient way to convert between coordinate
    // systems of the primitive and clip node.
    let conversion = ClipSpaceConversion::new(
        prim_spatial_node_index,
        clip_node.item.spatial_node_index,
        spatial_tree,
    );

    // If we can convert spaces, try to reduce the size of the region
    // requested, and cache the conversion information for the next step.
    if let Some(clip_rect) = clip_node.item.kind.get_local_clip_rect() {
        match conversion {
            ClipSpaceConversion::Local => {
                *local_clip_rect = match local_clip_rect.intersection(&clip_rect) {
                    Some(rect) => rect,
                    None => return false,
                };
            }
            ClipSpaceConversion::ScaleOffset(ref scale_offset) => {
                let clip_rect = scale_offset.map_rect(&clip_rect);
                *local_clip_rect = match local_clip_rect.intersection(&clip_rect) {
                    Some(rect) => rect,
                    None => return false,
                };
            }
            ClipSpaceConversion::Transform(..) => {
                // Map the local clip rect directly into the same space as the picture
                // surface. This will often be the same space as the clip itself, which
                // results in a reduction in allocated clip mask size.

                // For simplicity, only apply this optimization if the clip is in the
                // same coord system as the picture. There are some 'advanced' perspective
                // clip tests in wrench that break without this check. Those cases are
                // never used in Gecko, and we aim to remove support in WR for that
                // in future to simplify the clipping pipeline.
                let pic_coord_system = spatial_tree
                    .get_spatial_node(pic_spatial_node_index)
                    .coordinate_system_id;

                let clip_coord_system = spatial_tree
                    .get_spatial_node(clip_node.item.spatial_node_index)
                    .coordinate_system_id;

                if pic_coord_system == clip_coord_system {
                    let mapper = SpaceMapper::new_with_target(
                        pic_spatial_node_index,
                        clip_node.item.spatial_node_index,
                        PictureRect::max_rect(),
                        spatial_tree,
                    );

                    if let Some(pic_clip_rect) = mapper.map(&clip_rect) {
                        *pic_coverage_rect = pic_clip_rect
                            .intersection(pic_coverage_rect)
                            .unwrap_or(PictureRect::zero());
                    }
                }
            }
        }
    }

    clip_node_info.push(ClipNodeInfo {
        conversion,
        handle,
    });

    true
}

#[cfg(test)]
mod tests {
    use super::projected_rect_contains;
    use euclid::{Transform3D, rect};

    #[test]
    fn test_empty_projected_rect() {
        assert_eq!(
            None,
            projected_rect_contains(
                &rect(10.0, 10.0, 0.0, 0.0).to_box2d(),
                &Transform3D::identity(),
                &rect(20.0, 20.0, 10.0, 10.0).to_box2d(),
            ),
            "Empty rectangle is considered to include a non-empty!"
        );
    }
}

/// PolygonKeys get interned, because it's a convenient way to move the data
/// for the polygons out of the ClipItemKind and ClipItemKeyKind enums. The
/// polygon data is both interned and retrieved by the scene builder, and not
/// accessed at all by the frame builder. Another oddity is that the
/// PolygonKey contains the totality of the information about the polygon, so
/// the InternData and StoreData types are both PolygonKey.
#[derive(Copy, Clone, Debug, Hash, MallocSizeOf, PartialEq, Eq)]
#[cfg_attr(any(feature = "serde"), derive(Deserialize, Serialize))]
pub enum PolygonIntern {}

pub type PolygonDataHandle = intern::Handle<PolygonIntern>;

impl intern::InternDebug for PolygonKey {}

impl intern::Internable for PolygonIntern {
    type Key = PolygonKey;
    type StoreData = PolygonKey;
    type InternData = PolygonKey;
    const PROFILE_COUNTER: usize = crate::profiler::INTERNED_POLYGONS;
}